説明

Fターム[4K018BB07]の内容

粉末冶金 (46,959) | 粉末の特性 (4,143) | 組織が特定されているもの (266) | アモルファス粉 (113)

Fターム[4K018BB07]に分類される特許

1 - 20 / 113


【課題】本発明は、外部電極用導電性ペースト、これを用いた積層セラミック電子部品及びその製造方法に関する。
【解決手段】本発明は、導電性金属粉末と、a+b+c=100、20≦a≦60、20≦b≦60及び2≦c≦25を満足する式a(Cu、Ni)−bZr−c(Al、Sn)を含む伝導性非晶質金属粉末と、を含む外部電極用導電性ペースト、これを用いた積層セラミック電子部品及びその製造方法を提供する。本発明によると、内部電極と外部電極との連結性低下及びガラスの励起によるメッキ不良を解決することができる。 (もっと読む)


【課題】残留磁化を向上させた希土類ナノコンポジット磁石およびその製造方法を提供する。
【解決手段】いずれもナノサイズの硬磁性相と軟磁性相とから成り、軟磁性相の結晶粒径が1nm〜100nmの範囲内にあることを特徴とする希土類ナノコンポジット磁石。典型的には、硬磁性相がNdFe14Bであり、前記軟磁性相がFeである。その製造方法は、硬磁性相と軟磁性相とから成なるバルク体を650〜800℃で熱間強加工することを特徴とする。 (もっと読む)


【課題】軟磁性粉末として、極めて硬く、成形し難いアモルファス軟磁性合金粉末を用い、かつバインダ量を0.5〜1.0質量%と低減させてアモルファス軟磁性合金粉末の占積率を高くした圧粉磁心を提供するとともに、このような圧粉磁心をクラック等の発生を防止しながら製造する方法を提供する。
【解決手段】アモルファス軟磁性合金粉末をバインダで結着した圧粉磁心であって、中空部を有する筒形状を有し、中空部の軸方向の両端部もしくは一方の端部にバインダ量が1.5〜2.0質量%の第1層が設けられているとともに、残部にバインダ量が0.5〜1.0質量%の第2層が設けられ、密度が6.4Mg/m以上である。 (もっと読む)


【課題】 より低損失で優れた直流重畳特性を有する圧粉磁心を提供する。
【解決手段】 Fe基アモルファス合金薄帯を粉砕した粉砕粉を成形し、熱処理してなる圧粉磁心において、前記熱処理によりbcc-Fe相を析出させ、2θ= 45°付近の前記bcc-Fe結晶の(110)ピークの強度をIcとし、アモルファス相のメインのハローピークの強度をIaとした時、強度比Ic / Iaが1.1 ≦ Ic / Ia ≦ 3.6である圧粉磁心。前記粉砕粉は、平均厚み30μm〜60μmで、シリカ皮膜を形成したものであることが望ましい。 (もっと読む)


【課題】 保持力の高さという非晶質粉末の特性を生かしつつ、低圧で成形が可能であり、コア損失の低い材料を提供することを目的とする。
【解決手段】 磁性粉末材料の重量に対して、45〜80wt%の非晶質粉末と、55〜20wt%の結晶質粉末とを含む磁性粉末材料と;結合材とを含む磁性粉末材料を提供する。ここで、前記磁性粉末材料は、その重量に対して、4.605〜6.60mass%のSiと、2.64〜3.80mass%のCrと、0.225〜0.806mass%のCと、
0.018〜0.432mass%のMnと、0.99〜2.24mass%のBと、
0.0248mass%以下のPと、0.0165mass%以下のSと、0.0165mass%以下のCoと、残部としてFe及び不可避不純物とを含む。 (もっと読む)


【課題】磁束密度、鉄損、及び機械的強度に優れた圧粉磁心を提供すること。
【解決手段】本発明の圧粉磁心の製造方法は、鉄基軟磁性粉末表面にりん酸系化成皮膜を有する圧粉成形体用鉄基軟磁性粉末と潤滑剤とを混合した混合物を、圧縮成形して、圧粉成形体を得る成形工程と、前記圧粉成形体を、不活性雰囲気中、550℃以上650℃以下で加熱する熱処理工程1と、さらに、酸化性雰囲気中、420℃以上530℃以下で加熱する熱処理工程2と、を含むことを特徴とする。 (もっと読む)


【課題】鉄損が低い圧粉磁心を得るための軟磁性粉末とその圧粉磁心及び圧粉磁心の製造方法を提供する。
【解決手段】絶縁層を有する複数の軟磁性粒子からなる軟磁性粉末に係る。軟磁性粒子の構成材料のビッカース硬さHV0.1が300以上であり、絶縁層が、Si及びOと、更に、アルカリ金属及びMgのうち少なくとも一種とを含む。このような軟磁性粉末であれば、鉄基合金等の電気抵抗が高い材料を用いることができて、渦電流損を低減することができ、低鉄損の圧粉磁心を効率的に得ることができる。 (もっと読む)


【課題】圧粉磁心とした際の磁性特性を確保しながら、安価に製造可能な磁心用粉末、圧粉磁心及びこれらの製造方法を提供すること。
【解決手段】本発明の磁心用粉末は、凹部及び凸部を有する金属粉の表面に絶縁性粒子を備える磁心用粉末であって、凹部には粒子径が50nm以上200nm以下の絶縁性粒子が配置されており、凸部には粒子径が5nm以上50nm未満の絶縁性粒子が配置されている、磁心用粉末。 (もっと読む)


【課題】混合粉末を加圧成形することで高密度圧粉体を製造できるようにする。
【解決手段】潤滑剤を含む混合粉末を第1の金型に充填し、充填された混合粉末に第1の加圧力を加えて混合粉末中間圧縮体を成形し、成形された混合粉末中間圧縮体を加熱して混合粉末中間圧縮体の温度を潤滑剤粉末の融点相当温度に積極的に昇温し、昇温された混合粉末中間圧縮体を融点相当温度に暖機された第2の金型にセットし、第2の金型内で混合粉末中間圧縮体に第2の加圧力を加えて高密度の混合粉末完成圧縮体を成形する。 (もっと読む)


【課題】外枠型からの内枠型および金属圧粉体の取り出し時における、金属圧粉体の破損を簡易に防止することができる金属圧粉体の製造方法を提供すること。
【解決手段】外枠型2と、その外枠型2に嵌合される分割可能な内枠型3とを備える金型1を用意し、次いで、内枠型3の内枠内側面8に、窒化物の膜10を形成し、次いで、内枠型3内において、膜10に接するように、金属の粉末を充填し、金型1において、粉末を圧力成形して、金属圧粉体11を得て、その後、金型1から内枠型3および金属圧粉体11を取り出した後、内枠型3から、金属圧粉体11を取り出す。 (もっと読む)


【課題】簡易に製造でき、優れた磁気特性を備える磁性材料を提供する。
【解決手段】磁石粉末と、希土類元素、鉄およびホウ素を含有し、希土類元素の原子割合が、22〜44原子%の範囲でありホウ素の原子割合が、6〜28原子%の範囲であるアモルファス金属とを混合するとともに、アモルファス金属の結晶化温度(Tx)より30℃低い温度以上、または、アモルファス金属が金属ガラスである場合には、そのガラス遷移温度(Tg)以上の温度に加熱することにより磁性材料を製造する。この磁性材料によれば、簡易な製造によって、高い磁気特性を確保することができる。 (もっと読む)


【課題】高い生産性で異方性磁石を製造できる方法を提供する。
【解決手段】剛体から成る成形型内で磁石材料粉末を圧縮加工する異方性磁石の製造方法であって、上記成形型M内で5MPa以下の圧力で熱間圧縮加工する第1工程、および引き続き上記同一の成形型M内で5s−1以上の歪速度で熱間圧縮加工する第2工程を含む。 (もっと読む)


【課題】Dy、Tb、Coなどの希少金属を多量添加することなく焼結によりバルク化して高温保磁力を有する新規なNdFeB系磁石の製造方法を提供する。
【解決手段】溶湯から急冷により非晶質組織とし、得られた非晶質組織の急冷薄帯(以下、急冷リボンと表示することもある。)を焼結、次いで熱間加工時の加熱により結晶化するとともに異方化する異方性希土類磁石の製造方法。 (もっと読む)


【課題】高温加熱・溶解および高真空環境を緩和して金属ガラス製品の工業的生産を可能にするアモルファス合金製品の製造方法を提供する。
【解決手段】金属ガラス製品の製造をおこなう場合に、あらかじめ製品のプリフォーム成形体を作製する工程と、作製されたプリフォーム成形体を金型(ダイ21)内に装入し、真空中においてガラス遷移温度に加熱・加圧し、粘性流動加工をおこなうことでニアネットシェイプ製品(真空加圧・加熱成形体16a)を作製する工程とからなるアモルファス合金製品の製造方法。 (もっと読む)


【課題】高磁場下における恒透磁率特性の確保と鉄損の低減を両立した圧粉磁心、及びその製造方法を提供する。
【解決手段】圧粉磁心10は、金属粉1間に、粒子状金属酸化物3を含む絶縁層2を備えた圧粉磁心であって、絶縁層2は、元素としてCa、P、O、Si及びCを含む。 (もっと読む)


【課題】過冷却液体温度域△Txが広く、換算ガラス化温度Tg/Tlが大きい金属ガラスとして安定的に存在するCo基金属ガラス合金を提供する。
【解決手段】 Fe、Ni、B、Si、Nb、MoおよびCrを含む高透磁率のCo基金属ガラス合金であって、Feの含有率が2原子%以上かつ6原子%以下、Niの含有率が4原子%以下、Bの含有率が15原子%以上かつ20原子%以下、Siの含有率が8原子%以上かつ13原子%以下、Nbの含有率が3原子%以下、Moの含有率が0.1原子%以上かつ1原子%以下、Crの含有率が2原子%以下、残部がCoで構成され、かつ、CoとFeの含有比率がCo:Fe=95.2:4.8であり、前記含有比率を示すCoとFeの各値の許容範囲がそれぞれ±0.3以内である。 (もっと読む)


【課題】高い磁気異方性を有し、優れた磁気特性を有する異方性交換スプリング磁石を提供する。
【解決手段】R14B型金属間化合物(RはNdを含む希土類元素を示し、TはFe又はCoからなる元素を示す。)からなるR−T−B相12と、α−Fe、α−Fe固溶体、α−Co、α−Co固溶体、及びα’−FeCo金属間化合物から選ばれる少なくとも一つからなるFe系相14と、銀、銀を含む固溶体、銀を含む金属間化合物、及び銀を含む非晶質から選ばれる少なくとも一つからなる銀リッチ相16と、を含有する異方性交換スプリング磁石10。 (もっと読む)


【課題】球状粒子棒状結合体及びその集合体からなり、高周波域で使用可能な磁性シートに適する非晶質軟磁性合金粉末を提供すること。
【解決手段】磁場印加を伴う液相還元法により、平均一次粒子径:0.2μm以上1.0μm以下の一次粒子が棒状に結合して形成された、短軸径:0.05μm以上2.0μm以下、長軸径:0.3μm以上15.0μm以下の球状粒子棒状結合体及びその集合体からなる非晶質軟磁性合金粉末を得ることができる。また、得られた粉末をシート形状に加工することで、高透磁率を得られ、且つ、高周波域でのノイズ抑制用途に適した磁性シートを得ることができる。 (もっと読む)


【課題】比較的温和な条件下で多量の水素を吸蔵し得る水素吸蔵材を得る。
【解決手段】AlH3とMgH2の混合粉末に対し、5G〜30G(Gは重力加速度)の力を付与する条件でボールミリングを行う。これにより得られたミリング生成物に対して脱水素処理を施すと、Al−Mg合金からなるアモルファス相を母相12とし、該母相12中に、最大長が100nm以下であるAl結晶相が分散相14として点在する水素吸蔵材10が得られる。なお、前記混合粉末を得る際にさらに金属粒子を添加し、これにより、母相12中に金属粒子をさらに分散させるようにしてもよい。 (もっと読む)


【課題】粒径の更に小さい高飽和磁束密度の非晶質軟磁性合金粉末を提供すること。
【解決手段】液相還元法により、例えば、下記組成を有する合金粉末を製造する:Fe100−a−b−x(NはCu,Ag,Au,Pt,Pdから選ばれる1種以上の元素であり、a,b,xは20原子%≦a≦35原子%、1原子%≦b≦3原子%、0原子%<x≦15原子%を満たす。)。これにより得られた軟磁性合金粉末は、平均粒径が0.05μm以上1.0μm以下であり、且つ、非晶質単相からなる。 (もっと読む)


1 - 20 / 113