説明

Fターム[5F038EZ16]の内容

半導体集積回路 (75,215) | その他の技術 (17,984) | 製法 (5,137) | 酸化 (340)

Fターム[5F038EZ16]に分類される特許

81 - 100 / 340


【課題】 抵抗素子の抵抗値の選択範囲を拡大し、且つ抵抗層形成後にシリサイドブロックを形成せずに該抵抗層のシリサイド化を防止することを可能にする。
【解決手段】 半導体領域11上に絶縁膜15を形成し、絶縁膜15を介して半導体領域11に不純物のイオン注入12を行う。これにより、絶縁膜15の下に抵抗層13が形成されるとともに、抵抗層13に隣接して電極領域14が形成される。その後、電極領域14の表面にシリサイド膜17を形成する。このとき、絶縁膜15は、抵抗層13がシリサイド化されることを防止するシリサイドブロックとして機能する。イオン注入12として、同一半導体基板上に形成されるMOSトランジスタのソース/ドレイン領域への不純物注入工程を利用し得る。 (もっと読む)


【課題】半導体基板に素子と貫通電極とが形成された半導体装置の製造方法において、貫通電極からの銅による素子の汚染を防止できる方法を提供する。
【解決手段】半導体基板10と、それに形成された素子ZDと、半導体基板10を貫通するスルーホールTHと、半導体基板10の両面側及びスルーホールTHの内面に形成されて、素子ZDを被覆する絶縁層12とを備えた構造体を用意する工程と、スルーホールTH内に貫通電極20を形成する工程と、貫通電極20を被覆する第1バリア金属層30aを形成する工程と、素子ZDの接続部に到達するコンタクトホールCH1を形成する工程と、コンタクトホールCH1内の素子ZDの接続部の自然酸化膜を除去する工程と、第1バリア金属層30aを利用して、貫通電極20に接続される第1配線層40と、コンタクトホールCH1を通して素子ZDの接続部に接続される第2配線層40aとを形成する工程とを含む。 (もっと読む)


【課題】基板上に抵抗素子を備える半導体装置において、シリコン抵抗素子の抵抗値の低下を防ぐ。
【解決手段】半導体装置1は、基板10上に、MIPS構造を有するMOSトランジスタとシリコン抵抗素子を備える。抵抗素子は、基板10の上に設けられた金属膜28と、金属膜28の上に設けられた絶縁膜30と、絶縁膜30の上に設けられたシリコン層37と、からなる。絶縁膜30は、シリコン酸化膜、シリコン窒化膜、HfSiON、HfO、ZrO、HfAlO、Alから選ばれる少なくとも一つを有する。 (もっと読む)


【課題】平坦な表面を有する層間絶縁膜を短時間で形成することができ、また、層間絶縁膜の厚さの増大を招くことなく、金属イオンによる半導体基板の汚染に対する長期信頼性を保証することができる、半導体装置およびその製造方法を提供する。
【解決手段】半導体装置1は、半導体基板2と、半導体基板2上に形成された層間絶縁膜8とを備えている。そして、層間絶縁膜8は、半導体基板2側から順に、HDP膜10、ゲッタリング層12およびNSG膜11が積層された構造を有している。ゲッタリング層12は、金属イオン、とくに可動イオンを捕獲する性質を有している。 (もっと読む)


【課題】従来に比べて更に保護能力を高めた保護素子を含む半導体装置を提供する。
【解決手段】P型ウェル2内にはP型領域4,N型領域5aが、N型ウェル3内にはP型領域7a,N型領域8がそれぞれ形成され、両ウェル2及び3にまたがってN型領域6が形成されている。N型領域5aはN型ウェル3より不純物濃度が高く、N型領域6,8はそれよりも更に高い。P型領域7aはP型ウェル2より不純物濃度が高く、P型領域4はそれよりも更に高い。N型領域5aの上層には、不純物濃度がN型領域5aより高く、N型領域6,8と同程度のN型ドープトポリシリコン膜11がN型領域5aに接触して形成されている。P型領域7aの上層には、不純物濃度はP型領域7aより高く、P型領域4と同程度のP型ドープトポリシリコン膜12がP型領域7aに接触して形成されている。 (もっと読む)


【課題】大容量化に適した構造のキャパシタを有する半導体集積装置を提供する。
【解決手段】素子分離層12で電気的に分離された第1電極層13と、第1電極層13および素子分離層12上に形成され、第1電極層13が露出する開口14aを有する電極間絶縁膜14と、電極間絶縁膜14上に形成され、開口14aを介して第1電極層13と電気的に接続された第2電極層15の第1電極部15aと、第1電極部15aと電気的に分離された第2電極層15の第2電極部15bと、素子分離層12の上方の第2電極部15bの下面から電極間絶縁膜14を貫通して素子分離層12内に延伸し、第1電極層13の側面と対向する第2電極層15の第3電極部15cとを有し、第1電極層13と第2電極部15bとで電極間絶縁膜14を挟持する第1容量素子C1と、第1電極層13の側面と第3電極部15cとで素子分離層12を挟持する第2容量素子C2とを形成する。 (もっと読む)


【課題】抵抗特性のばらつきが少ない抵抗素子を低コストで形成することを可能とした半導体装置の製造方法及び半導体装置を提供する。
【解決手段】SOI領域のSi基板1上にSiGe層を形成する工程と、SiGe層上にSi層13を形成する工程と、Si層13及びSiGe層を平面視で抵抗素子の形状に形成する工程と、Si層13及びSiGe層の各側面にサイドウォール17を形成する工程と、SiGe層を露出する溝部19を形成する工程と、サイドウォール17によりSi層13の側面が支えられた状態で、溝部19を介してSiGe層をエッチングすることにより、Si層13とSi基板1との間に空洞部21を形成する工程と、を含む。 (もっと読む)


【課題】低温プロセスで製造でき、リーク電流が抑制された電子素子を提供する。
【解決手段】基板10上に、端部断面のテーパー角度が60°以下である下部電極22と、前記下部電極22上に配置され、水素原子の含有率が3原子%以下であり、波長650nmにおける屈折率nが1.475以下であるSiO膜24と、前記SiO膜24上に配置され、前記下部電極22と重なり部を有する上部電極26と、を有する電子素子である。 (もっと読む)


【課題】容量絶縁膜を均一な膜厚に形成して、容量素子全体の電圧追従性と容量素子の耐圧を向上させることで、信頼性を高めることを可能にする。
【解決手段】半導体基板11に形成された素子分離領域12により区画されたアクティブ領域13と、前記アクティブ領域13に形成された拡散層からなる第1電極21と、前記第1電極21上に形成された容量絶縁膜22と、前記第1電極21の平坦面上に前記容量絶縁膜22を介して形成された第2電極23を有し、前記第2電極23は、平面レイアウト上、前記アクティブ領域13内でかつ前記第1電極21内に形成されている。 (もっと読む)


【課題】半導体の酸化物を安定化させることができる上、欠陥密度が低くて電子移動度が高い誘電体層を得て、デバイスの信頼性及び性能を大幅に改善することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、半導体基板10内に設け、第1のゲルマニウムドープト領域を含む第1の電極と、第1の電極上に設け、半導体酸化物及び安定金属を含む第1の誘電体層23と、第1の誘電体層23上に設ける第2の電極とを備える。第1の電極及び第2の電極によりキャパシタを形成する。 (もっと読む)


【課題】ESDサージ耐量を向上できるようにする。
【解決手段】LDMOSにおいて、n+型ドレイン領域5を囲むように、n型基板1よりも高濃度に形成され、n+型ドレイン領域5に近づくほど高濃度となるn型領域6を配置する。さらに、n+型ソース領域8に隣接配置されるp+型コンタクト領域9がn+型ソース領域8の下部まで入り込むようにし、n+型ソース領域8、p型ベース領域7及びn型基板1によって形成される寄生トランジスタがオンし難くなるようにする。 (もっと読む)


【課題】例えば、液晶装置等の電気光学装置の製造に要するコスト削減と、表示性能の向上とを同時に実現する。
【解決手段】TFT(30)は、TFTアレイ基板(10)上において下側容量電極(80a)及び(80b)と同層に形成された半導体層(30a)と、その上に形成されたゲート絶縁膜(30b)と、ゲート電極(30c)とを備えて構成されている。半導体層(30a)は、TFTアレイ基板(10)の厚み方向に沿った厚みよりTFTアレイ基板(10)の基板面に沿った幅が大きくなるように形成されている。したがって、TFT(30)及び保持容量(70)によれば、液晶装置(1)の製造時に、ポリシリコン等の半導体からなる下側容量電極(80a)及び(80b)と共通の工程によってTFT(30)を形成可能であり、液晶装置(1)の製造プロセスを簡略化でき、且つ製造コストの低減できる。 (もっと読む)


【課題】ESD対策をした保護回路および半導体装置を提供する。
【解決手段】集積回路と電気的に接続された信号線と、信号線と第1の電源線との間に設けられた第1のダイオード、及び第1のダイオードと並列に設けられた第2のダイオードと、第1の電源線と第2の電源線との間に設けられた第3のダイオードとを有し、第1のダイオードは、トランジスタをダイオード接続することによって形成されたダイオードであり、第2のダイオードはPIN接合又はPN接合を有するダイオードである保護回路。上記保護回路は、特に薄膜トランジスタを用いて作製される半導体装置に用いられることで効果を発揮する。 (もっと読む)


【課題】高サージ耐量を維持しつつ、電気容量と降伏電圧のトレードオフ関係を解消できる半導体装置を提供する。
【解決手段】本発明の半導体装置は、半導体基板1の一方の面上に形成された絶縁膜2上に、互いに異なる導電型の第1の低濃度半導体層(p型の半導体層3)と第2の低濃度半導体層(n型の半導体層4)が積層されている。また、第2の低濃度半導体層の表面から深さ方向へ、同じ導電型の第1の高濃度半導体層(n型の半導体層5)と第3の高濃度半導体層(n型の半導体層7)が互いに対向して延在しており、それらとは異なる導電型の第2の高濃度半導体層(p型の半導体層6)が第3の高濃度半導体層の層内に埋設されている。さらに、第1と第2の低濃度半導体層それぞれの不純物濃度と厚みが、印加電圧のない状態で、第1と第2の低濃度半導体層が空乏層で覆われるように設定されている。 (もっと読む)


【課題】従来の半導体装置では、寄生Trのオン電流が半導体層表面を流れることで、素子が熱破壊するという問題があった。
【解決手段】本発明の半導体装置では、ドレイン領域としてのN型の拡散層9にP型の拡散層14及びドレイン導出領域としてのN型の拡散層10が形成される。そして、P型の拡散層14は、MOSトランジスタ1のソース−ドレイン領域間に配置される。この構造により、ドレイン電極28に正のESDサージが印加され、寄生Tr1のオン電流I1が流れた場合にも、寄生Tr1のオン電流I1の電流経路がエピタキシャル層深部側となることで、MOSトランジスタ1の熱破壊が防止される。 (もっと読む)


【課題】デカップリングコンデンサが集積された半導体装置を提供する。
【解決手段】半導体素子11が形成された半導体基板12の主面に絶縁膜13を介して形成され、絶縁膜13を貫通するビア14を介して半導体素子11に接続された電極15と、電極15の上面および側面に形成された誘電体膜16と、絶縁膜13上に形成され、電極15を取り囲み、電極15より高い側壁を有する絶縁性のダム層17と、ダム層17内に充填された電解質層18と、ダム層17に冠着され、電解質層18を封止するとともに、基準電位GNDに接続される導電性蓋体19と、を具備する。 (もっと読む)


【課題】高誘電率でありかつリーク電流を低減することが可能なゲート絶縁膜を備えた半導体装置を提供する。
【解決手段】半導体装置は、半導体基板11上に設けられ、かつランタンアルミシリコン酸化物若しくは酸窒化物を含む第1の誘電体膜23と、第1の誘電体膜23上に設けられ、かつハフニウム(Hf)、ジルコニウム(Zr)、チタン(Ti)、及び希土類金属のうち少なくとも1つを含む酸化物若しくは酸窒化物を含む第2の誘電体膜24と、第2の誘電体膜24上に設けられた電極14とを含む。 (もっと読む)


【課題】高耐圧のノイズやサージから内部回路を守るESD保護素子であり、要求される条件により合わせ込みやすい構造のESD保護素子を提供する。
【解決手段】高耐圧を有する半導体装置をノイズやサージから守るLOCOSオフセット型Nチャネル型MOSを利用したESD保護素子100において、ドレイン側のLOCOS酸化膜-コンタクト間距離14の内側に抵抗領域15を設け、この抵抗領域15の距離を変えることにより、ESD保護素子の動作時における寄生バイポーラトランジスタのオン状態を保持する保持電圧を容易に調整することが可能となる。 (もっと読む)


【課題】デプレッション型MOSトランジスタとエンハンス型MOSトランジスタによって形成される基準電圧発生回路装置の面積を大きくすることなく基準電圧の温度特性を向上させる。
【解決手段】デプレッション型MOSトランジスタの濃度プロファイルを、第一導電型チャネル領域の基板表面側の不純物濃度が薄く、かつ前記第一導電型チャネル領域と第二導電型の基板領域もしくはウェル領域にて形成されるPN接合付近の前記第一導電型チャネル領域の不純物濃度が濃くなるように制御することで基準電圧の温度特性を向上させる。 (もっと読む)


【課題】半導体装置の製造歩留りを向上させる。
【解決手段】素子分離領域2を含む半導体基板1上に多結晶シリコン膜7と絶縁膜8を形成してパターニングし、多結晶シリコン膜7かならる下部電極11a,11bおよび下部電極11a,11b間のダミーパターン12を形成する。下部電極11a,11bおよびダミーパターン12とそられの上に形成された絶縁膜8を覆うように多結晶シリコン膜17を形成し、多結晶シリコン膜17上にキャップ保護膜を形成する。キャップ保護膜上に反射防止膜およびフォトレジストパターンを形成し、フォトレジストパターンをエッチングマスクとして用いて反射防止膜、キャップ保護膜および多結晶シリコン膜17を順次ドライエッチングすることで、下部電極11a,11b上に容量絶縁膜としての絶縁膜8を介して多結晶シリコン膜17からなる上部電極21a,21bを形成してキャパシタ36a,36bを形成する。 (もっと読む)


81 - 100 / 340