説明

Fターム[4K001GA07]の内容

金属の製造又は精製 (22,607) | 使用する炉 (1,426) | 回転炉 (208)

Fターム[4K001GA07]に分類される特許

41 - 60 / 208


【課題】金属酸化物と炭素質還元剤とを含む塊成物を加熱して塊成物に含まれる金属酸化物を還元溶融して粒状金属を製造するにあたり、粒状金属の生産性を一層高める技術を提案する。
【解決手段】金属酸化物と炭素質還元剤とを含む塊成物を、移動床型還元溶融炉の炉床上に供給して加熱し、前記金属酸化物を還元溶融した後、得られる粒状金属を冷却してから前記炉外へ排出して回収する粒状金属の製造方法であり、前記炉床上における塊成物の敷密度を0.5以上として加熱する際に、平均直径が17.5mm以上の塊成物を前記炉床上に供給する。 (もっと読む)


【課題】酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して金属鉄を製造するにあたり、設備を大幅に設計変更することなく、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて生成する金属鉄および/またはウスタイトが炉床上に固着するのを防止する技術を提供する。
【解決手段】塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄および/またはウスタイトを炉床上に固着させないための炉床形成材を前記塊成物と共に炉内に装入する。 (もっと読む)


【課題】フェロニッケル製錬において、ロータリーキルンに投入される石炭の一部を木質ペレットで代替することが可能な、木質ペレットを使用したフェロニッケル製錬方法を提供する。
【解決手段】ニッケル酸化鉱をロータリーキルンで焼成する工程、次いで、得られたか焼鉱を電気炉に送り還元を行う工程を含むフェロニッケルの製錬方法であって、
ロータリーキルンでの焼成工程では、ロータリーキルンの原料投入口及び/又は原料投入口からか焼鉱排出口の中間で石炭を投入する際に、石炭の少なくとも一部の代替として、木質ペレットを用いることを特徴とするフェロニッケルの製錬方法など。 (もっと読む)


【課題】フェロニッケル製錬において、ロータリーキルンに投入される石炭の一部を木質ペレットで代替することが可能な、木質ペレットを使用したフェロニッケル製錬方法を提供する。
【解決手段】ニッケル酸化鉱をロータリーキルンで焼成する工程、次いで、得られたか焼鉱を電気炉に送り還元を行う工程を含むフェロニッケルの製錬方法であって、
ロータリーキルンでの焼成工程では、ロータリーキルンの原料投入口または原料投入口からか焼鉱排出口の中間で石炭を投入する際に、石炭の少なくとも一部の代替として、ホワイトペレット、バークペレットまたは全木ペレットから選ばれる少なくとも一種の木質ペレットを用いることを特徴とするフェロニッケルの製錬方法など。 (もっと読む)


【課題】移動炉床式還元炉内で加熱して還元鉄を得るに際して炉内で粉化を起こして粉が蓄積されることがなく、また得られた還元鉄が搬送されるに際して粉化して歩留まりが下がることを確実に防止しうる炭材内装酸化鉄塊成化物、および、その製造方法、ならびに、それを用いた還元鉄の製造方法を提供する。
【解決手段】Al、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度が1300℃以下、より好ましくは1200℃以下であるプリメルトスラグ(例えば高炉スラグおよび/または製鋼スラグ)が配合されてなり、さらに好ましくは、当該塊成化物全体のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度も1300℃以下、より好ましくは1200℃以下で、かつ、得られた還元鉄中のAl−CaO−SiO3元系スラグの融液率が1〜20%となる炭材内装酸化鉄塊成化物。 (もっと読む)


【課題】
回転式炉床炉から排出される高温の還元鉄を成形し歩留まりを向上させることができるホットブリケットの製造方法および製造設備を提供する。
【課題を解決するための手段】
回転炉床式還元炉にて還元された高温の還元鉄を熱間成形してホットブリケットを製造するホットブリケットの製造方法であって、前記回転炉床式還元炉から排出された高温の還元鉄を冷却速度1.5〜2.5℃/秒で750〜800℃まで冷却し、該温度でホットブリケットマシーンへ投入してホットブリケットを成形し、成形後のホットブリケットを100℃まで、4.5〜7.0℃/秒の冷却速度で冷却することを特徴とするホットブリケットの製造方法および製造装置。 (もっと読む)


【課題】湿ダスト等の鉄分及び水分を含有する粉状物を原料として、コストの低い方法で高強度を有する塊成化物を製造可能として、竪型炉を用いて銑鉄を製造できる、鉄分及び水分を含有する粉状物の塊成化方法を提供すること。
【解決手段】鉄分と水分とを含有する粉状物2の塊成化物を竪型炉に装入して金属鉄を回収する際に用いる粉状物2の塊成化方法であって、粉状物2が少なくとも酸化鉄および/または水酸化鉄を鉄分として含有するものであり、粉状物2をバーナー火炎の理論燃焼温度を1000℃以上とした直火型キルン7を用いて乾燥し、該乾燥後の粉状物8を塊状に成型して塊成化物とすることを特徴とする鉄分および水分を含有する粉状物の塊成化方法を用いる。鉄分および水分を含有する粉状物が乾燥状態で水酸化鉄を15mass%以上含有している場合、直火型キルン7の内壁の最高温度が800℃以上となるように乾燥することが好ましい。 (もっと読む)


【課題】廃触媒の焙焼を行う際に、アルカリ金属の使用量を抑えることができ、しかも、廃触媒から有価金属を回収する効率を高くすることができる焙焼装置に対する原料供給方法を提供する。
【解決手段】焙焼装置に対して処理材料を含有する投入原料を供給する方法であって、投入原料が、処理材料を砕いて形成された破砕材料を含む粉体を成形又は造粒した粒状物を含有する。処理材料を破砕して粉体とすれば、この粉体を粒状化した投入原料内での有価金属の偏在を解消することができる。すると、投入原料の有価金属の品位をより正確に把握できるので、投入原料とともに焙焼装置に供給するアルカリ金属の量を、有価金属と過不足無く反応する適切な量とすることができる。また、粒状物の密度を適切に調整できるから、アルカリ金属と有価金属との反応性を向上させることができ、有価金属を可溶性塩として回収する効率を向上させることができる。 (もっと読む)


【課題】還元性を高めるために還元材の表面積の最適条件を規定し、簡便な方法で入手した還元材を用いて、高強度且つ高金属化率の還元鉄の製造方法を得る。
【解決手段】酸化鉄原料と還元材とを含む塊成化物を還元炉により還元して還元鉄を製造する方法であって、前記還元材として比表面積が10〜300(m/g)の第1の炭材と比表面積が10(m/g)未満の第2の炭材とを混合して使用し、第1の炭材を使用する質量比率を還元材の全使用質量の5%以上、50%以下とする。この場合、還元材の第1及び第2の素材は、樹脂を主体とする使用済み製品を乾留して得られる炭素主体の粒子が含有されていることが好ましく、該樹脂を主体とする使用済み製品は、廃タイヤ、廃ベルト、廃ゴムの1種または2種以上を含んでいるものとすることができる。 (もっと読む)


【課題】鉄鋼スラグ中の有価成分を効率的に回収する方法を提供する。
【解決手段】鉄鋼スラグを塩酸浸出した後、浸出溶液中のSi化合物をゲル化する工程と、ゲル状Si化合物を固液分離して回収する工程と、固液分離後の浸出溶液を乾燥固化し、この固化物を400〜550℃の温度に加熱する工程と、前記固化物を水浸出した後、Ca化合物を含む浸出溶液と、Fe、Al、Mn及びMgの化合物を含む浸出残渣とに固液分離して回収する工程とを含むことを特徴とする、鉄鋼スラグ中の有価成分の回収方法とする。 (もっと読む)


【課題】移動炉床式還元炉内で加熱して還元鉄を得るに際して炉内で粉化を起こして粉が蓄積されることがなく、また得られた還元鉄が搬送されるに際して粉化して歩留まりが下がることを確実に防止しうる炭材内装酸化鉄塊成化物、および、その製造方法、ならびに、それを用いた還元鉄の製造方法を提供する。
【解決手段】当該塊成化物中のAl、CaOおよびSiO含有量から定まるAl−CaO−SiO3元系スラグの固相線温度が1300℃以下であり、かつ、当該塊成化物が前記移動炉床式還元炉内において前記固相線温度より高く、前記3元系スラグの液相線温度よりも低い温度で加熱処理されて製造された還元鉄中に残留する炭素が6質量%以下となるような炭材配合量であることを特徴とする炭材内装酸化鉄塊成化物。 (もっと読む)


【課題】
大気圧下塩化浴にて、ラテライト鉱中Ni,Coを浸出し、高品位の金属ニッケル及び金属コバルトを高品位で回収する方法を提供することを目的とする。
【解決手段】
ラテライト鉱石を大気圧下塩酸浴にて浸出し、高品位の金属ニッケル及び金属コバルトを回収する方法であり、前記方法の前処理において、
(1)ラテライト鉱石を、大気圧下、HClによりNi及びCoを含む金属を浸出した後、pHを2.0-3.5に増大させる工程、
(2)前記スラリーを固液分離し、Feを含んだ浸出残渣とNi,Coを含む浸出後液に分離する工程、
から成ることを特徴とするラテライト鉱石の処理方法。 (もっと読む)


【課題】還元鉄塊成化物の中心温度と含水率を適正範囲にする冷却装置を提供することを課題としている。
【解決手段】酸化鉄塊成化物を還元炉内で還元し還元鉄塊成化物として排出する還元鉄塊成化物を冷却する装置16において、スプレーノズル1の搬送方向広がり幅Bと搬送方向ノズルピッチPとの関係がB≦P、スプレー水の搬送方向広がり幅Bとコンベア幅方向広がり幅Wとの関係がW≧2×B、およびスプレー水のコンベア幅方向広がり幅Wとコンベア幅CWとの関係がCW≦Wであることを特徴としている。 (もっと読む)


【課題】被覆層が形成された銅部材の形状や樹脂材の材質にかかわらず被覆層の除去率を向上させることができる被覆層除去方法及び被覆層除去装置を得る。
【解決手段】加熱装置14には、ヒータ30を備えた加熱炉28が設けられており、フィーダ20から投入された被覆部材12を搬送部材24により加熱炉28に搬送する。被覆部材12はチップ形状であり、銅部材の表面にエナメル被覆層が形成されている。加熱炉28にはガス流入部26から窒素ガス、または過熱蒸気を流入しており、被覆部材12の銅部材を約900℃まで加熱し、エナメル被覆層を炭化させる。加熱後、被覆部材12を取出し口44Aから冷却装置16の冷却水17中に投入し、被覆部材12を急冷する。その後、被覆部材12を剥離装置の冷却水中で攪拌し、炭化したエナメル被覆層同士を衝突させることで、銅部材表面からエナメル被覆層を剥離する。 (もっと読む)


【課題】廃触媒の処理効率を高くでき、しかも、廃触媒からモリブデン、バナジウムを回収する回収率を向上できるモリブデンおよびバナジウムの回収方法を提供する。
【解決手段】廃触媒に含まれるモリブデンおよびバナジウムを回収する方法であって、廃触媒を、アルカリ金属化合物を含有する添加物とともに、ロータリーキルン1によって焙焼する焙焼工程と、焙焼工程で得られた焙焼物からモリブデンおよびバナジウムを回収する回収工程とからなり、添加物が造粒されている。廃触媒と添加物がともに粒状物であるので、ロータリーキルン内において、両者を均一に混合することができるし、廃触媒とともに添加物を焙焼炉内に投入しても添加物が飛散することを防ぐことができる。 (もっと読む)


【課題】通常のコークス、バイオマスチャー等の炭材を使用して、簡便に反応性の高い炭材を製造できる、銑鉄製造用の高反応性炭材の製造方法、高反応性炭材、および含炭塊成鉱の使用方法を提供する。
【解決手段】製鉄所圧延工程から排出される酸洗廃液を噴霧焙焼して製造される超微粒酸化鉄粉を、炭材と容器内転動混合させることで炭材表面に被覆させ、高反応性炭材を製造する。製造された高反応性炭材を、製鉄原料である含炭塊成鉱に使用することで高速還元体を製造する。 (もっと読む)


【課題】LCD構成部材のリサイクル処理法を提供する。
【解決手段】LCDが、他の原材料の代替品として少なくとも部分的に使用される。一般に、LCDは、900〜1700℃の温度範囲で熱処理される。対象は、使用済みLCDおよび製造不良LCDを用い、構成部材の分別無しで好ましくは1250〜1350℃の高温処理を行い、毒性産物の生成無しに、貴金属の回収、スラグの道路建設での使用、プラスチックフィルムの燃焼熱のガラスの融解に利用する。 (もっと読む)


【課題】鉄スクラップやシュレッダーダスト、携帯電話等の電子製品の複数の金属種を含有する金属含有物を、溶融炉で高温処理した際に発生する排ガスを300℃以上にコントロールして、金属のガスとして排出させ、多段冷却塔で金属種の沸点に応じて、冷却温度をコントロールしながら間接冷却することにより凝固させて分別して回収する。
【解決方法】溶融炉において、排ガス温度を300℃以上にコントロールし、かつ排ガス中の残存酸素を10%以下にした還元性の排ガス組成の排ガス中に含まれる複数の金属及び酸化金属及び塩化金属を回収するために、排ガスに含まれる金属及び酸化金属及び塩化金属を蒸着あるいは凝固あるいは沈殿させることを目的として、2段以上の複数段設けた冷却塔において、金属および酸化金属及び塩化金属の各々の凝固点、蒸着点、沈殿の差に応じて冷却温度をコントロールして排ガスとその金属及び酸化金属及び塩化金属を高温から冷却させ、複数の金属を分別回収する。 (もっと読む)


【課題】新たな設備の建設や複雑な運転制御を必要とすることなく、成形と焼成のために求められる適正な水分の成形原料を有利に製造するための技術を提案することにある。
【解決手段】鉄含有原料に、水やバインダーとを加えて混合機にて攪拌混合し、その混合原料を成形することによって還元鉄製造用成形原料を製造するに当たり、成形に先立つ前記混合原料の含有水分を6±0.5mass%に調整し、その後、成形機による成形によって、含有水分を5±0.5mass%とした還元鉄製造用成形原料を得る方法。 (もっと読む)


【課題】廃電池から低揮発性金属分の回収に当たって、マンガン含有量の高い金属もしくは合金を回収するための技術を提案すること。
【解決手段】加熱炉内に、廃電池もしくは少なくとも廃電池を含む金属含有物を装入積載して加熱することにより、含有金属成分を高揮発性金属と低揮発性金属とに分別回収する方法において、上記の廃電池として、予め粉砕して銅成分の少なくとも一部を除去してなる粉砕物を用いる廃電池等からの有価金属の回収方法。 (もっと読む)


41 - 60 / 208