説明

Fターム[4K030JA12]の内容

CVD (106,390) | 処理条件 (6,571) | 速度 (208)

Fターム[4K030JA12]に分類される特許

61 - 80 / 208


【課題】複数のシャワー電極が設けられたプラズマ処理装置において、生産性を高めるとともに、プラズマ処理の均一性を維持できるようにする。
【解決手段】プラズマチャンバ21,22に、複数のシャワー電極6が隙間8をあけて設けられる。複数の基板4が等間隔に並べられたトレイ5が、シャワー電極6と下部電極7との間に搬送される。成膜開始時、隣り合うシャワー電極6間の隙間8の真下に基板4がくるように、トレイ5が位置決めされる。成膜中、トレイ5は隙間8の大きさに応じた搬送速度で進行方向に移動する。トレイ5は、基板4の長さよりも短い距離だけ移動する。この間に、基板4上に薄膜が形成されるが、シャワー電極7間の隙間8の真下に発生した強いプラズマ放電の影響を受ける領域が基板4上を移動するので、膜厚のばらつきが低減する。 (もっと読む)


【課題】 真空成膜装置によりコーティング膜上に無機膜を成膜する際に、無機膜の割れ/抜け等の欠陥を引き起こすコーティング膜の平滑性悪化を防止し、生産性の高い機能性フィルムの製造方法、及び製造装置を提供する。
【解決手段】
フィルムロール40から連続的に支持体Bを送り出し、支持体B上にコーティング膜を成膜し、支持体Bをフィルムロール42に巻き取る。次いで、フィルムロール42を真空成膜装置22の供給室50にセットし、常圧から100Paまでの減圧時間が7分以上となる減圧速度で減圧し、さらに所定の真空度まで減圧する。フィルムロール42から支持体Bを、供給室50の減圧速度より速い減圧速度で所定の真空度まで減圧された真空成膜装置22の成膜室52に供給し、コーティング膜上に無機膜を成膜し、無機膜が成膜された支持体Bを、真空成膜装置22の巻取り室54でフィルムロール48に巻き取る。 (もっと読む)


【課題】Al含有率が高いIII族窒化物半導体上にGaN層が形成された積層体の製造時において、GaN層の形成直後から、その表面が平滑にされたIII族窒化物積層体の製造方法を提供すること。
【解決手段】AlGaInN層15とGaN層16とを有し、AlGaInN層を組成式AlGaInNで表した場合に、X+Y+Z=1.0,Y≧0,Z≧0,0.5≦X≦1.0である関係を満足するIII族窒化物積層体を製造する方法であって、AlGaInN層15上にGaN層16を形成する工程を有し、GaN層を形成する工程において、GaN層の成長速度が0.2〜0.6μm/h、III族原料に対するV族原料のモル比を示すV/III比が4000以上である。このようにすることで、Al含有率が高いAlGaInN層15上において、SKモードではなく、疑似FMモードでGaN層16を形成することができる。 (もっと読む)


【課題】簡易に光取出効率を向上することができる発光ダイオード用エピタキシャルウェハ及びその製造方法を提供する。
【解決手段】気相成長法を用いて、n型導電性基板1上に、少なくとも、AlGaInP系材料からなるn型クラッド層2、活性層3、p型クラッド層4を有する発光部6と、p型GaP電流分散層5と、を積層形成するAlGaInP系の発光ダイオード用エピタキシャルウェハの製造方法であって、GaP電流分散層5を形成する際に、GaP電流分散層5の表面側部で成長速度を高めることで、GaP電流分散層5の表面5cに凹凸を形成する。 (もっと読む)


【課題】本発明は、ウェーハの跳ね現象を抑え、ウェーハ上に均一に成膜を行うとともに、歩留り、生産性の低下を抑え、半導体装置の信頼性の向上を図ることが可能な半導体製造方法および半導体製造装置を提供する。
【解決手段】本発明の半導体製造方法は、反応炉内に成膜処理されるウェーハwを導入し、ウェーハwが前記成膜処理時に載置される支持部材と離間するように、ウェーハを支持し、ウェーハが支持部材と離間した状態で、支持部材を所定の回転速度で回転させながら、ウェーハを予備加熱し、ウェーハを支持部材上に載置し、ウェーハを所定温度で加熱するとともに、回転させながら前記ウェーハ上にプロセスガスを供給することを特徴とする。 (もっと読む)


【課題】 被処理物が陰極とされる構成のプラズマCVD装置において、プラズマを安定化させると共に、従来よりも成膜レートを向上させる。
【解決手段】 本発明に係るプラズマCVD装置10によれば、接地電位に接続された真空槽12の内壁が陽極とされ、被処理物16が陰極とされ、これら両者間にパルス電力Epが供給されることで、当該両者間にプラズマが発生する。そして、このプラズマを用いたCVD法によって、被処理物16の表面にDLC膜が生成される。ただし、DLC膜が陽極としての真空槽12の内壁に付着することで、当該真空槽12の内壁の陽極としての機能が低下することが懸念される。この真空槽12の内壁に代わって、アノード電極40が陽極として機能することで、プラズマが安定化される。また、真空槽12内に磁界Eが印加されることで、プラズマ密度が増大し、DLC膜の成膜レートが向上する。 (もっと読む)


【課題】コストの上昇を招くことなく、反応室内の急激な圧力変動が抑制できるようにする。
【解決手段】原料ガス供給開閉弁105,酸化ガス供給開閉弁106,およびパージガス供給開閉弁107は、例えば、開閉の速度を0.01秒程度で行う高速の開閉弁である。開閉弁制御部109は、原料ガス供給開閉弁105および酸化ガス供給開閉弁106の開速度を、閉速度より遅くなるように制御する。原料ガス供給開閉弁105および酸化ガス供給開閉弁106は、例えば、空気圧により弁体を駆動(開)することで弁の開閉を行う。また、空気圧の制御は、電磁弁により行う。開閉弁制御部109は、この電磁弁に対する信号(電圧)を制御することで、各開閉弁の開速度を制御する。 (もっと読む)


本発明は、チューブの中を圧気輸送されている粒子にコーティングを堆積するための方を提供する。本方法は、入口及び出口を有するチューブを用意する段階、チューブの入口において又はその近くにおいて、粒子を運んでいるキャリアガスをチューブの中へと供給して、チューブを通る粒子の流れを作る段階、及び該粒子の流れの中の粒子との反応のために、チューブの入口から下流で少なくとも1の注入点を介してチューブの中へと自己停止する第一の反応物を注入する段階を含む。本方法は、原子層堆積及び分子層堆積に適切である。本方法を実施するための装置もまた開示されている。 (もっと読む)


【課題】表層がTiからなる金属配線の表面に形成される絶縁膜としてプラズマCVD法
により形成された窒化ケイ素膜を用いても、金属配線と導電部材との間の接触抵抗が抑制
された電気光学装置の製造方法を提供すること。
【解決手段】少なくとも表層がTiからなる金属配線17、18の表面に、プラズマCV
D法によって、第1の絶縁膜37aないし38aを形成した後に窒化ケイ素からなる第2
の絶縁膜37bないし38bを形成し、第2の絶縁膜37bないし38b及び第1の絶縁
膜37aないし38aにプラズマエッチング法によってコンタクトホール51、52を形
成して前記Tiからなる金属配線17、18の表面を露出させる工程を備える電気光学装
置の製造方法であって、前記第1の絶縁膜37aないし38aを、前記窒化ケイ素からな
る第2の絶縁膜37bないし38bの形成時にボール状窒化ケイ素が形成しない材料で形
成する。 (もっと読む)


ガラス製造工程中に大気化学気相堆積法によって導電性酸化チタンコーティングをガラス基板上に堆積させる方法を提供する。該方法は、加熱されたガラスリボンをフロート槽において提供するステップと、ハロゲン化された無機チタン化合物、有機酸素含有化合物、当該前駆体ガス状混合物の10モル%以下を構成する還元ガス及び1以上の不活性キャリアガスを含む均一な前駆体ガス状混合物を準備するステップと、前記前駆体ガス状混合物を、前記前駆体ガス状混合の熱分解温度よりも低い温度で、前記加熱されたガラスリボンの近傍位置まで搬送するステップとを含む。被覆されたガラス物品は、1×10−2S/cmを超える導電率を示す。 (もっと読む)


【課題】ロック室で被処理体に付着する異物粒子数の低減とスループットの向上を両立させる。
【解決手段】任意の開度に調整可能なバルブを設置し、制御コンピュータによって減圧速度を自動的に調整できるようにした。 (もっと読む)


本発明は、プラズマチャンバシステム内で基材上に微結晶シリコンを堆積するための方法であって、プラズマチャンバシステムが、プラズマ開始前には、少なくとも1種の反応性のシリコン含有ガスと水素を、または水素だけを含むステップ、プラズマを開始するステップ、プラズマ開始後、チャンバシステムに連続的に反応性のシリコン含有ガスだけを供給するか、またはプラズマ開始後、チャンバシステムに連続的に反応性のシリコン含有ガスおよび水素を含む少なくとも1種の混合物を供給し、その際、チャンバ内に供給する際の反応性のシリコン含有ガスの濃度を0.5%超に調整するステップ、およびプラズマ出力を、0.1〜2.5W/cm電極面の間に調整するステップ、0.5nm/s超の堆積速度を選択し、かつ微結晶層を基材上に1000ナノメートル未満の厚さで堆積するステップ、を含む方法に関する。 (もっと読む)


原子層成膜(ALD)法を用いて、二酸化チタンのような金属酸化物の薄膜バリア層(100)を基板(110)上に成膜する。チタン酸化物バリアをALDにより約100℃未満の温度で成膜する場合に、優れたバリア層特性を達成することができる。100オングストローム未満の厚さで、約0.01g/m/日未満の水蒸気透過速度を有するバリアおよびかかるバリアの製造方法が開示されている。 (もっと読む)


水素化シリコン系半導体合金は、1016cm−3未満の欠陥密度を有する。その合金は、水素化シリコン合金または水素化シリコンゲルマニウム合金を含み得る。合金の水素含有量は、一般に15%未満であり、或る例では11%未満である。その合金を組入れたタンデム光発電装置は、低いレベルの光劣化を示す。或る例では、その材料は高速VHF堆積プロセスで作製される。 (もっと読む)


【課題】結晶性が良く、抵抗率が十分に低く、Mgのドーピング効率が0.3%より大きいp型窒化物半導体層を提供する。
【解決手段】GaN基板上に、III族原料として有機金属化合物、V族原料としてアンモニアとヒドラジン誘導体、及びp型不純物原料としてMg原料ガスを用いて、p型GaN層(p型窒化物半導体層)を形成する。この際に、III族原料、V族原料及びp型不純物原料を含む原料ガスの流速を0.2m/secより大きくする。これにより、結晶性が良く、抵抗率が十分に低く、Mgのドーピング効率が0.3%より大きいp型窒化物半導体層を有する窒化物半導体装置を製造する。 (もっと読む)


【課題】複数の反応ガスの混合を防止し、基板の搬入出を確実に行うことができる成膜装置を提供する。
【解決手段】真空容器1内で第1及び第2の反応ガスを供給して薄膜を成膜する成膜装置において、回転テーブル2と、回転テーブル2の周縁から回転中心に向け設けられる第1の反応ガス供給部31及び第2の反応ガス供給部32と、その間に設けられる第1の分離ガス供給部41、42と、第1の反応ガス供給部31を含み第1の高さH1を有する第1の空間P1と、第2の反応ガス供給部32を含み第2の高さH2を有する第2の空間P2と、第1の分離ガス供給部41を含みH1及びH2より低く設けられる第3の空間Dと、回転テーブル2の回転位置を検知する位置検知手段8と、回転テーブル2の周縁に設けられ、位置検知手段8によって検知される被検知部25とを備えることを特徴とする成膜装置。 (もっと読む)


【課題】有機材料の表面にプラズマCVDによってガスバリア膜を形成する際に、目的とするガスバリア性を有するガスバリア膜を、安定して形成することを可能にする。
【解決手段】第1のプラズマ放電圧力でガスバリア膜を形成し、その後、前記第1のプラズマ放電圧力よりも低圧力の第2のプラズマ放電圧力でガスバリア膜を形成することにより、前記課題を解決する。 (もっと読む)


【目的】
基板上に結晶欠陥の少ない、単結晶性及び平坦性に優れた酸化亜鉛系半導体結晶の成長方法を提供する。また、高性能かつ高信頼性の半導体素子、特に、発光効率及び素子寿命に優れ、量産性に優れた高性能な半導体発光素子を提供する。
【解決手段】
MOCVD法において、酸素を含まない有機金属化合物と水蒸気を用い、(a)250℃〜450℃の範囲内の第1の低成長温度及び1kPa〜30kPaの範囲内の低成長圧力で結晶成長を行って第1の単結晶層を形成するステップと、(b)上記第1の低成長温度よりも高い第2の低成長温度及び上記低成長圧力よりも高い圧力で結晶成長を行って上記第1の単結晶層上に第2の単結晶層を形成するステップと、(c)高成長温度及び上記低成長圧力よりも高い圧力で結晶成長を行って上記第2の単結晶層上に第3の単結晶層を形成するステップと、を有する。 (もっと読む)


【目的】
基板上に結晶欠陥の少ない、単結晶性及び平坦性に優れた酸化亜鉛系半導体結晶の成長方法を提供する。また、高性能かつ高信頼性の半導体素子、特に、発光効率及び素子寿命に優れ、量産性に優れた高性能な半導体発光素子を提供する。
【解決手段】
MOCVD法において、酸素を含まない有機金属化合物と水蒸気を用い、(a)低成長温度かつ1kPa〜30kPaの範囲内の低成長圧力で結晶成長を行って第1の単結晶層を形成するステップと、(b)高成長温度かつ上記低成長圧力よりも高い圧力で結晶成長を行って上記第1の単結晶層上に第2の単結晶層を形成するステップと、を有する。 (もっと読む)


【解決手段】プラズマCVD法によるSi含有膜の成膜方法において、成膜原料として用いるシラン化合物として、反応性基として水素原子又はアルコキシ基を有すると共に、分子中には2個以上のケイ素原子を含有し、かつ2個以上のケイ素原子は飽和炭化水素基を介して結合され、かつ、アルコキシ基に含まれる炭素原子を除いた炭素原子数[C]とSi原子数[Si]の比[C]/[Si]が3以上であり、全てのケイ素原子は2以上の炭素原子と直接の結合を有するシラン化合物を用いるプラズマCVD法によるSi含有膜の成膜方法。
【効果】有効な成膜速度が得られると共に、膜の疎水性の確保と、ケイ素原子の求核反応に対する反応性の抑制を同時に達成することができ、膜の化学的安定性を確保することができる。 (もっと読む)


61 - 80 / 208