説明

Fターム[5E078BA27]の内容

電気二重層コンデンサ等 (17,975) | 電極 (4,664) | 活物質 (1,982) | 金属酸化物 (137)

Fターム[5E078BA27]の下位に属するFターム

Fターム[5E078BA27]に分類される特許

61 - 80 / 119


本発明は、スーパーキャパシタ電極用の電着された金属酸化物被覆を生成する方法に関する。本発明は、析出物の表面積が増大することにより優れた性能が得られる、数秒から約30秒までの期間にわたる金属酸化物のクロノアンペロメトリー電着に関する。本発明によれば、達成される静電容量は通常1300F/gより大きく、場合によっては4000F/gを超える。
(もっと読む)


【課題】リチウムイオン二次電池の放電容量を向上させることが可能な活物質を提供すること。
【解決手段】本発明の活物質は、LiVOPOのβ型結晶構造を有する棒状の粒子群を含む。粒子群の短軸長さの平均値Sが1〜5μmである。粒子群の長軸長さの平均値Lが2〜20μmである。L/Sが2〜10である。 (もっと読む)


2,000m2/gより大きい表面積を有する電気伝導性炭素ネットワーク(15)と、MnO2等の擬似容量金属酸化物(16)とを、有するナノコンポジット電極を使用することにより、高エネルギー密度スーパーキャパシタを提供する。導電性炭素ネットワーク(15)を多孔質金属酸化物構造に組み込んで、金属酸化物(16)の大部分を電荷貯蔵に利用するために十分な電気伝導性を導入し、及び/又は、導電性炭素ネットワーク(15)の表面を金属酸化物で装飾して、電荷貯蔵用ナノコンポジット電極中の擬似容量金属酸化物の表面積及び量を増加させる。 (もっと読む)


【課題】新規なチタン酸アルカリ金属化合物及びその製造方法を提供する。
【解決手段】好ましくは一次元のトンネル構造を有する、一般式としてH2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとる新規化合物である。該化合物は、一般式としてHTi1225の化学組成をとる化合物とアルカリ金属化合物とを反応させて合成することができる。該化合物から作製された電極活物質を含有する電極を、構成部材として用いた蓄電デバイスは、充放電サイクル特性に優れ、高容量が期待できる。 (もっと読む)


【課題】蓄電デバイスの電極の形成にアルカリ金属を用いる場合であっても安全な方法で電極を作製する。
【解決手段】集電体の表面にアルカリ金属イオンの吸蔵及び放出が可能な層であるアルカリ金属イオン吸蔵放出層を形成し、アルカリ金属イオン吸蔵放出層の表面にアルカリ金属膜を減圧下で形成し、アルカリ金属膜をイオン化させつつ、イオン化されたアルカリ金属をアルカリ金属イオン吸蔵放出層に含浸させることにより負極を作製する。 (もっと読む)


新規な電極を含む改良されたキャパシタが開示される。一つの電極組成物が、混合金属酸化物の遷移金属ニッケル及びコバルトをモル比0.5:1以上で含み、選択的に、バインダー及びカーボンナノチューブを含む。作製したキャパシタは、従来よりも早い電圧スキャン速度での高い比静電容量値を含む優れた特性により特徴付け可能である。優れた結果をもたらす電極の形成方法も開示される。
(もっと読む)


【課題】集電体の強度を維持しながら電極の端面からの活物質の脱落を抑制できる技術を提供する。
【解決手段】表面に凹凸を有する集電体の表面上に活物質層を形成する工程と、活物質層の形成前または形成後において、集電体の切断設定部14を局所的に加熱する工程と、集電体および活物質層によって構成された電極原反30を加熱された切断設定部14に沿って刃物でスリットする工程とを含む電気化学素子用電極の製造方法とする。切断設定部14の加熱は、例えば、電子線を用いて行う。 (もっと読む)


ナノ構造体を生成するために、所定の条件下でナノ粒子材料の1つまたは複数の層に光エネルギーを印加することによって製品が作製される。ナノ構造体は、所定の細孔密度、所定の細孔径、またはこれらの両方を含む、光融合したナノ粒子の層を有する。光エネルギーを印加するための所定の条件は、所定の電圧、所定の時間、所定の出力密度、またはこれらの組合せを含み得る。
(もっと読む)


【課題】高い容量と優れた応答性を発現し得る蓄電デバイス用複合電極、その製造方法、及び蓄電デバイス用複合電極を用いた蓄電デバイスを提供すること。
【解決手段】蓄電デバイス用複合電極は、基材と、該基材の表面に形成され、金属及び金属化合物の一方又は双方を含有するウィスカー又はファイバーと、該ウィスカー又はファイバーの表面に形成され、活物質を含有し、且つ表面に凹凸を有する被覆層とを有する。
蓄電デバイスは、上記蓄電デバイス用複合電極と、電解質とを有する。
蓄電デバイス用複合電極の製造方法は、ウィスカー又はファイバーの構成金属を含む基材原料又はその前駆体を、酸化雰囲気中で加熱処理して、基材上に該ウィスカー又は該ファイバーを形成する工程(1)と、その後に実施され、該ウィスカー又はファイバーの表面に、活物質を含有し且つ表面に凹凸を有する被覆層を形成する工程(2)を含む。 (もっと読む)


【課題】蓄電デバイスにおいて、高容量、高出力、かつ充放電のサイクル特性を向上するには、出力特性とサイクル特性を両立する負極の開発が必須となる。
【解決手段】蓄電デバイス1は、正極集電体11と、正極集電体11上に配された、少なくともアニオンを可逆的に吸脱着可能な正極活物質を含む正極10と、負極集電体13と、負極集電体13上に配された、実質的に、リチウムイオンを可逆的に吸蔵及び放出可能な負極活物質からなり、厚み10μm以下の薄膜である負極12と、フッ素化炭酸エステルを含む電解液とを備えるとともに、負極活物質が、珪素、珪素含有合金、珪素酸化物、なる群より選ばれる少なくとも1つを含み、かつ、負極活物質に予めリチウムが吸蔵されている。 (もっと読む)


【課題】液反応において反応を促進させ、さらにその反応を用いて金属酸化物ナノ粒子を高分散担持させたカーボンを形成してなる電極材料、この電極材料からなる電極、及びこの電極を用いた電気化学素子を提供する。
【解決手段】MxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(ただし、M:金属元素 A:アルカリ金属又はランタノイド元素)で表される一次粒子径1〜10nmの金属酸化物ナノ粒子を、カーボン粒子の表面に高分散担持させる。旋回する反応器内で反応物にずり応力と遠心力を加えて、化学反応を促進させる反応を用い、化学反応の過程で、反応器内で反応物にずり応力と遠心力を加えて生成した金属酸化物ナノ粒子と、反応器内でずり応力と遠心力を加えて分散したカーボンとからなる。金属酸化物ナノ粒子は、カーボン表面、内表面に担持され、カーボンで包囲されている。このカーボンを窒素雰囲気で熱処理して電極材料とする。 (もっと読む)


【課題】5nm〜20nmのチタン酸リチウムのナノ粒子がカーボンに高分散担持された複合体を提供する。
【解決手段】チタン酸リチウムの前駆体がケッチェンブラックに高分散担持された複合体粉末を、真空中で急熱することによって、リチウムを含有するチタン酸化物の結晶化を進行させ、チタン酸リチウムのナノ粒子をケッチェンブラックに高分散担持させる。チタン酸リチウムの前駆体は、旋回する反応器内で反応物にずり応力と遠心力を与えるメカノケミカル反応によって作製する。この場合、反応抑制剤を加える。前記急熱処理は、1分間以内に、チタン酸リチウムの前駆体とカーボンとの複合体を真空中で、室温→800℃と変化させる。 (もっと読む)


【課題】α―LiVOPOとβ―LiVOPOを兼ね備える活物質の製造方法を提供すること。
【解決手段】本発明の活物質の製造方法は、リチウム源とリン酸源とバナジウム源と水とを含み、pHが7より大きく12.7より小さい混合物を、加圧下で加熱する水熱合成工程と、水熱合成工程において加圧下で加熱した後の混合物を焼成する焼成工程と、を備える。 (もっと読む)


【課題】優れたサイクル耐久性能を発現し得る蓄電デバイス用電極、その製造方法及び蓄電デバイスを提供すること。
【解決手段】蓄電デバイス用電極は、タングステン酸化物を含むウィスカーからなる多孔質層を有する蓄電デバイス用電極であって、該タングステン酸化物を含むウィスカーのX線光電子分光分析による価電子帯光電子スペクトルが、そのフェルミ準位から1eV以内にピークを有する。
蓄電デバイス用電極の製造方法は、タングステン酸化物を含むウィスカーの構成金属を含む原料又は基材原料を、微量の酸素存在下で加熱処理して、タングステン酸化物を含むウィスカーを形成する。
蓄電デバイスは、上述の蓄電デバイス用電極と、電解質と、を備えている。 (もっと読む)


【課題】放電容量に優れた電気化学素子を形成することが可能な活物質の製造方法を提供すること。
【解決手段】本発明の活物質の製造方法は、リチウム化合物と、Fe、Mn、Co、Ni及びVからなる群より選ばれる一種を含む金属化合物と、リン化合物と、水と、を含む混合物を、反応器内で加熱しながら、反応器の内部を外部と通気させて反応器の内圧を0.3MPa以下に保ち、混合物の温度を100〜150℃に到達させた時点で反応器を密閉する水熱合成工程と、水熱合成工程後の混合物を焼成する焼成工程と、を備える。 (もっと読む)


【課題】カーボン材料の含有率を下げて容量特性を向上させることができる電極材料及びこの電極材料を含有する電極を提供する。
【解決手段】化学反応の過程で、旋回する反応器内で反応抑制剤を含む反応物にずり応力と遠心力を加えて生成した金属酸化物ナノ粒子と、旋回する反応器内でずり応力と遠心力を加えて分散した比表面積が600〜2600m2/gであるカーボンナノチューブとからなり、前記金属酸化物ナノ粒子を前記カーボンナノチューブに高分散担持させる。前記金属酸化物としては、チタン酸リチウムが好ましい。 (もっと読む)


【課題】電極に対して均一にイオンをドーピングする。
【解決手段】電極シート群11の一方の最外層には正極合材層22を片面に備えた正極シート13が設けられ、電極シート群11の他方の最外層には正極合材層24を片面に備えた正極シート14が設けられる。また、正極シート13,14の間には負極合材層27を両面に備えた負極シート15が設けられる。これらのシート13〜15が積層される電極シート群11には、金属リチウム箔29を両面に備えたリチウム極シート17が重ねられる。そして、捲回型の蓄電デバイスを製造する際には、リチウム極シート17と共に電極シート群11が巻き取られる。これにより、負極シート15を挟むようにリチウム極シート17が配置され、負極シート15とリチウム極シート17との間隔がほぼ一定となる。したがって、負極シート15に対してリチウムイオンが均一にプレドープされる。 (もっと読む)


【課題】バクテリア及び遷移金属酸化物からなる有機・無機複合体及びその製造方法を提供する。
【解決手段】バクテリア及び遷移金属酸化物からなる有機・無機複合体において、高い陰電荷を帯びるバクテリアをテンプレートとしてバクテリア表面に陽イオンの遷移金属前駆体を付着させ、水素化ホウ素ナトリウム及びバクテリアと遷移金属イオンを室温条件下で還流させて還元・自発酸化反応を誘導することで、優れた高容量の電気化学的特性を有する。 (もっと読む)


【課題】ハイブリッドタイプのスーパーキャパシタが有する、全体セルポテンシャルの増加によるエネルギー及び出力密度の増加という長所をそのまま保持しながらも、電流集電体及びバインダのない一体型電極を用いることにより、電極内部抵抗及びESRを最小化できるハイブリッドスーパーキャパシタを提供する。
【解決手段】炭素エアロゲルアノードと、表面酸化した遷移金属窒化物エアロゲルカソードとを含むハイブリッドスーパーキャパシタである。 (もっと読む)


【課題】正極、負極及びセパレータからなる電極群を短時間で効率よく製造でき、しかも高出力化の達成に好適な構造を有するリチウムイオンキャパシタを提供すること。
【解決手段】リチウムイオンキャパシタの電極群11は、帯状の正極21、帯状のセパレータ41及び曲がりのない平板状かつ複数枚の負極31を使用して形成される。電極群11は、帯状の正極21及び帯状のセパレータ41を重ね合わせて扁平ロール状に捲回するとともに、捲回した状態の正極21の平旦部間にセパレータ41を介して平板状の負極31を挟み込んだ構造を有する。 (もっと読む)


61 - 80 / 119