説明

Fターム[4K058BA37]の内容

金属の電解製造 (5,509) | 電解生成物及びその形態 (1,026) | 生成物の形態 (78) | 粉末、粒塊物 (58)

Fターム[4K058BA37]に分類される特許

1 - 20 / 58


【課題】磁気特性と熱的安定性に優れたフッ化物磁性材料を提供する。
【解決手段】Th2Zn17構造を有するSm−Fe系材料を、反応条件を制御しつつフッ素化し、c軸とa軸の比R(=c/a)および格子体積Vについて、R≦1.455かつV≧800(Å3)とすることで、磁気特性と熱的安定性に優れた磁性材料を得ることができる。 (もっと読む)


【課題】電解還元槽中で分散安定性に優れかつデンドライト化が抑制された、一次粒子の粒子径が1〜150nmの銅微粒子の製造方法を提供する。
【解決手段】少なくとも、銅イオン、アルカリ金属イオン、及び有機物分散媒が溶解している還元反応水溶液が収容され、かつ作用電極であるカソードと補助電極であるアノードを備えた電解還元槽装置を用いて、該カソードとしてカソード外表面の移動速度が5〜250mm/秒に制御された可動電極を用い、銅イオンの電解還元反応により一次粒子の粒子径が1〜150nmの範囲にある銅微粒子をカソード表面近傍に析出させることを特徴とする、銅微粒子の製造方法。 (もっと読む)


【課題】金属イオンを電解還元して金属微粒子を製造する際に粒子径のバラツキが少なく金属微粒子のデンドライト状の形成を抑制し、均一な金属微粒子の製造方法を提供する。
【解決手段】金属(A)のイオンと金属(B)のイオンを含む電解水溶液中で電解還元により金属(B)を析出させると共に金属(A)の微粒子を析出させる金属微粒子の製造方法において、金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)が0.5以下で、かつ金属(B)のイオンが金属(A)のイオンの析出電位よりも貴な電位で析出するイオンであり、該電解水溶液中の陽極と陰極間に、銀/塩化銀の参照電極に対し陰極電極電位が−1V以下の電位となるように印加することにより、該電解還元により陰極表面上に金属(B)を析出させて、より卑な金属である金属(A)の微粒子を前記析出した金属(B)上ないし金属(B)の近傍に析出させる、金属微粒子の製造方法。 (もっと読む)


【課題】強度、摩擦係数が高いブレーキパッドを製造するに好適な銅粉を提供する。
【解決手段】銅粉の粒度分布および粒末形状が、75μm以上(+200mesh)の粒径の銅粉が90%以上、かつ250μm以上(+60mesh)の粒径の銅粉が5−10%、アスペクト比が1.6以下の銅粉を40%以上80%以下含み、見掛密度が2〜3g/立方センチメートルであることを特徴とする銅粉を用いて一定に強度を有し、気孔率の高い焼結多孔体を得てブレーキパッドとする。 (もっと読む)


【課題】デンドライト化が抑制された球状でかつ粒子径がナノメータサイズの銅−亜鉛合金微粒子の製造方法を提供する。
【解決手段】電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】電解銅粉の樹枝を必要以上に発達させることなく、従来の電解銅粉よりも成形性が向上した高い強度に成形できる電解銅粉を得る。
【解決手段】電解銅粉自体の強度を増して高い強度に成形できる電解銅粉を析出するために電解銅粉を構成する結晶子のサイズを微細化させることを目的として、電解液に電流を流すことによって電解銅粉を析出させる電解銅粉の製造方法において、前記電解液が硫酸銅水溶液中にタングステン酸塩、モリブデン酸塩及び硫黄含有有機化合物から選択される一種又は二種以上を添加する。 (もっと読む)


【課題】電解槽中で分散安定性に優れかつデンドロイト化が抑制された銅微粒子を速やかに回収して、分散液に分散する、銅微粒子分散液の製造方法を提供する。
【解決手段】銅イオン、アルカリ金属イオン、及び分散媒が溶解している還元反応水溶液4において、銅イオンの電解還元反応により一次粒子の粒子径が1〜500nmの範囲にある銅微粒子をカソード2表面近傍に析出し(工程1)、前記カソード2表面近傍に析出した銅微粒子を、該掻き取り用ブレード5とカソード2間の相対移動速度が該還元反応水溶液4における銅微粒子の沈降速度よりも遅い速度で掻き取とって、銅微粒子を沈降させてスラリーで濃縮し、該スラリーを抜き出して洗浄液で洗浄して回収する工程(工程2)、及び回収した銅微粒子を分散液に分散する工程(工程3)を含む、銅微粒子分散液の製造方法。 (もっと読む)


キャパシタの製作に使用される金属性粉末の製造方法は、非金属化合物を、溶融塩と接触させて金属に還元するステップを含む。塩は、工程の少なくとも一部において、金属中で焼結遅延剤として作用するドーパント元素を含有する。好ましい実施例において、金属性粉末は、Ta又はNb酸化物を還元することにより製造されるTa又はNb粉末であり、ドーパントはホウ素、窒素又はリンである。 (もっと読む)


【課題】銅粉末を生成するためのシステムおよび方法を提供すること。
【解決手段】本発明は、貫流式電解採取用電解槽中で従来の電解採取化学(すなわち、アノードにおける酸素発生)を使用して、金属粉末生成物を生成するためのシステムおよび方法に関する。本発明は、従来の電解採取プロセスおよび/または直接電解最終を使用して、金属含有溶液から高品質の金属粉末(銅粉末を含む)の生成を可能とする。貫流式アノードの可能な構造としては、金属、メタルウール、メタルファブリック、他の適切な伝導性非金属材料(例えば、炭素材料)、多孔性エキスパンドメタル構造物、メタルメッシュ、エキスパンドメタルメッシュ、コルゲートメタルメッシュ、多様な金属細長片、多様な金属ワイヤもしくは金属ロッド、織金網(woven wire cloth)、有孔金属板など、またはこれらの組み合わせが挙げられる。 (もっと読む)


【課題】電解採取により金属粉末を生成するための装置を提供すること。
【解決手段】本発明は、貫流式電解採取用電解槽において、従来の電解採取かまたは代替アノード反応化学を使用し、金属粉末生成物を生成するための装置に関連する。貫流式アノードおよび貫流式カソードの両方を使用する貫流式電解採取用電解槽の新規の設計を記載する。本発明は、従来の電解採取プロセス、直接電解採取、または代替アノード反応化学を使用した、金属含有溶液からの高品質の金属粉末(銅粉末を含む)の生成を可能とする。電解採取により金属粉末を生成するための装置であって:少なくとも1つの貫流式アノード、少なくとも1つの貫流式カソード、および電解質流動システムを含む少なくとも1つの電解採取用電解槽を含む、装置。 (もっと読む)


【課題】基材上に配置して乾燥後、比較的低温で焼成しても導電性に優れ、不純物の少ない導電部材を得ることが可能な分散性の高い銅微粒子分散水溶液を提供する。
【解決手段】一次粒子の平均粒径1〜150nmの銅微粒子が少なくともその表面の一部が分散剤で覆われて水溶液中に分散されている、銅微粒子分散水溶液の製造方法であって、(i)銅イオンを分散剤の存在下で、pH調整剤によりpH9.2以上に調整したアンモニア水溶液中でアンモニアとの反応により、水溶性の銅アンミン錯体を得る工程(工程1)、(ii)前記工程1で得られた銅アンミン錯体を含む還元反応水溶液中において、電解還元反応により、少なくとも表面の一部が分散剤で覆われた銅微粒子を形成する工程(工程2)、を含み、前記還元反応の系において、銅、炭素原子、水素原子、酸素原子、及び窒素原子以外の原子を含む化合物を含まないことを特徴とする、銅微粒子分散水溶液の製造方法。 (もっと読む)


【課題】液相で還元反応を行うことにより、デンドライト化が抑制されたCu−P合金微粒子、及びCu−Sn−P合金微粒子を製造する方法を提供する。
【解決手段】(i)少なくともシアン化第一銅、水溶性リン酸塩、アルカリ金属シアン化物及び/もしくはアルカリ土類金属シアン化物、並びに分散媒、又は
(ii)少なくともリン酸第二銅、アルカリ金属シアン化物及び/もしくはアルカリ土類金属シアン化物、並びに分散媒、
を含有する、pHが9〜14の還元反応溶液において、還元反応により銅−リンからなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】従来の方式では微粒子を生成する元となる金属材料としては採用し難かったものについても採用しやすくした金属微粒子生成装置ならびにこれを備えた髪ケア装置を得る。
【解決手段】金属の微粒子を含有させた液体Lを霧化する霧化機構3を設け、当該液体Lに含有された金属の微粒子を霧とともに放出するようにした。したがって、電極として構成し難い金属の微粒子についても、これを放出することが可能となる。 (もっと読む)


【課題】有害物質を極力低減させるとともに、成膜時のパーティクルの発生数が少なく、膜厚分布が均一であり、かつ4N(99.99%)以上の純度を持ち、半導体メモリーのキャパシタ用電極材を形成する際に好適なスパッタリングターゲット製造用高純度Ru粉末、該高純度Ru粉末を焼結して得たスパッタリングターゲット及び該ターゲットをスパッタリングして得た薄膜並びに前記高純度Ru粉末の製造方法を提供する。
【解決手段】Na、Kなどのアルカリ金属元素の各含有量が10wtppm以下、Alの含有量が1〜50wtppmであることを特徴とする高純度Ru粉末、及び純度3N(99.9%)以下のRu原料をアノードとし、溶液中で電解して精製する、同高純度Ru粉末の製造方法。 (もっと読む)


鉄リッチ金属硫酸塩廃棄物から金属鉄または鉄リッチ合金、酸素、および硫酸を回収するための電気化学プロセスが説明される。概して、電気化学プロセスは、鉄リッチ金属硫酸塩溶液を供給する段階と、電解槽内で鉄リッチ金属硫酸塩溶液を電解する段階であって、この電解槽は、鉄の過電位以上の水素過電位を有する陰極を備え約6.0未満のpHを有する陰極液を入れた陰極室と、陽極を備え陽極液を入れた陽極室と、アニオンが通過できるセパレータとを含む、段階と、電解析出された鉄または鉄リッチ合金、硫酸、および酸素ガスを回収する段階とを含む。鉄リッチ金属硫酸塩溶液を電解すると、鉄または鉄リッチ合金が陰極のところに電解析出され、発生期酸素ガスが陽極のところに発生し、硫酸が陽極室内に蓄積し、鉄欠乏溶液が生成される。
(もっと読む)


【課題】銅粉の中に鉛が含有されるのを防止するために、電解の際に使用する不溶性陽極として鉛又は鉛合金の電極を使用しないことによって、鉛の混入を抑制する技術を提供する。
【解決手段】不純物である鉛の含有量が100wtppm以下であることを特徴とする電解銅粉。電解銅粉の製造における電解工程において、貴金属の酸化物等を表面に焼成被覆したチタン板からなる不溶性電極を陽極として使用することを特徴とする電解銅粉の製造方法。 (もっと読む)


【課題】塩化浴での電解採取法により得られる銅粉中に含有される塩素を効率的に除去する方法を提供する。
【解決手段】塩化浴で電解採取された、塩素を含有する銅粉を、洗浄液として、まず食塩水を、次いで硫酸溶液を、最後に温水を用いた洗浄に付すことを特徴とする。前記食塩水の塩素濃度は、50〜200g/Lであり、前記硫酸溶液の硫酸濃度は、5〜15質量%あることを特徴とする。さらに、前記銅粉は、その比表面積が0.05m/g以下であることを特徴とする。 (もっと読む)


【課題】粒子径が小さく、粒度分布が比較的狭く、分散安定性に優れかつデンドロイト化が抑制された銅微粒子を、簡便な方法でかつ大量に生成することのできる金属微粒子の製造方法を提供する。
【解決手段】少なくとも、銅イオン、アルカリ金属イオン、及び有機物分散媒が溶解している還元反応溶液において、銅イオンの電解還元反応により一次粒子の粒子径が1〜500nmの範囲にある銅微粒子を析出させることを特徴とする、銅微粒子の製造方法。 (もっと読む)


本発明は、以下の操作工程を含む、脱硫された鉛パステルから出発した、金属鉛を製造するための電気分解的方法に関する。
a)脱硫したパステルを、塩化アンモニウムを含む溶液と接触させることにより脱硫したパステルを溶脱し、溶脱液体を形成させ及びCO2ガスを発生させる工程、
b)第一の固形物残渣と第一の浄化された溶脱液体を、工程a)からの溶脱液体から分離する工程、
c)塩化アンモニウム及び過酸化水素を含む溶液と接触させることにより、工程b)において分離された固形物残渣を溶脱する工程、
d)第2の固形物残渣及び第2の浄化された溶脱液体を、工程c)からの溶脱液体から分離する工程、
e)工程b)からの第1の浄化された溶脱液体と、工程d)からの第2の浄化された溶脱液体とを合わせて、単一の溶液を形成する工程、
f)工程e)を離れた溶液を、50〜10,000A/m2の範囲の電流密度を用いて、フローセル中で電気分解させ、前記電気分解が鉛スポンジをもたらす工程。本発明は、パステルの相対的な脱硫方法にも関する。 (もっと読む)


【課題】
カドミウム負極の予備充電物質として使用される金属カドミウム粉末に関し、硫酸カドミウム等の水溶液中のカドミウムイオンを還元することにより製造した場合に、水和反応が生じ純度が低下するという問題を解決し、純度が高く維持される金属カドミウム粉末を得ることを目的とする。
【解決手段】
電解析出法等により金属カドミウム粉末を製造する際、カドミウムイオンを含む電解液に燐酸イオンを含ませるようにする。
カドミウムイオンを含む電解液に燐酸イオンを含ませて製造した金属カドミウム粉末は、燐酸イオンを含ませずに製造した金属カドミウム粉末に比べ、耐水和性が高く、純度が維持される。 (もっと読む)


1 - 20 / 58