説明

Fターム[4M104DD17]の内容

Fターム[4M104DD17]に分類される特許

61 - 80 / 742


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


【課題】微細化が容易で、短チャネル効果が生じにくい半導体装置を提供する。
【解決手段】トランジスタのチャネル長方向の断面形状において、アスペクト比の大きいゲート電極上に半導体層を形成することで、トランジスタを微細化しても短チャネル効果が生じにくいチャネル長を確保できる。また、半導体層と重畳し、ゲート電極より下層に絶縁層を介して下部電極を設ける。下部電極と重畳する半導体層は、下部電極の電位(電界)により導電型が付与され、ソース領域及びドレイン領域が形成される。半導体層の、ゲート絶縁層を介してゲート電極と対向する領域は、ゲート電極がシールドとして機能し、下部電極の電界の影響を受けない。すなわち、不純物導入工程を用いることなく、自己整合によりチャネル形成領域、ソース領域及びドレイン領域を形成することができる。これにより、微細化が容易で、短チャネル効果が生じにくい半導体装置が実現できる。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、ハードマスクに対して、2枚のレジスト膜を用いて、ライン&スペースパターンおよび隣接ゲート電極間切断領域パターンのパターニングを実行し、パターニングされたハードマスクを用いて、ゲート積層膜のエッチングを実行するものである。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】本発明は、薄膜トランジスタのソース領域やドレイン領域へのコンタクトを確実
にした半導体装置を提供するものである。
【解決手段】本発明における半導体装置において、半導体層上の絶縁膜およびゲイト電極
上に形成された第1の層間絶縁膜と、前記第1の層間絶縁膜の上に形成された第2の層間
絶縁膜と、前記第2の層間絶縁膜、前記第1の層間絶縁膜、および前記絶縁膜に設けられ
たコンタクトホールとを有する。前記第1の絶縁層の膜厚は、前記積層の絶縁膜の合計膜
厚の1/3以下に形成する。 (もっと読む)


【課題】配線溝へのめっきの埋め込み性を安定させることができる半導体装置の製造方法等を提供すること。
【解決手段】実施形態によれば、半導体装置の製造方法が提供される。半導体装置の製造方法は、めっき処理によって金属膜を埋め込んで検査パターン10を形成する形成工程と、検査パターン10の特性を検出する検出工程と、検出工程によって検出された検査パターン10の特性に基づいて、前記めっき処理の条件を調整する調整工程とを含む。前記形成工程は、3層以上の配線層11〜13に亘って形成され、かつ中間層にスタックドビア22を有するパターンを、前記検査パターン10として形成する。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】 表面ラフネスの精度をさらに改善でき、進展するコンタクトホールやラインなどの微細化に対応可能なアモルファスシリコンの成膜方法を提供すること。
【解決手段】 下地2を加熱し、加熱した下地2にアミノシラン系ガスを流し、下地2の表面にシード層3を形成する工程と、下地2を加熱し、加熱した下地2の表面のシード層3にアミノ基を含まないシラン系ガスを供給し、アミノ基を含まないシラン系ガスを熱分解させることで、シード層3上にアモルファスシリコン膜を形成する工程と、を備え、シード層3を形成する工程における下地の加熱温度を、アモルファスシリコン膜を形成する工程における前記下地の加熱温度よりも低くする。 (もっと読む)


【課題】イオン注入を用いることなく2次元正孔ガスの所期の濃度分布を容易且つ確実に得て、電界集中のなだらかな緩和を実現する高信頼性の窒化物半導体装置を得る。
【解決手段】n−GaN基板1のN面上に形成されたn−GaN層2と、n−GaN層上に形成されたAlGaNからなるJTE構造10と、n−GaN層2上に形成されたアノード電極4とを有しており、n−GaN層2のJTE構造10との界面に、アノード電極4から離間するほど正孔濃度が低くなるように、2次元正孔ガスが生成される。 (もっと読む)


【課題】ゲート電極同士の間の突合わせ部を挟むように形成されたコンタクトプラグ同士が、当該突合わせ部の絶縁膜内に形成されたボイドを介してショートすることを防ぐ。
【解決手段】ゲート電極G2およびG5間の突合わせ部において対向するサイドウォールSW上には、ライナー絶縁膜6と層間絶縁膜7が形成されている。サイドウォールSW同士の間において、サイドウォールSWの側壁にそれぞれ形成されたライナー絶縁膜6を接触させてサイドウォールSW間を閉塞させることにより、層間絶縁膜7とライナー絶縁膜6の内部にボイドが発生することを防ぐ。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】本発明は、フィールドプレート構造を絶縁膜の開口中心に対してばらつきなく形成できる半導体装置の製造方法を提供することを目的とする。
【解決手段】本願の発明にかかる半導体装置の製造方法は、半導体層の表面に絶縁膜を形成する工程と、該絶縁膜の表面に開口を有するレジストを形成する工程と、該レジストと架橋反応するパターンシュリンク剤を該レジストに付着させ、該レジストの内周に硬化層を形成する工程と、該レジスト及び該硬化層をマスクとして該絶縁膜をエッチングする工程と、該硬化層を除去する工程と、該半導体層、該絶縁膜、及び該レジストの表面に金属層を形成する工程と、リフトオフ法により該レジスト及び該レジストの表面の該金属層を除去する工程と、を備えたことを特徴とする。 (もっと読む)


【課題】半導体装置の製造方法において、異なる膜特性を有する絶縁膜に形成されるコンタクト形状の制御性を向上させる。
【解決手段】半導体基板に素子領域を形成し、半導体基板の第1の領域上に、第1の絶縁膜を形成し、半導体基板の第2の領域上に、膜応力及びコンタクトの形成の際のエッチング加工時のエッチングレートが、第1の絶縁膜と異なる第2の絶縁膜を形成し、少なくとも第2の絶縁膜において、コンタクトが形成されるコンタクト領域に選択的にUV光を照射し、UV光を照射した後、第1の絶縁膜及び前記第2の絶縁膜をエッチングして前記コンタクトを形成する。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】LDMOSと、LDMOSのソース領域と電気的に接続されるソースプラグP1Sと、ソースプラグP1S上に配置されるソース配線M1Sと、LDMOSのドレイン領域と電気的に接続されるドレインプラグP1Dと、ドレインプラグP1D上に配置されるドレイン配線M1Dと、を有する半導体装置のソースプラグP1Sの構成を工夫する。ドレインプラグP1Dは、Y方向に延在するライン状に配置され、ソースプラグP1Sは、Y方向に所定の間隔を置いて配置された複数の分割ソースプラグP1Sを有するように半導体装置を構成する。このように、ソースプラグP1Sを分割することにより、ソースプラグP1SとドレインプラグP1D等との対向面積が低減し、寄生容量の低減を図ることができる。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】コンタクトホールの形成領域が素子分離領域と重複しても、素子特性の劣化を抑制できるSOI基板とこのSOI基板を用いた半導体装置とを提供する。
【解決手段】半導体装置1は、半導体基材11と埋め込み絶縁膜12と半導体層16とを有するSOI基板と、このSOI基板上に形成された半導体素子構造とを備える。埋め込み絶縁膜12は、半導体基材11から半導体層16を電気的に絶縁分離する機能を有し、窒化膜14を有する。 (もっと読む)


【課題】半導体装置の高集積化を図り、単位面積あたりの記憶容量を増加させる。
【解決手段】半導体装置は、半導体基板に設けられた第1のトランジスタと、第1のトランジスタ上に設けられた第2のトランジスタとを有する。また、第2のトランジスタの半導体層は、半導体層の上側で配線と接し、下側で第1のトランジスタのゲート電極と接する。このような構造とすることにより、配線及び第1のトランジスタのゲート電極を、第2のトランジスタのソース電極及びドレイン電極として機能させることができる。これにより、半導体装置の占有面積を低減することができる。 (もっと読む)


【課題】タングステン膜を使用した部分の抵抗を低減した半導体装置を提供する。
【解決手段】半導体装置の製造方法では、基板内に設けた開口部内、又は基板上にタングステン膜を形成する。タングステン膜の形成後、エッチバック又はエッチングを行う前にタングステン膜に対してアニール処理を行う。これにより、タングステン膜の結晶状態を変化させる。 (もっと読む)


【課題】Al原子を有するコンタクト電極が用いられる場合に、絶縁膜の絶縁信頼性を向上させることができる炭化珪素半導体装置の製造方法を提供する。
【解決手段】基板面12Bを有する炭化珪素基板10が準備される。基板面12Bの一部を覆うように絶縁膜15が形成される。絶縁膜15に接触するように基板面上にコンタクト電極16が形成される。コンタクト電極16はAl、TiおよびSi原子を含有する。コンタクト電極16は、Si原子およびTi原子の少なくともいずれかと、Al原子とを含有する合金から作られた合金膜50を含む。炭化珪素基板10とコンタクト電極16とがオーミックに接続されるようにコンタクト電極16がアニールされる。 (もっと読む)


【課題】DRAMセルとロジックを混載したLSIデバイスにおけるアスペクト比の大きいコンタクト構造において、素子分離絶縁膜および不純物拡散層のオーバエッチングを抑制して、接合リークを抑制することを課題とする。
【解決手段】周辺MOSトランジスタを覆う第1エッチングストッパ層121と、DRAMメモリセルのキャパシタ部上層に第2エッチングストッパ層122が形成され、周辺MOSトランジスタの不純物拡散層113は、第1、第2エッチングストッパ層121、122を貫通する電極層131により、上記キャパシタ部上層に形成された金属配線層と接続され、不純物拡散層113の少なくとも一つは素子分離絶縁膜102の境界上に電極層131を接続し、素子分離絶縁膜102上に形成された電極層131の底部の不純物拡散層113表面からの深さ寸法は、不純物拡散層113の接合深さ寸法もより短く形成されたものである。 (もっと読む)


61 - 80 / 742