説明

Fターム[4M104FF27]の内容

半導体の電極 (138,591) | 構造 (12,435) | コンタクト面の位置、配置 (799) | 基板の凹部 (569)

Fターム[4M104FF27]に分類される特許

81 - 100 / 569


【課題】低オン抵抗、高耐圧及び高信頼性を達成する。
【解決手段】窒化物半導体装置110は、第1半導体層3、第2半導体層4、第1電極10、第2電極7、第3電極8、第1絶縁膜6及び第2絶縁膜5を備える。第1半導体層3は、窒化物半導体を含む。第2半導体層4は、第1半導体層3上に設けられ、孔部4aを有する。第2半導体層4は、第1半導体層3よりも広い禁制帯幅を有する窒化物半導体を含む。第1電極10は、孔部4a内に設けられる。第1電極10の一方側に第2電極7、他方側に第3電極8が設けられ、それぞれ第2半導体層4と電気的に接続される。第1絶縁膜6は、酸素を含有する膜であって、第1電極10と孔部4aの内壁とのあいだ、及び第1電極10と第2電極7とのあいだに設けられ、第3電極8と離間して設けられる。第2絶縁膜5は、窒素を含有する膜であって、第1電極10と第3電極8とのあいだで第2半導体層4に接して設けられる。 (もっと読む)


【課題】本発明の実施形態は、トレンチ構造におけるゲート・ソース間容量を低減できる半導体装置およびその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、第1導電形の半導体層と、前記半導体層の第1の主面側に設けられた第1主電極と、前記半導体層の第2の主面側に設けられた第2主電極と、前記半導体層の前記第1の主面側から前記第2の主面の方向に形成されたトレンチの内部に設けられ、前記第1主電極と前記第2主電極との間に流れる電流を制御する2つの第1制御電極と、前記トレンチの内部において、前記2つの第1制御電極と、前記第2の主面側の底面と、の間に設けられた第2制御電極と、を備える。前記2つの第1制御電極は、前記第1の主面に平行な方向に離間して設けられ、それぞれ第1の絶縁膜を介して前記トレンチの内面に対向し、前記第2制御電極は、第2の絶縁膜を介して前記トレンチの内面と対向する。 (もっと読む)


【課題】3次元形の半導体素子において、オン抵抗をより効果的に低減できる半導体素子及び半導体素子の製造方法を提供する。
【解決手段】半導体素子は、ドレイン層と、ドレイン層内に選択的に設けられたドリフト領域と、ドリフト領域内に選択的に設けられたベース領域と、ベース領域内に選択的に設けられたソース領域と、ソース領域又はドレイン層の少なくとも一方の内部に、ソース領域又はドレイン層の少なくとも一方に選択的に設けられた第1,第2の金属層と、ドレイン層の表面に対して略平行な方向に、ソース領域の一部から、ソース領域の少なくとも一部に隣接するベース領域を貫通して、ドリフト領域の一部にまで到達するトレンチ状のゲート電極と、第1の金属層に接続されたソース電極と、ドレイン層又は第2の金属層に接続されたドレイン電極と、を備える。 (もっと読む)


【課題】ピンチオフ特性を維持しながら動作効率を向上することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板11と、基板11上方に形成された電子走行層12と、電子走行層12上方に形成された電子供給層13と、電子供給層13上方に形成されたソース電極15s及びドレイン電極15dと、電子供給層13上方で、ソース電極15s及びドレイン電極15dの間に形成された第1のゲート電極15g−1及び第2のゲート電極15g−2と、が設けられている。ゲート電極15g−1の仕事関数は、第2のゲート電極15g−2の仕事関数よりも低い。 (もっと読む)


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


【課題】定電流動作が可能な窒化物半導体装置を提供する。
【解決手段】窒化物半導体を含む半導体層30と、ソース電極40と、ドレイ電極50と、第1ゲート電極10と、第2ゲート電極20と、を備えた窒化物半導体装置111が提供される。ソース電極40とドレイン電極50は、主面上に設けられ、半導体層とオーミック性接触を形成し、互いに離間する。第1ゲート電極10は、主面上においてソース電極40とドレイン電極50との間に設けられる。第2ゲート電極20は、主面上においてソース電極40と第1ゲート電極10との間に設けられる。ソース電極40と第1ゲート電極10との間の電位差が0ボルトのときに、半導体層30のうちの第1ゲート電極に対向する部分は導通する。第1ゲート電極10は、第2ゲート電極20に印加される電圧に応じた定電流をスイッチングする。 (もっと読む)


【課題】本発明は、製造コストの増大を抑制しつつ、簡易な構成で、絶縁膜とさらに上部に形成された絶縁膜との界面の電荷を低減することができる半導体装置の製造方法の提供を目的とする。
【解決手段】本発明にかかる半導体装置の製造方法は、(a)SiC半導体を用いた基板を用意する工程と、(b)前記基板の表層部において、前記基板の素子領域を囲むように、リセス構造と前記リセス構造の下部にガードリング層とを形成する工程と、(c)前記ガードリング層を覆って、第1絶縁膜を形成する工程と、(d)前記第1絶縁膜を覆って、前記第1絶縁膜とは異なる材質の第2絶縁膜を形成する工程と、(e)前記第1絶縁膜上に蓄積する電荷とは逆電荷のイオンを、前記工程(d)の前、又は、前記工程(d)中、又は前記工程(d)の後に照射する工程とを備える。 (もっと読む)


【課題】消費電力が低く、かつ、動作時の電流値が高い半導体装置およびその製造方法を提供する。
【解決手段】実施形態の半導体装置は、第1導電型の基板上のソース領域に形成された第2導電型の第1の不純物拡散層と、前記基板上のポケット領域に形成された第1導電型の第2の不純物拡散層と、前記基板上のドレイン領域に形成された第1導電型の第3の不純物拡散層と、前記第1乃至第3の不純物拡散層の表面上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲートと、を含む。前記ポケット領域は前記ソース領域に隣接し、リセスを有するように形成される。前記ゲートは、前記ゲート絶縁膜を介して前記リセスを埋め込むように前記ゲート絶縁膜上に形成される。 (もっと読む)


【課題】超音波振動を利用したワイヤボンディングの際にオーミック電極が破壊されない炭化珪素半導体装置及びその製造方法を提供する。
【解決手段】本発明に係る炭化珪素半導体装置は、炭化珪素基板1と、炭化珪素基板1上に形成されたn型炭化珪素層2と、n型炭化珪素層2の表面近傍に形成されたp型不純物領域3と、p型不純物領域上に形成されたp型オーミック電極4と、p型オーミック電極4を覆うようにn型炭化珪素層2上に形成されたショットキー電極5と、を備え、p型オーミック電極4はp型不純物領域3の表面に設けられた凹部3a内に形成されており、p型オーミック電極の上面はn型炭化珪素層の表面2aよりも低い位置にある、ことを特徴とする。 (もっと読む)


【課題】十分な電流を流すことのできるトランジスタを備えた半導体装置を提供することを可能にする。
【解決手段】一実施形態の半導体装置は、半導体基板と、半導体基板上に設けられ、上面および側面が鞍形状を形成し、上面における鞍点を含む領域における第1方向の両端に凸部をそれぞれ有する半導体領域と、凸部の上面を除いた半導体領域の上面と、第1方向に沿った側面と、第1方向に直交する第2方向に沿った、上面における鞍点を含む領域側の前記凸部の側面との上に設けられたゲート絶縁膜と、ゲート絶縁膜の上に設けられたゲート電極であって、上面における鞍点を含む領域の直上に設けられた本体部と、本体部に接続され半導体領域の第1方向に沿った側面を覆う脚部と、を有し、脚部の第1方向における長さが上面における鞍点を含む領域の直上に設けられた本体部の第1方向における長さよりも長くなるように構成されたゲート電極と、ゲート電極の両側の半導体基板に設けられた第1および第2不純物領域と、を備えている。 (もっと読む)


【課題】NANDフラッシュメモリデバイスを電気的、物理的に小型化し、良好なデータ保持と電気的特性を備えたフローティングゲートデバイスを提供する。
【解決手段】フローティングゲートメモリデバイスの製造方法に関し、ベース基板100、埋め込み絶縁層、および単結晶半導体上部層から形成される、半導体−オン−絶縁体基板が提供される。トレンチが基板中に形成され、フローティングゲートとして働く単結晶上部部分を有する高層フィン型構造111−114を形成する。埋め込み絶縁層の一部は、フローティングゲートデバイスのトンネル酸化物層101’として働く。ゲート誘電体層160は、熱酸化により単結晶上部部分の側壁の上に形成され、薄い膜厚のゲート誘電体層を可能にする。 (もっと読む)


【課題】高歩留まりの薄型半導体装置の製造方法を提供する。
【解決手段】まず、半導体ウェハ10の第1の主面S1に、複数の素子領域3およびこの素子領域3にコンタクトする端子電極5を形成し、こののち半導体ウェハ10の第1の主面S1と対向する第2の主面S2を、半導体ウェハ10の外周縁部を残して、所望の厚さとなるまで、薄肉化する。そして、薄肉化された半導体ウェハ10の前記第2の主面S2に、金属層6を形成し、こののち、金属層6上に絶縁被膜7を形成し、最後に、半導体ウェハ10の素子領域3毎にダイシングラインD.L.に沿って分割することで、分断された個々の半導体装置を得るものである。 (もっと読む)


【課題】信頼性と電気的特性の確保を両立した半導体装置を提供する。
【解決手段】同一の半導体基板1上に形成されたパワーMOSFETと保護回路を備える。パワーMOSFETがトレンチゲート縦型PチャネルMOSFETであって、そのゲート電極6の導電型をP型とする。また、保護回路がプレーナゲート横型オフセットPチャネルMOSFETを備え、そのゲート電極10の導電型をN型とする。これらゲート電極6とゲート電極10は別工程で形成される。 (もっと読む)


【課題】縦型のフィールドプレート構造を有する絶縁ゲート電界効果トランジスタにおいて、寄生バイポーラトランジスタによるアバランシェ電流の集中を緩和する。
【解決手段】本実施形態の半導体装置は、素子部とダイオード部を有する。素子部は、ドレイン層と、ドレイン層の上に設けられたドリフト層と、ドリフト層の上に設けられたベース領域と、ベース領域の表面に選択的に設けられた第1導電形のソース領域と、ソース領域の表面からベース領域を貫通して、ドリフト層に接する複数の第1トレンチ内に設けられた第1ゲート電極と、この下に設けられたフィールドプレート電極と、を有する。ダイオード部は、ドレイン層とドリフト層とにおいて素子部と共有し、ベース領域の表面を貫通して、ドリフト層に接する複数の第2トレンチを有する。このダイオード部の第2トレンチ間の距離が素子部の第1トレンチ間の距離と比較して大きくなるように形成されている。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】リセス等の形成に伴う処理で生じる残渣を適切に除去することができる化合物半導体装置の製造方法及び洗浄剤を提供する。
【解決手段】化合物半導体積層構造1を形成し、化合物半導体積層構造1の一部を除去して凹部4を形成し、洗浄剤を用いて凹部4内の洗浄を行う。洗浄剤は、凹部4内に存在する残渣と相溶する基材樹脂と溶媒とを含む。 (もっと読む)


【課題】従来のDRAMは、データを保持するために数十ミリ秒間隔でリフレッシュをしなければならず、消費電力の増大を招いていた。また、頻繁にトランジスタのオン状態とオフ状態が切り換わるのでトランジスタの劣化が問題となっていた。この問題は、メモリ容量が増大し、トランジスタの微細化が進むにつれて顕著なものとなっていた。
【解決手段】酸化物半導体を有するトランジスタを用い、ゲート電極用のトレンチと、素子分離用のトレンチを有するトレンチ構造のトランジスタとする。ソース電極とドレイン電極との距離を狭くしてもゲート電極用のトレンチの深さを適宜設定することで、短チャネル効果の発現を抑制することができる。 (もっと読む)


【課題】本発明は、アバランシェ耐量と主耐圧を向上させることができるトレンチゲート型半導体装置を提供することを目的とする。
【解決手段】本願の発明に係るトレンチゲート型半導体装置は、基板と、該基板上の第1導電型のエピタキシャル成長層と、該エピタキシャル成長層上の第2導電型の拡散層と、該拡散層を貫通し、先端が該エピタキシャル成長層に達するトレンチゲートと、該トレンチゲートの先端に接するように該エピタキシャル成長層に形成された、該エピタキシャル成長層よりもキャリア濃度の低い、第1導電型の低キャリア濃度部と、を備えたことを特徴とする。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】安定したリカバリ耐量が得られる半導体装置を提供する。
【解決手段】表面電極21のうち抜き取り部2bに形成されたコンタクトホール20bから露出するコンタクト領域23と対向する部分をそれぞれコンタクト部21dとし、コンタクト部21dと表面パッド5とを結ぶ最短距離の線分L1上にそれぞれ切り込み部21cを形成する。これによれば、コンタクト部21dから表面パッド5までのホールが流れる経路が長くなって抵抗が高くなるので、コンタクト領域23にホールが集中することを抑制することができ、安定したリカバリ耐量を得ることができる。 (もっと読む)


81 - 100 / 569