説明

Fターム[4K001DB31]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 溶液の処理 (1,653) | 溶剤抽出 (353) | 有機酸 (84) | リン酸 (51)

Fターム[4K001DB31]に分類される特許

21 - 40 / 51


【課題】
大気圧下塩化浴にて、ラテライト鉱中Ni,Coを浸出し、高品位の金属ニッケル及び金属コバルトを高品位で回収する方法を提供することを目的とする。
【解決手段】
ラテライト鉱石を大気圧下塩酸浴にて浸出し、高品位の金属ニッケル及び金属コバルトを回収する方法であり、前記方法の前処理において、
(1)ラテライト鉱石を、大気圧下、HClによりNi及びCoを含む金属を浸出した後、pHを2.0-3.5に増大させる工程、
(2)前記スラリーを固液分離し、Feを含んだ浸出残渣とNi,Coを含む浸出後液に分離する工程、
から成ることを特徴とするラテライト鉱石の処理方法。 (もっと読む)


【課題】スズ電解液からインジウムを抽出する有機溶媒などについて、抽出力が低下した有機溶媒を再生させる方法であって、処理工程が簡単であって、再生効果の高い方法を提供する。
【解決手段】抽出力の低下した陽イオン交換型のリン酸系溶媒に金属粉末を添加して析出物を生成させた後に酸を加えて洗浄することを特徴とする抽出溶媒の再生方法であり、例えば、リン酸系溶媒がスズ電解液に含まれるインジウムを抽出する溶媒であり、抽出力の低下した該溶媒に亜鉛粉末を添加してスズを析出させる脱スズ工程、次いで、該溶媒を酸洗浄して溶媒から亜鉛を除去する脱亜鉛工程を有する抽出溶媒の再生方法。 (もっと読む)


【課題】 ニッケル、リチウムを含む溶液からニッケルとリチウムを溶媒抽出による共抽出し、濃縮した後、炭酸ニッケル、炭酸リチウムとして回収する。
【解決手段】 少なくともリチウム、ニッケルを含む溶液を
第1工程として、有機溶媒である2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステルにより、3段以上の抽出段を使用し、溶媒抽出し、有機相中へニッケルとリチウムをpH=8.0から8.5において共抽出するニッケルとリチウムの抽出方法。 (もっと読む)


【課題】インジウム−錫酸化物廃スクラップをリサイクルした錫酸化物粉末の製造方法を提供する。
【解決手段】本発明によるインジウム−錫酸化物廃スクラップをリサイクルした錫酸化物粉末の製造方法は、インジウム−錫酸化物廃スクラップを酸に溶解し、インジウムと錫を含む酸溶液を得る段階と、前記酸溶液に錫よりイオン化傾向が大きいインジウム金属を添加し、錫還元によって錫が沈殿されるようにし、濾過し、錫を含む沈殿物を得る段階と、前記錫を含む沈殿物を酸に溶解し、錫溶解液を得る段階と、前記錫溶解液に有機溶媒を添加し、錫を有機溶媒で抽出する段階と、前記抽出によって得られた錫を含む有機溶液に酸を添加し、錫を逆抽出する段階と、前記逆抽出によって得られた錫系酸溶液にアルカリを添加して反応させて、錫系沈殿物を形成する段階と、前記錫系沈殿物を選択的に分離し、洗浄及び乾燥する段階と、乾燥した錫系沈殿物をか焼し、錫酸化物を得る段階と、を含む。 (もっと読む)


【課題】 無電解ニッケルめっき廃液に抽出剤を接触させてニッケルイオンを抽出し、これに剥離剤を投入してニッケルを単離させて回収する方法において、pHを調整することなく1回の抽出剤との接触で高い抽出率を短時間で得る。
【解決手段】 抽出剤として、ジ−2−エチルヘキシルリン酸とニコチン酸ドデシルとの混合物、又はジ−2−エチルヘキシルリン酸とイソニコチン酸ドデシルとの混合物を用いる。この方法によれば、pHを調整することなく1回の接触で98〜99%の高い抽出率を得ることができる。また、接触後1分未満の短時間で95%以上の高い抽出率を得ることができる。 (もっと読む)


【課題】銅転炉ダストの処理において、鉛の分離処理後の残渣中における銅の含有量を低減し、銅の回収コストを下げることを目的とする。
【解決手段】銅転炉ダストの処理方法は、硫酸を加え、エアーおよび、または蒸気を吹き込むことにより、銅転炉ダスト中の酸不溶解の金属を除去する酸化、酸浸出処理と、浸出処理後の浸出液を硫化し、銅、及び砒素を回収する硫化処理と、を備える。 (もっと読む)


【課題】銅製錬で排出される製錬ダストからの残渣を低減し、製錬ダストの原材料の処理量を増加することを課題とする。
【解決手段】銅転炉ダストの処理方法は、少なくとも銅、砒素、鉛、亜鉛、カドミウムを含有する銅転炉ダストを水あるいは硫酸濃度100g/L以下の硫酸溶液に溶解させ、前記銅転炉ダスト中の鉛、その他の酸不溶の金属を除去する希硫酸浸出処理と、前記希硫酸浸出処理後の浸出液を硫化し、銅、及び砒素を回収する硫化処理と、前記硫化処理後の硫化後液を中和し、亜鉛、カドミウムを回収する中和処理と、を備えている。 (もっと読む)


本明細書には、水溶液を、ホスフィン酸を含む有機相溶液と接触させることにより水溶液からモリブデンおよび/またはその他の有価金属を抽出し、有機相溶液を、無機化合物を含みそして<1.0M濃度の遊離アンモニアを含む水相ストリッピング液と接触させることにより有機相溶液からモリブデンおよび/またはその他の有価金属をストリッピングし、そして水相ストリッピング液からモリブデンおよび/またはその他の有価金属を分離することによりそれらを回収する工程による溶媒抽出法により、1リットル当たりppm〜数グラム:の広範な濃度からの、水溶液中に存在するモリブデンおよび/またはその他の有価金属(例えば、ウラン)を回収する方法が提供される。モリブデンおよび/またはその他の有価金属が低濃度でのみ存在する時は、その方法は、回収の前に金属を濃縮するために、有機相再循環工程および/または水相ストリッピング再循環工程を含むことができる。 (もっと読む)


【課題】 ニッケル、リチウムを含む溶液からニッケル、リチウムをそれぞれ分離し、電気ニッケル、炭酸ニッケル、炭酸リチウムとして回収する。
【解決手段】 少なくともリチウム、ニッケルを含む溶液を
第1工程として溶媒抽出によって、有機相中へニッケルとともにリチウム抽出し、
第2工程として、ニッケルとリチウムを含有する有機相を硫酸溶液によって洗浄し、洗浄液中にリチウムを濃縮するニッケルとリチウムの分離回収方法。 (もっと読む)


【課題】効率的かつ安定した製造技術及びそれによって得られた高純度ハフニウム材料、同材料からなるターゲット及び薄膜を提供する。
【解決手段】ジルコニウムとガス成分を除き純度4N以上であって、酸素含有量が40wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜、ジルコニウムとガス成分を除き純度4N以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。ジルコニウムを低減させたハフニウムスポンジを原料として使用し、さらにハフニウム中に含まれる酸素、硫黄、リンの含有量を低減させた高純度ハフニウム材料、同材料からなるターゲット及び薄膜並びに高純度ハフニウムの製造方法。 (もっと読む)


【課題】ニッケル及びコバルトと鉄、アルミニウム及びマンガンその他の不純物元素とを含有する硫酸酸性水溶液から、鉄、アルミニウム及びマンガンその他の不純物元素と効率的に分離することにより、ニッケル工業材料の原料として効果的に利用することができる形態でニッケルを回収する硫酸酸性水溶液からのニッケルの回収方法を提供する。
【解決手段】下記の工程(1)〜(5)を含むことを特徴とする。
工程(1):前記硫酸酸性水溶液を酸化中和処理に付す。
工程(2):次いで、中和処理に付し、ニッケル及びコバルトを含有する混合水酸化物を分離回収する。
工程(3):前記混合水酸化物を、濃度50質量%以上の硫酸溶液中で溶解処理に付す。
工程(4):前記濃縮液を、燐酸エステル系酸性抽出剤を用いて溶媒抽出処理に付す。
工程(5):得られた抽出残液に、中和剤を添加して中和処理に付し、生成された水酸化ニッケルを分離回収する。 (もっと読む)


【課題】使用済みニッケル水素電池を解体して得た正極活物質及び負極活物質から、ニッケル、コバルト、希土類元素及びその他の共存する金属元素を分離し、特に、含有量の多いニッケルと希土類元素を電池用材料として再使用できる形態で回収することができる処理方法を提供する。
【解決手段】下記の(1)〜(6)に示す工程を含むことを特徴とする。
(1)正極活物質及び負極活物質を洗浄処理に付す洗浄工程、
(2)前記洗浄工程で得た洗浄後残渣と下記浸出工程で得た浸出液を混合して還元処理に付す還元工程、
(3)前記還元工程で得た還元残渣を浸出処理に付す浸出工程、
(4)前記還元工程で得た還元液を希土類元素複塩化処理に付す希土類回収工程、
(5)前記希土類回収工程で得た濾液を酸化中和処理に付す酸化中和工程、及び
(6)前記酸化中和工程で得た酸化中和後液を溶媒抽出処理に付す溶媒抽出工程 (もっと読む)


【課題】ロジウム及び少なくとも白金及び又はパラジウムを含む原料から、ロジウムと白金及び又はパラジウムとを簡易に分離し、効率よくロジウムを回収する方法を見出すことである。
【解決手段】ロジウム及び少なくとも白金及び又はパラジウムを含む原料を、塩素雰囲気中で塩化処理を行って白金及び又はパラジウムを可溶性の塩化物とし、次いで該処理物を水浸出して白金及び又はパラジウムを溶液として濾過分離し、不溶性の塩化ロジウムを残渣に残す。残渣を塩化ナトリウムを混合して塩素雰囲気中で焙焼することで、ロジウムを可溶性のナトリウム塩にでき、これを精製、回収することでロジウムを回収する方法。 (もっと読む)


【課題】塩化物浴から銅を溶媒抽出する際に、銅の抽出能力の向上を図る。
【解決手段】銅の塩化物と、アルカリ及び/又はアルカリ土類金属の塩化物とを含有する酸性水溶液から、陽イオン交換型抽出剤を用いて溶媒抽出により銅を回収する方法で、溶媒抽出を硫酸イオンの存在下で行う。硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、硫酸カリウム及び硫酸アンモニウムよりなる群から選択される硫酸化合物を該酸性水溶液に添加し、硫酸イオンの含有量を10〜100g/Lの範囲とする。さらに、酸性水溶液中の塩素イオン濃度と臭素イオン濃度を所定範囲し、陽イオン交換型抽出剤として酸性キレート抽出剤を用いることができる。銅の抽出能力が上昇し、前段階で実施する銅の浸出工程で取り扱う溶液量を少なくでき、設備コスト、操業コスト等を少なくできる。 (もっと読む)


【課題】石油系の未利用資源に含まれるニッケル及びバナジウム等の有価金属を効果的に別個に回収できるようにする。
【解決手段】石油系未利用資源をガス化したガスからタールTを回収する工程と、タールTを第1酸液15で処理してニッケル及びバナジウムが溶解した第1酸液15'とタールTとに分離する第1分離工程と、分離したニッケル及びバナジウムが溶解した第1酸液15'を抽出剤17で抽出してバナジウムを含む抽出剤17'とニッケルを含む第1酸液15"とに分離する第2分離工程と、分離した第1酸液15"を濃縮してニッケルを得るニッケル分離工程と、分離した抽出剤17'を第2酸液22で再抽出してバナジウムを含む第2酸液22'と抽出剤17とに分離する第3分離工程と、分離した第2酸液22'を濃縮してバナジウムを得るバナジウム分離工程とを有する。 (もっと読む)


【解決手段】(A)希土類磁石合金を含む原料を酸化性雰囲気中で加熱し、前記合金成分の酸化物とする工程、
(B)該酸化物と水を混合してスラリーとし、加熱しながら、塩酸を添加する工程、
(C)得られた溶液を加熱しながらアルカリを加える工程、
(D)未溶解及び沈殿した固体と希土類を含む溶液を分離する工程
を含むことを特徴とする希土類元素の回収方法。
【効果】本発明によって、安価な塩酸が使用でき、かつ塩酸量の低減が可能となり、水素ガス発生の危険性を減少することができ、また希土類元素の回収率の向上がはかられ、経済性、安全性に優れた希土類元素の回収方法が提供される。 (もっと読む)


【課題】 リチウム電池滓から三元系Li金属塩からMn、Co、Ni及びLiといった有価金属を回収する。
【解決手段】 ほぼ等量のCo,Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、250g/l以上の濃度の塩酸溶液にて攪拌浸出、または、200g/l以上の濃度の硫酸溶液にて65〜80℃に加熱しながら攪拌浸出、または、200g/l以上の濃度の硫酸溶液と20g/l以上の過酸化水素溶液を混合した溶液にて攪拌浸出処理し、浸出液につきMn、Co及びNiの3種の金属の98%以上を酸性抽出剤で溶媒抽出し、それぞれの金属を含有する溶液を生成し、これらの溶液と抽出後のLiを含む残液からMn、Co、Ni及びLiといった有価金属を回収する。 (もっと読む)


【課題】銅原料を塩素浸出する工程、得られた塩化物水溶液を還元する工程、溶媒抽出方法により銅を分離する工程、及び銅イオンを電解採取する工程を含む湿式銅製錬法に用いる、抽出段と逆抽出段からなる溶媒抽出方法において、逆抽出段において、抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と銅電解陰極廃液からなる水相を接触混合して銅を逆抽出することにより形成される抽出剤中の残留銅濃度を極力させることができる溶媒抽出方法を提供する。
【解決手段】前記抽出段において、還元後の塩化物水溶液とトリブチルフォスフェイトを含む抽出剤を接触混合し、次いで前記逆抽出段において、該抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と前記銅電解陰極廃液からなる水相を接触混合して銅を逆抽出する際に、逆抽出後の水相の酸化還元電位(銀/塩化銀電極基準)を300〜400mVになるように制御することを特徴とする。 (もっと読む)


【課題】ハロゲン含有量の高い亜鉛含有物を原料に用いて、乾式処理を介することなく、生産性が高く、ハロゲンの除去が容易である、低ハロゲン濃度の高純度な亜鉛電解元液を効率よく製造できる亜鉛電解液の製造方法の提供。
【解決手段】亜鉛及びハロゲンを含む亜鉛含有物を酸浸出して抽出元液(水相A)を得る浸出工程と、前記抽出元液(水相A)と、亜鉛抽出剤を含む非水溶性有機溶媒(有機相A)とを撹拌して混合することにより、亜鉛及びハロゲンを含む有機相Bと、ハロゲンを含む抽出后液(水相B)を得る溶媒抽出工程と、亜鉛及びハロゲンを含む有機相Bと電解尾液(水相E)とを撹拌して混合することにより亜鉛を逆抽出后液(水相F)に回収し、亜鉛電解元液を得る逆抽出工程とを含む亜鉛電解液の製造方法である。 (もっと読む)


アルミニウム鉱石又は混合物からアルミニウム及び/又は鉄イオンを抽出する方法及び組成物を提供する。一方法は、アルミニウムイオン、鉄イオン、有機溶媒及び有機溶媒に可溶で鉄イオン又はアルミニウムイオンと実質選択的に有機金属錯体を形成するのに適した抽出剤を含む組成物からのアルミニウムイオンの回収を含む。鉱石からアルミニウムを抽出する他の方法は、鉱石を酸で浸出して浸出液と固体残留物を得る工程と、pH10以上の塩基性条件下、鉄イオンの少なくとも一部を実質選択的に沈殿させ又は有機金属錯体を形成するのに適した抽出剤で鉄イオンの少なくとも一部を実質選択的に錯形成させ浸出液中に含まれた鉄イオンの少なくとも一部を除去する工程を含む。組成物に含まれる鉄イオンからアルミニウムイオンを少なくとも部分的に分離する他の方法は、pH10以上の塩基性条件下、鉄イオンの少なくとも一部を実質選択的に沈殿させる工程を含む。
(もっと読む)


21 - 40 / 51