説明

Fターム[5F048BD09]の内容

MOSIC、バイポーラ・MOSIC (97,815) | チャネル (4,415) | チャネル領域をエピ成長によって別個に形成 (376)

Fターム[5F048BD09]に分類される特許

81 - 100 / 376


【課題】SiGe等の半導体膜が形成された領域と、酸化シリコン膜から成るゲート絶縁膜が形成された領域とが同一基板上に形成される際に、ゲート絶縁膜を精度良く形成する。
【解決手段】基板10を熱酸化することにより、第1素子領域101及び第2素子領域201に、第1ゲート絶縁膜110及び第2ゲート絶縁膜210を形成し、かつ第3素子領域301及び第4素子領域401それぞれに位置する基板10に熱酸化膜を形成する。次いで、第4素子領域401に位置する熱酸化膜を除去する。次いで、第4素子領域401に位置する基板10上に半導体膜414を成膜する。次いで、第3素子領域301に位置する熱酸化膜を除去する。次いで、第4素子領域401に位置する半導体膜414上、及び第3素子領域301に位置する基板10上に第3ゲート絶縁膜310及び第4ゲート絶縁膜410を形成する。 (もっと読む)


本開示は、マイクロ電子デバイスの製造の分野に関する。少なくとも1つの実施形態において、本願の特徴は、絶縁されたナノワイヤの形成に関し、ナノワイヤに隣接する絶縁構造は、マイクロ電子構造をその上面に形成するために、実質的に平坦な表面となっている。 (もっと読む)


【課題】待機電力の低減を実現する半導体装置の提供を、目的の一とする。
【解決手段】酸化物半導体を活性層として有するトランジスタをスイッチング素子として用い、該スイッチング素子で、集積回路を構成する回路への電源電圧の供給を制御する。具体的には、回路が動作状態のときに上記スイッチング素子により、当該回路への電源電圧の供給を行い、回路が停止状態のときに上記スイッチング素子により、当該回路への電源電圧の供給を停止する。また、電源電圧が供給される回路は、半導体を用いて形成されるトランジスタ、ダイオード、容量素子、抵抗素子、インダクタンスなどの、集積回路を構成する最小単位の半導体素子を、単数または複数有する。そして、上記半導体素子が有する半導体は、結晶性を有するシリコン(結晶性シリコン)、具体的には、微結晶シリコン、多結晶シリコン、単結晶シリコンを含む。 (もっと読む)


【課題】ゲート電極を形成してからチャネル形成用半導体部を形成する方法において、結晶品質の良い単結晶Siを用いて良質なゲート絶縁膜を形成した縦型半導体装置を提供する。
【解決手段】単結晶半導体基板に少なくとも第1絶縁層を有する積層体を形成する工程S1と、前記積層体に、前記単結晶半導体基板が露出する孔を形成する工程S2と、前記孔の底面に露出している前記単結晶半導体基板を種結晶領域とすることにより、前記第1絶縁層の上にゲート電極となる単結晶半導体部を形成する工程S3と、前記孔内に埋められた前記単結晶半導体部を除去することで、前記孔の底面に前記単結晶半導体基板を再び露出させる工程S4と、前記単結晶半導体部の前記孔の側面に露出している部分にゲート絶縁膜を形成する工程S5と、前記孔にチャネル形成用半導体部を形成する工程S6と、を有する半導体装置の製造方法。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】Nチャネル型電界効果トランジスタとPチャネル型電界効果トランジスタとが同一基板上に形成された半導体デバイスにおいて、安定した電気的特性を得る
【解決手段】カーボンナノチューブCMOS1は、N型カーボンナノチューブFET2(以下、N型CN−FET2という)とP型カーボンナノチューブFET3(以下、P型CN−FET3という)とから構成される。N型CN−FET2は、カーボンナノチューブ14と、カーボンナノチューブ14上に形成されたゲート絶縁膜21を備え、ゲート絶縁膜21は酸化ハフニウムである。P型CN−FET3は、カーボンナノチューブ14と、カーボンナノチューブ14上に形成されたゲート絶縁膜31を備え、ゲート絶縁膜31は酸化アルミニウムである。これにより、N型CN−FET2のチャネル層近傍において、P型CN−FET3のチャネル層近傍よりも多くの正の固定電荷が導入される。 (もっと読む)


【課題】 改善された三次元メモリ(例えば、RRAM)アーキテクチャを提供すること。
【解決手段】 メモリデバイスが、平面基板と、平面基板の上方の複数の水平な導電性平面と、複数の水平な導電性平面と交互に配置される複数の水平な絶縁層とを備える。複数の導電性平面および絶縁層と直角である垂直な導電性列のアレイが、複数の導電性平面および絶縁層における開口部を通過する。メモリデバイスは、複数のプログラム可能なメモリ素子を備え、それぞれのメモリ素子が、水平な導電性平面の1つをそれぞれの垂直な導電性列に連結する。 (もっと読む)


半導体装置が、第1の基板(102、202)と、第1の基板の第1の部分の上に位置し、埋め込み層(104、204)によって第1の基板から分離される第2の基板とを含む。この半導体装置はまた、第1の基板の第2の部分の上に位置し、第2の基板から隔離されるエピタキシャル層(108、220)を含む。この半導体装置はさらに、少なくとも部分的に第2の基板内に形成される第1のトランジスタ(116)と、少なくとも部分的にエピタキシャル層内またはその上に形成される第2のトランジスタ(128)とを含む。第2の基板およびエピタキシャル層は、異なる電子および正孔移動度を有するバルク特性を有する。トランジスタの少なくとも1つは、少なくとも約5Vの1つまたは複数の信号を受け取るように構成される。第1の基板は第1の結晶面方位を有し、第2の基板は第2の結晶面方位を有し得る。
(もっと読む)


【課題】フィンの下部に適切に不純物が導入された半導体装置及びその製造方法を提供する。
【解決手段】半導体装置としてのFinFET1は、基体としての半導体基板10と、半導体基板10上に形成された複数のフィン20とを有し、複数のフィン20は、第1の間隔と第1の間隔よりも間隔が狭い第2の間隔とを繰り返して形成され、第1の間隔を形成する側に面した第1の側面221の下部の不純物濃度が、第2の間隔を形成する側に面した第2の側面222の下部の不純物濃度よりも高い半導体領域を有する。 (もっと読む)


【課題】特性の良い光電変換素子を有する半導体装置を提供することを目的の一とする。または、簡単な工程で、特性の良い光センサ光電変換装置を有する半導体装置を提供することを目的の一とする。
【解決手段】光透過性を有する基板と、光透過性を有する基板上の絶縁層と、絶縁層上の、光電変換を奏する半導体領域、第1の導電型を示す半導体領域、および、第2の導電型を示す半導体領域を有する単結晶半導体層と、第1の導電型を示す半導体領域と電気的に接続された第1の電極と、第2の導電型を示す半導体領域と電気的に接続された第2の電極とを有する光電変換素子とを備える半導体装置を提供する。 (もっと読む)


【課題】
電子デバイスにおける電力消費を低減するシステム及び方法が開示される。この構造及び方法は、大部分が、バルクCMOSのプロセスフロー及び製造技術を再利用することによって実現され得る。この構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することを可能にするとともに、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有し、それにより、電力制御の有意義な動的制御が可能になる。
(もっと読む)


【課題】金属ゲートとストレッサーを有するゲルマニウムフィンFETを提供する。
【解決手段】集積回路構造は、n型フィン電界効果トランジスタ(fin field effect transistor、FinFET)とp型FinFETからなる。n型FinFETは、基板上の第一ゲルマニウムフィン、第一ゲルマニウムフィンの上面と側壁上の第一ゲート誘電体、及び、第一ゲート誘電体上の第一ゲート電極からなる。p型FinFETは、基板上の第二ゲルマニウムフィン、第二ゲルマニウムフィンの上面と側壁上の第二ゲート誘電体、及び、第二ゲート誘電体上の第二ゲート電極からなる。第一ゲート電極と第二ゲート電極は、ゲルマニウムの固有エネルギーレベルに近い仕事関数を有する同一材料で形成される。 (もっと読む)


【課題】SiGeから成るチャネルを有し、金属ゲート及び高kゲート誘電体を有するPFETを提供する。
【解決手段】Si表面上にSiGe層10をエピタキシャル成長させ、SiGe層の上に、高k誘電体及び金属をブランケット配置し、ゲートスタックを形成した後、NFET側のゲート誘電体、及びSiGe層を除去し、第2の高k誘電体53及び第2の金属52を配置する。PFETは、SiGeチヤネル10の上の高k誘電体を有するゲート誘電体、金属を有するゲート及び、シリサイドを有するソース、ドレインから成る。NFETは、第2の高k誘電体53、第二の金属52を有するゲート及び、シリサイドを有するソース、ドレインからなる。基板表面上のエピタキシャルSiGe層は、PFETのチヤネルのみに形成される。PFET及びNFETデバイス・パラメータは、各ゲート誘電体及びゲートスタックの組成によって別個に最適化することができる。 (もっと読む)


【課題】FinFET、集積回路、およびFinFETの形成方法を提供する。
【解決手段】基板120、前記基板上にあり、ソース106とドレイン110との間のチャネル108を含み、前記ソース106、前記ドレイン110、および前記チャネル108は、第1型ドーパントを有し、前記チャネル108は、ゲルマニウム、シリコンゲルマニウム、またはIII−V族半導体の少なくとも1つを含むフィン構造、前記チャネル108上のゲート誘電体層114、および前記ゲート誘電体層114上のゲート116を含むFinFET。 (もっと読む)


【課題】 固相エピタキシャル成長によって、所望の面方位を有する結晶を得ることが可能な半導体装置の製造方法を提供する。
【解決手段】 本発明では、第1の面方位を有するシリコン基板11上の一部に、アモルファス層13を形成する工程と、そのアモルファス層13にマイクロ波を照射し、前記アモルファス層13を第1の面方位を有する結晶層とする工程とを有していることを特徴とする半導体装置の製造方法を提供することができる。 (もっと読む)


【課題】FINFETにおいて、寄生抵抗の改善を図ることができる技術を提供する。
【解決手段】本発明におけるFINFETでは、サイドウォールSWを積層膜から形成している。具体的に、サイドウォールSWは、酸化シリコン膜OX1と、酸化シリコン膜OX1上に形成された窒化シリコン膜SN1と、窒化シリコン膜SN1上に形成された酸化シリコン膜OX2から構成されている。一方、フィンFIN1の側壁には、サイドウォールSWが形成されていない。このように本発明では、ゲート電極G1の側壁にサイドウォールSWを形成し、かつ、フィンFIN1の側壁にサイドウォールSWを形成しない。 (もっと読む)


【課題】接合リークを抑制しながら、キャリアの移動度向上とチャネル中でのキャリア速度の増加を実現することができるトランジスタを提供する。
【解決手段】半導体基板10のチャネル形成領域にチャネル方向に第1の幅を有するSiGe層15が埋め込まれ、チャネル形成領域上にゲート絶縁膜28が形成され、ゲート絶縁膜上に、第1の幅より大きい第2の幅を有してSiGe層の形成領域からはみ出す領域を有するゲート電極29が形成され、チャネル形成領域を挟む半導体基板においてエクステンション領域12を有するソースドレイン領域13が形成されて、電界効果トランジスタが構成されており、エクステンション領域と半導体基板の接合面から伸びる空乏層がSiGe層に達しないようにエクステンション領域とSiGe層が離間されている。 (もっと読む)


【課題】例えば大きな電荷キャリア移動度を有する半導体装置を製作する方法を提供する。
【解決手段】複数の積層された層群を有する超格子を形成するステップによって、半導体装置を製作する方法である。また当該方法は、前記超格子を通って、前記積層された層群と平行な方向に、電荷キャリアの輸送が生じる領域を形成するステップを有する。超格子の各層群は、基本半導体部分を定形する複数の積層された基本半導体分子層と、該基本半導体部分上のエネルギーバンド調整層と、を有する。前記エネルギーバンド調整層は、基本半導体部分に隣接する結晶格子内に取りこまれた、少なくとも一つの非半導体分子層を有し、前記超格子は、超格子が存在しない場合に比べて、前記平行な方向において大きな電荷キャリア移動度を有する。また前記超格子は、共通のエネルギーバンド構造を有しても良い。 (もっと読む)


【課題】例えば大きな電荷キャリア移動度を有する半導体装置を提供する。
【解決手段】半導体装置は、複数の積層された層群を有する超格子を有する。また装置は、電荷キャリアが積層された層群と平行な方向に超格子を通って輸送される領域を有する。超格子の各層群は、基本半導体部分を定形する複数の積層された基本半導体分子層と、該基本半導体部分上のエネルギーバンド調整層と、を有する。さらにエネルギーバンド調整層は、少なくとも一つの非半導体分子層を有し、この層は、連接する基本半導体部分の結晶格子内に閉じ込められる。従って超格子は、平行な方向において、エネルギーバンド調整層がない場合に比べて大きな電荷キャリア移動度を有する。 (もっと読む)


【課題】半導体装置が備えるnMOSトランジスタ及びpMOSトランジスタの形成面積を縮小する。
【解決手段】半導体装置の製造方法は、基板上に環状の突起部を形成する工程と、環状の突起部に第1のn型チャネル領域を形成する工程と、環状の突起部に第1のp型チャネル領域を形成する工程と、環状の突起部に形成された第1のn型チャネル領域及び第1のp型チャネル領域を跨ぐ第1のゲート電極を形成することにより、第1のnMOSトランジスタ及び第1のpMOSトランジスタを形成する工程と、を備える。 (もっと読む)


81 - 100 / 376