説明

Fターム[4K001GA07]の内容

金属の製造又は精製 (22,607) | 使用する炉 (1,426) | 回転炉 (208)

Fターム[4K001GA07]に分類される特許

101 - 120 / 208


【課題】バインダーの使用量も水の使用量も極力減らしても強度が高められるブリケットを製造すること。
【解決手段】酸化亜鉛、酸化鉛、酸化チタンのいずれか1種以上、及び酸化鉄を含む金属酸化物の粉末を用いて一次粒状物を形成する工程と、前記酸化亜鉛、酸化鉛、酸化チタンのいずれか1種以上を含んだ状態で、複数の一次粒状物を加圧することにより二次粒状物に成型する工程を含む。 (もっと読む)


【課題】ロータリーキルンを利用した加熱処理装置および加熱処理方法であって、有機物含有被処理物および有機物非含有被処理物を効率的に且つより経済的に減容処理できる加熱処理装置および加熱処理方法を提供する。
【解決手段】加熱処理装置は、ASR等の有機物含有被処理物を加熱乾留して可燃性ガスと炭化混合物に分解する第1のロータリーキルン(1)と、UBC等の有機物非含有被処理物を加熱処理する第2のロータリーキルン(4)とを備え、第1のロータリーキルン(1)の回転炉で発生した可燃性ガスを第2のロータリーキルン(4)の加熱炉へ供給可能に構成される。そして、加熱処理方法においては、第1のロータリーキルン(1)で発生した可燃性ガスを第2のロータリーキルン(4)において熱源として使用する。 (もっと読む)


【課題】移動型炉床炉を用いて鉄鉱石から還元鉄を製造する際に、鉄鉱石中の亜鉛分を亜鉛精錬原料として使用可能な濃度で含有するダストである、高亜鉛含有ダストとして回収可能な、還元鉄製造方法を提供すること。
【解決手段】鉄鉱石11と炭素系固体還元材12とを混合した混合原料を移動型炉床炉15の炉床上に積載し、炉床上部から熱供給して混合原料を還元し、混合原料を溶融しないかまたは一部のみ溶融させて還元鉄を製造する際に、移動型炉床炉15で発生するダストの一部を21aで混合原料に混合して循環使用し、ダストの残部を高亜鉛含有ダストとして21bで分離することを特徴とする還元鉄製造方法を用いる。混合原料中の亜鉛濃度に基づいて、高亜鉛含有ダストとして分離するダストの量を決定すること、または移動型炉床炉15で発生するダストの亜鉛濃度の分析濃度に基づいて高亜鉛含有ダストとして分離するダストの量を決定することが好ましい。 (もっと読む)


【課題】高亜鉛含有鉄鉱石の有効利用を可能とする、高亜鉛含有鉄鉱石を用いた銑鉄製造方法を提供すること、また、亜鉛、鉄、双方の供給不足を解決することのできる高亜鉛含有鉄鉱石を用いた銑鉄製造方法を提供すること。
【解決手段】亜鉛を0.01mass%以上、鉄を50mass%以上含有する高亜鉛含有鉄鉱石を用いて高炉原料2を製造し、この高炉原料2を高炉1に装入し銑鉄を製造するとともに、高炉排ガス中の亜鉛含有ダスト4を回収し、還元炉5を用いて亜鉛含有ダスト4から亜鉛6を回収することを特徴とする高亜鉛含有鉄鉱石を用いた銑鉄製造方法を用いる。高炉原料2が焼結鉱またはペレットであること、亜鉛含有ダスト4を移動型炉床上に積載し、該移動型炉床上部から熱供給して亜鉛含有ダスト4を還元し、還元鉄7を製造するとともに亜鉛6を回収することが好ましい。 (もっと読む)


【課題】回転炉の局所的過熱を防止しつつ、溶解時間の短縮を図ることが可能な硫化精製用回転炉およびこれを用いた銅ドロスの硫化精製方法を提供する。
【解決手段】銅ドロスから銅を硫化銅として鉛と分離する硫化精製用回転炉であって、炉口において、発生する火炎を炉内に吹き込むようにノズルを設ける高圧バーナと、高圧バーナとは分離して、ノズルの近傍に開口部を有する、純酸素を吹き込むための酸素吹込み管とを有する硫化精製用回転炉を提供する。 (もっと読む)


【課題】移動型炉床炉を用いて鉄鉱石から還元鉄を製造する際に、鉄鉱石中の亜鉛分を、亜鉛精錬原料として使用可能な濃度で含有するダストである、高亜鉛含有ダストとして回収可能な、還元鉄製造方法を提供すること。
【解決手段】鉄鉱石11と炭素系固体還元材12と造滓材13とを混合した混合原料を移動型炉床炉15の炉床上に積載し、該炉床上部から熱供給して混合原料を還元し、更に溶融させて、還元鉄を製造する際に、前記移動型炉床炉15で発生するダストの一部を21aで混合原料に混合して循環使用し、ダストの残部を高亜鉛含有ダストとして21bで分離することを特徴とする還元鉄製造方法を用いる。混合原料中の亜鉛濃度に基づいて、高亜鉛含有ダストとして分離するダストの量を決定すること、または移動型炉床炉で発生するダストの亜鉛濃度を分析し、該分析濃度に基づいて高亜鉛含有ダストとして分離するダストの量を決定することが好ましい。 (もっと読む)


【課題】高亜鉛の粉粒状鉄系ダストおよびスラッジを還元焙焼処理後、これを塊成化する製鋼用還元鉄塊成鉱の製造方法を提供する。
【解決手段】平均組成で亜鉛成分を1.0〜10質量%含有する粉粒状の鉄系ダストおよびスラッジに炭材を混合後、還元焙焼処理して還元鉄を製造し、得られた粉粒状の還元鉄を冷却した後、ブリケット成型機により塊成化する製鋼用還元鉄塊成鉱の製造方法である。前記の製造方法において、冷却後の還元鉄を篩処理により分級し、篩下物をブリケット成型機により塊成化するとともに、塊成化後の還元鉄を、上記篩処理の前に循環させて、篩下物を再度ブリケット成型機に供給することが好ましい。また、還元焙焼処理の装置としてロータリーキルンを用い、ブリケット成型機としてダブルロール圧縮成型機を用いることが好ましい。 (もっと読む)


【課題】インジウム含有の廃棄物からインジウムを再利用に適した状態で効率よく回収できる。
【解決手段】廃棄物W1中の有機物を除去した後の残渣Rfを受け入れて加熱し、残渣Rfにインジウムを還元雰囲気の中で気化させるプラズマ炉5と、プラズマ炉5から排出された気体状のインジウムを凝縮させるスプラッシュコンデンサー7とを備える。このインジウム回収装置1では、インジウムを凝縮して回収できるため、不純物の混入は少なく、インジウムを再利用に適した状態で効率よく回収できる。 (もっと読む)


【課題】加熱処理装置の回転炉において、外部から加熱して、スクラップ材の可燃物が安定して燃焼する雰囲気温度に制御すると共に、燃焼に必要な酸素を適当に供給して、回転炉内部を通過するガス量を大幅に低減し、装置の小型化や稼働経費の節減を図る。
【解決手段】回転しながらスクラップ材を加熱する回転加熱炉と、回転加熱炉にスクラップ材を供給するスクラップ材供給口と、回転加熱炉に外気及び再燃焼ガスを導入する供給ガス通路と、回転加熱炉で加熱処理したスクラップ材を排出する排出口と、回転加熱炉内で発生した反応ガスを排出するガス排出口と、ガス排出口から排出された反応ガスを加熱して無害化する再燃焼装置と、再燃焼装置で処理した再燃焼ガスを前記供給ガス通路に循環供給する再燃焼ガス通路及びバイパス通路とからなる加熱処理装置で、別途回転加熱炉を加熱する誘導加熱式外部加熱装置を設ける。 (もっと読む)


【課題】焼却灰からバナジウムを効率的に回収し、資源の有効利用を可能にするバナジウム回収装置を提供することを目的とする。
【解決手段】石油系燃料の燃焼によって生じるバナジウムV含有の焼却灰Asを受け入れる回転炉3と、回転炉3内の焼却灰Asを加熱する気化手段17と、回転炉3内の気体状のバナジウムVを排出するバナジウム排出部19と、バナジウム排出部19から流出したバナジウムVを回収する沈殿槽5と、を備える。本構成では、PH調整を伴う湿式処理によりバナジウムVを回収する従来装置に比べて構造が単純になり、設備もコンパクト化できてバナジウムVの効率的な回収が可能になる。 (もっと読む)


【課題】焼却灰からバナジウムを効率的に回収するバナジウム回収装置を提供する。
【解決手段】焼却灰Asと鉄化合物Feとをキルン回転炉3で加熱し、キルン回転炉3から排出された焙焼鉱Rsのうち、バナジウムフェライトVfを含む磁性物を磁力選別によって非磁性物Nmから分離するバナジウム回収装置2とした。焼却灰As中のバナジウムVは、例えば600℃〜800℃程度にまで加熱された鉄化合物Feの表面に接触することでバナジウムフェライトVfに変換される。バナジウムフェライトVfは磁性を帯びており、キルン回転炉3から排出された焙焼鉱Rsのうち、バナジウムフェライトVfを含む磁性物を磁力選別によって非磁性物Nmから分離することで、焼却灰As中のバナジウムVを、バナジウムフェライトVfとして効率よく回収できる。 (もっと読む)


【課題】亜鉛含有の灰から亜鉛を効率よく回収できる亜鉛回収装置を提供することを目的とする。
【解決手段】亜鉛含有の飛灰から亜鉛を回収する亜鉛回収装置5Aにおいて、飛灰を収容して加熱し、飛灰に含まれる金属のうち、少なくとも亜鉛を還元雰囲気の中で気化させる溶融還元槽19と、溶融還元槽19で気化された亜鉛を回収するスプラッシュコンデンサー23や亜鉛冷却ユニット25とを備える。この亜鉛回収装置5Aでは、飛灰に含まれる金属のうち、少なくとも亜鉛を気化させ、気化した亜鉛をスプラッシュコンデンサー23や亜鉛冷却ユニット25で回収するため、不純物の混入は少なく、亜鉛を再利用に適した状態で効率よく回収できる。 (もっと読む)


【課題】排ガス流速を従来に比べて増加させ、増加しても緻密な固着物のダクトへの付着は抑えることができる、回転炉床炉の排ガス処理方法を提供する。
【解決手段】加熱還元により還元鉄を製造する回転炉床炉1の排ガス排出口に直結された第1の排ガスダクト2を介して排ガスを冷却する冷却装置5が連結され、冷却装置5の後段に第2の排ガスダクト7を介して2次集じん器8が連結された回転炉床炉の排ガス処理方法において、第1の排ガスダクト2の上流側は回転炉床炉1に対して水平配置した水平ダクト3とし、下流側を垂直配置した垂直ダクト4として冷却装置5に連結し、かつ第1の排ガスダクト内の排ガス流速を9m/秒〜17m/秒とし、第2の排ガスダクト7の上流側を上昇傾斜とし下流側を下降傾斜として2次集じん器8に接続し、かつ、第2の排ガスダクト内の排ガス流速を15m/秒〜23m/秒とする。 (もっと読む)


【課題】乾式法によって、廃電池から各種の有価金属を効率よく多量に回収するための技術を提案する。
【解決手段】移動型炉床炉内を移動する移動床上に、金属含有物等を装入積載して加熱、還元することにより、特定の金属を分離回収する方法において、前記移動床上に、廃電池を積載し、その移動床が炉内を移動する間の加熱過程で、高揮発性金属を揮発させ、このとき発生した炉内ガスから高揮発金属の粉末を回収する一方、低揮発性金属については、前記移動床上において回収する。 (もっと読む)


【課題】廃電線を効率よく処理し、更により価値の高い有価物にできる廃電線からの有価金属回収方法を提供する。
【解決手段】予め粗切断された原料となる油付き電線を含む廃電線を、ロータリキルンに入れ、過熱蒸気を用いて加熱し、含まれる金属以外の部分を炭化する第1工程と、第1工程で処理された廃電線を破砕して、炭化物を主体とする粉体とそれ以外の金属類からなる粒状物とにする第2工程と、第2工程で生成された粒状物と粉体を分離する第3工程とを有する。 (もっと読む)


水酸化ニッケル、水酸化コバルト、混合水酸化ニッケル−コバルト、炭酸ニッケル、炭酸コバルト、混合炭酸ニッケル−コバルトおよびそれらの組合せから金属酸化物を製造する方法は、金属塩の混合物を用意すること、該金属塩を、無機結合剤、有機結合剤およびそれらの組合せからなる群から選択される結合剤と混合すること、該混合物を凝集物に形成すること、および該凝集物をか焼し、金属酸化物を製造することを含んでなる。金属ニッケルまたはコバルトを製造する方法は、水酸化ニッケル、水酸化コバルト、混合水酸化ニッケル−コバルト、炭酸ニッケル、炭酸コバルトおよびそれらの組合せからなる群から選択される金属塩を用意すること、該金属塩を、無機結合剤、有機結合剤およびそれらの組合せからなる群から選択される結合剤と混合して混合物を形成すること、所望により水を加えること、該混合物を凝集物に形成すること、該凝集物を乾燥させること、有効還元量のコークスおよび/または石炭を加えること、および該乾燥した凝集物を有効量の熱で直接還元し、金属ニッケルおよび/またはコバルトを製造することを含んでなる。凝集の前に、コークス粒子を混合物に加えることができる。凝集物は、水酸化ニッケル、水酸化コバルト、混合水酸化ニッケル−コバルト、炭酸ニッケル、炭酸コバルト、混合炭酸ニッケル−コバルトおよびそれらの組合せからなる群から選択される金属塩、および無機結合剤、有機結合剤およびそれらの組合せからなる群から選択される結合剤を含んでなる。
(もっと読む)


【課題】ペレット増産ないし高結晶水鉱石増配を確実に達成しうるペレット製造方法を提供する。
【解決手段】鉄鉱石ペレットをトラベリング・グレート2で移動させつつ、乾燥室3、離水室4および予熱室5で順次加熱した後、キルンバーナ10を備えたロータリキルン9で焼成するグレートキルン方式の鉄鉱石ペレット製造方法において、離水室入口4bを基点として離水室全長Lの1/3〜0.98倍の間に複数本のバーナ31を設置し、該複数本のバーナ31から離水室4へ気体燃料を吹き込み、該気体燃料を、離水室4へ導入される予熱室排ガスA中の残留酸素で燃焼させて、前記離水室内における、その入口近傍を除く領域の雰囲気温度を上昇させる。 (もっと読む)


【課題】亜鉛精錬のための亜鉛総量の低減を防止できる還元処理装置及び還元処理方法を提供する。
【解決手段】亜鉛含有酸化鉄及び還元材を加熱処理することで亜鉛含有酸化鉄を還元して亜鉛濃縮物を含む排ガスを排出するロータリーキルン2と、ロータリーキルン2から排出される排ガスに対して所定の処理を施す排ガス処理装置3とを備えた還元処理装置1において、ロータリーキルン2及び排ガス処理装置3に、水酸化ナトリウム水溶液を噴霧する噴霧部を兼ねる水噴霧部2g,4a,6aと廃液注入部4bとを設け、これらの噴霧部から亜鉛濃縮物を含む排ガスに対して、水酸化ナトリウム水溶液を所定量噴霧する。これにより、塩素分が低減された高濃度の酸化亜鉛を含有する亜鉛濃縮物を得ることができる。 (もっと読む)


【課題】廃プリント基板を効率よく処理し、更により価値の高い有価物に変える廃プリント基板の処理方法を提供する。
【解決手段】予め粗破砕された原料となる廃プリント基板を、ロータリキルンに入れ、過熱蒸気を用いて加熱し、含まれる金属以外の部分を炭化する第1工程と、第1工程で処理された廃プリント基板を破砕して、炭化物及びセラミックスを含む粉体とそれ以外の金属類からなる粒状物とにする第2工程と、第2工程で生成された粒状物と粉体を分離する第3工程とを有する。 (もっと読む)


【課題】鉄塩廃棄物等の処理を不要とし、容易に金属鉄と酸化チタンとを選鉱する。
【解決手段】少なくとも磁鉄鉱及びチタン鉄鉱が混在した原鉱を酸化焙焼し、原鉱中の酸化第1鉄を酸化第2鉄に酸化する。その後、酸化焙焼後の原鉱に炭素系還元剤を添加して還元焙焼し、原鉱中の酸化鉄を金属鉄に還元する。還元焙焼後の還元物を物理的手段により銑鉄原料物としての金属鉄と酸化チタン原料物とに選鉱する。 (もっと読む)


101 - 120 / 208