説明

Fターム[4K017FA21]の内容

金属質粉又はその懸濁液の製造 (21,321) | 物理的製造条件 (664) | 冷却条件 (67)

Fターム[4K017FA21]の下位に属するFターム

冷媒温度 (7)
冷媒質 (36)

Fターム[4K017FA21]に分類される特許

1 - 20 / 24


【課題】 溶融性を改善した鉛フリー接合材料を提供する。
【解決手段】 SnおよびCuからなる鉛フリー接合材料において、SnCu合金にBiまたはInの1種または2種を添加することを特徴とする鉛フリー接合材料。また、上記の成分組成が、質量%で、Cu:15〜33%、Sn:50〜84%、BiまたはInの1種または2種の合計が1〜17%であることを特徴とする鉛フリー接合材料。さらに、上記の材料であって、SnとCuで構成される金属間化合物がSn基地中に分散し、かつBiまたはInがSn基地中に5μm以下の微細相として分散またはSn基地中に強制固溶または分散および強制固溶の双方の状態にあることを特徴とする鉛フリー接合材料。 (もっと読む)


【課題】より微細な固体粒子を得る。
【解決手段】固体粒子の製造装置1は、固体材料と液体の混合物を収容する容器2と、その容器2内の混合物を加圧する加圧装置3と、容器2内の混合物を加熱する加熱装置4と、容器2内の混合物を液体の沸点が固体材料の融点以上となる圧力に加圧し、加圧状態の液体の沸点より低く固体材料の融点以上の温度に加熱して、固体材料が液体中で溶融した溶融混合物を生成するように加圧装置3及び加熱装置4を制御する制御装置8と、容器2内の溶融混合物を容器2外に噴霧する噴霧装置6と、その噴霧装置6により溶融混合物が噴霧され、固体材料が粒子化されて形成された固体粒子を回収する回収装置7とを備える。 (もっと読む)


少なくとも2つの耐熱金属を有する合金及びこのような合金を形成するための方法が提案されている。この合金において、合金の小さな方の部分を形成する第1の耐熱金属、例えばタンタルは、合金の大きな方の部分を形成する第2の耐熱金属、例えばタングステンに完全に溶解される。この合金は、共通のるつぼにこれら2つの耐熱金属を供給するステップ(ステップS1)、電子ビームを当てることにより両方の耐熱金属を溶融するステップ(ステップS2)、前記溶融した耐熱金属を混合するステップ(ステップS3)及び前記溶融物を凝固させるステップ(ステップS4)によって形成される。溶融した状態で前記耐熱金属の成分を完全に混合することが可能であるため、凝固した合金の改善した物質特性が達成される。さらに、レニウムに代わり、タンタルをタングステンと一緒に使用することで、安価であり、耐性のある耐熱金属が製造され、この合金は例えばX線の陽極の焦点軌道の領域を形成するのに使用される。
(もっと読む)


【課題】放電容量が劣らず、且つ、充放電サイクル性能、急速充電したときの充電受け入れ性能に優れた水素吸蔵合金電極およびニッケル水素蓄電池を提供する。
【解決手段】水素吸蔵合金電極の活物質として、CaCu5型の結晶構造を有し、MmMgNiCoMnAlからなる水素吸蔵合金粉末1であって、少なくとも水素吸蔵合金粉末の内部にMgNiCoMnAl合金相からなる微細な偏析相が分散して存在している水素吸蔵合金粉末を適用する。また、好ましくは、前記水素吸蔵合金粉末の表面に、NiとCoの合金からなる表面層3を備えた水素吸蔵合金粉末を適用する。 (もっと読む)


【課題】再溶融やフラッシュ・ショートの発生を防止し、高温雰囲気中での密着性が高く、濡れ性が優れた、回路部品の接続材料を提供する。
【解決手段】熱硬化性樹脂バインダー、金属粉末、フラックス成分を含有する熱硬化性樹脂組成物において、金属粉末が第一複合金属粉末と第二複合金属粉末とを含む。第一複合金属粉末は、Ag、Bi、Cu、In、Snを所定量含有する第1金属粒子と、Ag、Bi、Cu、In、Snを所定量含有する第2金属粒子とを含み、熱拡散により金属間化合物を形成する特性を有する。第二複合金属粉末は、Ag、Bi、Cu、In、Snを所定量含有する第3金属粒子と、Snからなる第4金属粒子とを含み、熱拡散により金属間化合物を形成する特性を有する。フラックス成分として、構造式(1)と(2)で示される化合物の少なくとも一方が用いられている。 (もっと読む)


【課題】炭化物を含有することによって磁石成分を減少させることなく結晶粒を微細化し、これにより飽和磁化を低下させずに保磁力を向上させることができる希土類永久磁石およびその製造方法を提供する。
【解決手段】R−Fe−B系合金(R:希土類元素)中に、平均粒径が5〜100nmのHfC粒子を0.2〜3.0atom%分散させた。製造方法は、平均粒径が5〜100nmのHfC粒子を0.2〜3.0atom%含有するR−Fe−B系合金溶湯を急冷することにより非晶質または平均結晶粒径が5μm以下の磁石材料を得る工程と、前記磁石材料を熱間で塑性加工することにより磁気異方性を付与する工程とする。 (もっと読む)


【課題】簡単な構造を有し、且つ金属粉末の良好な歩留りを得られる非晶質軟磁性金属粉末とその製造方法、及び非晶質軟磁性金属粉末を用いた成形体を提供すること。
【解決手段】回転するディスクの表面に冷媒を供給して該冷媒の液膜を形成し、溶融金属をガスアトマイズ法にて1次粉砕して中間粒子を得、該中間粒子を前記回転するディスク上の前記液膜により2次粉砕しつつ急冷することとした。また、回転するディスクの周速と、冷媒の供給量を調整した。更に、金属粉末の組成を限定した。 (もっと読む)


【課題】溶融金属が冷却・固化される際に金属間化合物を生成し易い組成であっても、その生成を確実に防止しつつ、粉末冶金に好適に用いられる金属粉末を容易に製造する粉末冶金用金属粉末の製造方法、および、かかる粉末冶金用金属粉末の製造方法により製造され、各粒子を構成する成分が均一かつ均質になっているため、緻密な焼結体を確実に作製可能な粉末冶金用金属粉末を提供すること。
【解決手段】粉末冶金用金属粉末の製造方法は、遷移金属元素を主成分とし、副成分として、Y、ZrおよびInからなる群から選択される少なくとも1種を含む金属材料を供給部3に投入して、溶融金属32を得る工程と、金属粉末製造装置1の筒体2内に水を噴射することによって形成された水層241(旋回流)に、供給部3に貯留された溶融金属32を衝突させることにより、溶融金属32を飛散させ、10K/sec以上の冷却速度で冷却・固化させる工程とを有する。 (もっと読む)


【課題】水との接触によって活発に水素を発生させることができる水素生成用アルミニウム合金材料を得る。
【解決手段】Sn:0.05〜0.5%、Bi:0.05〜1.4%、In:0.05〜0.5%、Zn:0.05〜5%のうち1種又は2種以上を含有し、さらに所望によりFe:0.16〜0.5%を含有し、残部がAlと不可避不純物からなる合金材料。該組成の材料を高温から凝固速度または冷却速度を20℃/sec以上にして凝固または冷却する。該水素生成用アルミニウム合金材料は低い電極電位により、水に浸漬させることで水が不安定となり、水素生成用アルミニウム合金材料表面から活発に水素ガスを発生させる。 (もっと読む)


【課題】余剰の有機物を除去するために用いる溶媒の使用量が少なくて済む、ナノ粒子製造方法及び分離方法を提供すること。
【解決手段】周囲に有機物が存在するナノ粒子と、余剰の有機物とが混在する混合物を製造する第1工程と、前記混合物において、前記ナノ粒子と前記余剰の有機物とを分離する第2工程と、を備えるナノ粒子製造方法であって、前記第2工程は、前記混合物を加熱して液化するA工程と、徐冷して、前記ナノ粒子が偏在する層と、前記余剰の有機物が偏在する層とが分かれた状態にて再び固化させるB工程と、を含むことを特徴とするナノ粒子製造方法。 (もっと読む)


【課題】金属ナノ粒子の製造装置を提供する。
【解決手段】本発明に係る金属ナノ粒子製造装置は、金属ナノ粒子の前駆体溶液を供給する前駆体供給部11と、前記前駆体溶液を移動させる移送装置12と、前記前駆体供給部11に連結され、金属ナノ粒子が生成される温度範囲まで加熱する加熱部14と、前記加熱部14に連結され、前記加熱部から生成された金属ナノ粒子を捕集して冷却する冷却部15と、を含み、前記冷却部15は、チャンネル151と、前記チャンネル151を取り囲むチューブ152と、前記チューブ152に冷媒を供給する循環器153とを備えることを特徴とする。 (もっと読む)


【課題】磁気特性に優れたR2Fe14B系の希土類磁石用原料合金、その合金粉末を提供すること。
【解決手段】本発明の希土類焼結磁石用原料合金は、ネオジムからなるか、もしくはネオジムと、イットリウムを含みネオジムを含まない希土類金属元素からなる群より選ばれる少なくとも1種とからなるR27.6〜33.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有する合金であって、該合金のR−rich相の平均間隔が3〜12μm、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25以下であり、かつR2Fe14B系主相の体積比率が88体積%以上であることを特徴とする。 (もっと読む)


【課題】 負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極を改良し、高容量でサイクル特性に優れた非水電解質二次電池が得られるようにする。
【解決手段】 正極12と、負極活物質とバインダーとを含む負極合剤層が負極集電体上に形成された負極11と、非水電解液14とを備えた非水電解質二次電池において、上記の負極活物質が、スズとコバルトと炭素を含有する複合合金粉末と黒鉛粉末とを含むと共に、上記の負極集電体上に形成された負極合剤層の空隙率を5〜20体積%の範囲にした。 (もっと読む)


【課題】優れた磁気特性を有する希土類系永久磁石の原料となるR−T−B系合金を提供すること。
【解決手段】希土類系永久磁石に用いられる原料であり、少なくともDyを含むR−T−B系(但し、RはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Luのうち少なくとも1種であり、TはFeを80質量%以上含む遷移金属であり、BはBを50質量%以上含み、C、Nのうち少なくとも1種を0質量%以上50質量%未満含むものである。)合金であって、R14B相などの磁性を発現するための主相と、合金全体の組成比と比較してRの濃縮されたRリッチ相と、前記Rリッチ相の近傍に形成され、前記組成比と比較してDyの濃縮されたDy濃縮領域とを有するR−T−B系合金とする。 (もっと読む)


【課題】高い性能指数と高い機械強度または機械特性とを同時に実現した熱電材料を得ること。
【解決手段】Bi,Sbからなる群から選択される少なくとも1種の元素と、Te,Seからなる群から選択される少なくとも1種の元素との合金を、加圧軸と押出軸とが異なる金型により、前記合金の融点より100℃低い温度〜前記合金の融点より20℃低い温度の温度範囲、かつ、1mm/分〜12mm/分の押出速度で加圧軸と押出軸とが一軸上にない押出処理を少なくとも1回行う。 (もっと読む)


【課題】より大きな粒径のアモルファス金属粉末を、効率よく製造することができる金属粉末製造装置、かかる金属粉末製造装置により製造された金属粉末、およびかかる金属粉末を成形してなる成形体を提供すること。
【解決手段】金属粉末製造装置(アトマイザ)1は、溶融金属Qをアトマイズ法により粉末化して、多数の金属粉末Rを得るために用いられるものである。この金属粉末製造装置1は、溶融金属Qを供給する供給部(タンディシュ)2と、供給部2の下方に設けられた液体噴出部3と、液体噴出部3の下方に設けられたノズル6および筒状体9Aとを有している。ノズル6は、液体ジェットS4(第2の液体)を噴射するオリフィス64を有しており、この液体ジェットS4に、分散液C1が衝突すると、分散液C1の進行方向は、強制的に変化することとなる。すなわち、ノズル6は、分散液C1の進行方向を変化させる進行方向変更手段を構成する。 (もっと読む)


【課題】優れた磁気特性を有する希土類系永久磁石の原料であるR−T−B系合金を提供すること。
【解決手段】希土類系永久磁石に用いられる原料であるR−T−B系(但し、RはYを含む希土類元素のうち少なくとも1種、TはFeを必須とする遷移金属、Bは硼素である。)合金であって、短軸方向の平均粒径が3μm以下のR17相を含む領域の体積率が0.5〜10%であるR−T−B系合金とする。 (もっと読む)


【目的】本発明では、鉄粒子に水を添加して水を還元する反応を起すことにより水素を得て、更に、当該反応後の当該粒子に水素または一酸化炭素を中心とするガスを反応させることにより、再度、鉄粒子に戻して水から水素を繰り返し製造する方法において、鉄粒子の耐久性を高めることを目的とする。
【解決手段】本発明では、鉄粒子に水を添加して水を還元する反応を起すことにより水素を得て、更に、当該反応後の当該粒子に水素および/または一酸化炭素を主成分とするガスを反応させることにより、再度、鉄粒子に戻して水から水素を繰り返し製造する方法において、鉄粒子として、鉄蒸気を冷却することで凝集させた、平均粒子径が1ミクロン以下である金属鉄と酸化鉄を主体とする粒子鉄粒子を使用する。かつ、水を還元して水素を得る反応温度を200〜700℃とすることで水素ガスを製造する。 (もっと読む)


【課題】 粒径分布の幅が狭く、粒径が揃った、微細な球状または扁平な金属粒子を量産することができる金属粉末の製造装置および製造方法を提供する。
【解決手段】 上面の外周側にリング状のセラミックス材を備え、前記リング状のセラミックス材にはスリットを備えた、高速回転が可能なディスク15と、前記ディスクの前記セラミックス材の上部に配置された金属溶湯を落下させるノズル13と、前記金属溶湯が落下する前記セラミックス材の部分をレーザ光の照射により加熱するレーザ加熱装置16と、を備えた。さらに、金属溶湯の落下により、粉砕された微細金属液滴を、その飛行中に加熱および冷却する装置18A,18B,19を備えた。また、高速で回転するディスク15に金属溶湯を落下させ、粉砕した微細金属液滴をプラズマ加熱装置により加熱された高温の雰囲気中に飛行させ、ナノサイズの微細金属液滴にさらに粉砕し、急冷却する。 (もっと読む)


【課題】約−420°F(−251℃)から約650°F(343℃)までの温度におけるさまざまな用途に必要とされる所望の強度、延性、および破壊靭性を有するアルミニウム合金が提供される。
【解決手段】高温アルミニウム合金は、アルミニウムと、スカンジウムと、ニッケル、鉄、クロム、マンガン、およびコバルトのうちの少なくとも一つと、ジルコニウム、ガドリニウム、ハフニウム、イットリウム、ニオブ、およびバナジウムのうちの少なくとも一つとを含む。これらの合金は、アルミニウム固溶体マトリックスと、さまざまな分散質の混合物とを含む。これらの合金は、マグネシウムを実質的に含まない。 (もっと読む)


1 - 20 / 24