説明

Fターム[5F048BF06]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 配線・電極・コンタクト (11,486) | 材料 (4,535) | シリサイド (1,808)

Fターム[5F048BF06]に分類される特許

221 - 240 / 1,808


【課題】SOI構造の縦型のMISFETの提供
【解決手段】Si基板1上に、一部に空孔4を有する絶縁膜2が設けられ、空孔4上及び絶縁膜2の一部上に横方向半導体層6が設けられ、半導体層6の側面の一部に導電膜3が接して設けられ、絶縁膜2により素子分離されている。半導体層6上の、空孔4直上部に縦方向半導体層7が設けられ、半導体層7の上部にドレイン領域(10,9)が設けられ、離間し、相対して下部にソース領域8が設けられ、ソース領域8は延在して、半導体層6全体に設けられている。半導体層7の全側面には、ゲート酸化膜11を介してゲート電極12が設けられ、ドレイン領域10、ゲート電極11及び導電膜3を介したソース領域8には、バリアメタル18を有する導電プラグ19を介してバリアメタル21を有する配線22が接続されている縦型のMISFET。 (もっと読む)


【課題】良好な電気的特性を有する半導体装置及びその製造方法を提供する。
【解決手段】半導体基板10上に形成されたゲート絶縁膜20と、ゲート絶縁膜上に形成されたキャップ膜22と、キャップ膜上に形成されたシリコン酸化膜23と、シリコン酸化膜上に形成された金属ゲート電極24と、金属ゲート電極の両側の半導体基板内に形成されたソース/ドレイン拡散層48とを有している。 (もっと読む)


【課題】スプリットゲート構造の不揮発性メモリセルを有する半導体装置において、製造歩留まりを向上できる技術を提供する。
【解決手段】給電領域に位置するCGシャント部の選択ゲート電極CGの半導体基板1の主面からの第2高さd2が、メモリセル形成領域の選択ゲート電極CGの半導体基板1の主面からの第1高さd1よりも低くなるように、CGシャント部の選択ゲート電極CGを形成する。 (もっと読む)


【課題】半導体装置の性能を向上させる。また、半導体装置の信頼性を確保する。また、半導体装置のチップサイズの縮小を図る。特に、SOI基板上に形成されたMOSFETを有する半導体装置の信頼性を損なわずにゲート電極の下部のウエルの電位を制御し、寄生容量の発生を防ぐ。また、MOSFETにおける欠陥の発生を防ぐ。
【解決手段】ゲート電極配線3に形成された孔部27内を通るウエルコンタクトプラグ8により、ゲート電極2の下部のウエルの電位を制御することで寄生容量の発生を防ぐ。また、ゲート電極2に沿って素子分離領域4を延在させることで、ゲッタリング効果によりゲート絶縁膜における欠陥の発生を防ぐ。 (もっと読む)


【課題】静電保護素子である保護トランジスタのサイズを縮小することができ、ゲート端子の抵抗成分を同程度に抑え、時定数を増加させることなく、保護トランジスタの回路動作スピードの低下を防ぐことができるとともに、電荷集中を緩和し、静電破壊耐量を向上させることができる。
【解決手段】本発明に係る半導体装置は、ソース・ドレイン領域と、ソース・ドレイン領域の上方に形成されたゲート電極と、ゲート電極の側面に形成されたサイドウォールと、ソース・ドレイン領域の上面に、サイドウォールから所定の距離だけ離間して形成された第1のシリサイド膜と、ゲート電極の上面に、サイドウォールから所定の距離だけ離間して形成された第2のシリサイド膜とを備える。 (もっと読む)


【課題】サリサイドプロセスで金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】ゲート電極GEと上部に金属シリサイド層11bが形成されたソース・ドレイン領域とを有するMISFETが半導体基板1の主面に複数形成されている。金属シリサイド層11bは、Pt,Pd,V,Er,Ybからなる群から選択された少なくとも一種からなる第1金属元素およびニッケルのシリサイドからなる。半導体基板1の主面に形成された複数のMISFETのソース・ドレイン領域のうち、ゲート長方向に最も近接して隣り合うゲート電極GE間に配置されたソース・ドレイン領域のゲート長方向の幅W1cよりも、金属シリサイド層11bの粒径が小さい。 (もっと読む)


【課題】デュアルゲート構造を有する半導体装置の製造技術において、MISFETのしきい値電圧の上昇を抑制することができる製造技術を提供する。
【解決手段】ポリシリコン膜PF1上にレジスト膜FR2を形成する。そして、レジスト膜FR2に対して露光・現像処理を施すことにより、レジスト膜FR2をパターニングする。その後、パターニングしたレジスト膜FR2をマスクにしたイオン注入法により、露出しているnチャネル型MISFET形成領域NTRのポリシリコン膜PF1にアルゴン(Ar)を導入する。このアルゴン注入工程により、nチャネル型MISFET形成領域NTRのポリシリコン膜PF1はアモルファス化する。 (もっと読む)


【課題】高集積なCMOS型SRAMを提供する。
【解決手段】第1の第1導電型半導体137と、第1の第1導電型半導体とは極性が異なる第1の第2導電型半導体104と、第1の第1導電型半導体137と第1の第2導電型半導体104との間に配置される第1の絶縁物112が一体となり基板に対して垂直に延びる1本の第1の柱と、第1の第1導電型半導体137の上下に配置された第1の第2導電型高濃度半導体182と、第2の第2導電型高濃度半導体141と、第1の第2導電型半導体104の上下に配置された第1の第1導電型高濃度半導体186と、第2の第1導電型高濃度半導体143と、第1の柱を取り囲む第1のゲート絶縁物176と、第1のゲート導電体167と、を有するインバータを用いてSRAMを構成する。 (もっと読む)


【課題】TFTに適したSOI基板およびその作製方法を提供する。またSOI基板を用
いて信頼性の高い半導体装置及びその作製方法を提供する。
【解決手段】SIMOX、ELTRAN、Smart−Cutに代表される技術を用いて
SOI基板を作製するにあたって、主表面(結晶面)が{110}面である単結晶半導体
基板を用いる。その様なSOI基板は下地となる埋め込み絶縁層と単結晶シリコン層との
密着性が高く、信頼性の高い半導体装置を実現することが可能となる。 (もっと読む)


【課題】良好な特性を維持しつつ微細化を達成した半導体装置の提供を目的の一とする。さらに、これらの微細化を達成した半導体装置の良好な特性を維持しつつ、3次元高集積化を図ることを目的の一つとする。
【解決手段】絶縁層中に埋め込まれた配線と、絶縁層上の酸化物半導体層と、酸化物半導体層と電気的に接続するソース電極及びドレイン電極と、酸化物半導体層と重畳して設けられたゲート電極と、酸化物半導体層と、ゲート電極との間に設けられたゲート絶縁層と、を有し、絶縁層は、配線の上面の一部を露出するように形成され、配線は、その上面の一部が絶縁層の表面の一部より高い位置に存在し、且つ、絶縁層から露出した領域において、ソース電極またはドレイン電極と電気的に接続し、絶縁層表面の一部であって、酸化物半導体層と接する領域は、その二乗平均平方根粗さが1nm以下である半導体装置である。 (もっと読む)


【課題】高融点金属を含む多層配線を使用してトランジスタに導入される配線がトランジスタのチャネル幅方向と垂直の方向から導入される場合においても、ESD保護用のMOSトランジスタの全体で均一に動作させることのできる半導体装置を得る。
【解決手段】複数のドレイン領域と複数のソース領域が交互に配置され、前記ドレイン領域と前記ソース領域の間にゲート電極が配置された、複数のトランジスタが一体化した構造を有するESD保護用のMOSトランジスタにおいて、ドレイン領域上に形成されるサリサイド金属領域とゲート電極との距離を、ドレイン領域上のコンタクトと基板コンタクトからの距離に応じて形成した。 (もっと読む)


【課題】TFT回路を備える半導体装置において、歩留まりの低下を抑制可能な半導体装置及び半導体装置の製造方法を提供することを目的とする。
【解決手段】ロジック回路10上に形成された層間絶縁膜22と、層間絶縁膜22上に形成され、上部から所定の高さまでシリサイド化されたシリサイド層30を含むアモルファスシリコン層23と、アモルファスシリコン層23上に形成されたTFTと、層間絶縁膜22を貫通する貫通孔24を埋め込むように形成され、ロジック回路10に電気的に接続すると共に、上部がシリサイド層30に接続するコンタクトプラグ25とを備える。 (もっと読む)


【課題】バックゲートを有するMOSを、回路の動作特性に応じて使い分け、幅広い温度範囲にて高速かつ低電力なLSIを実現する。
【解決手段】薄膜埋め込み酸化膜層を持つFD−SOIを使用し、薄膜埋め込み酸化膜層の下層半導体領域をバックゲートとし、論理回路ブロックにおいてブロック中の負荷の軽い論理回路にはバックゲートの電圧をブロック活性化に合わせてブロック外から制御する。このバックゲート駆動信号を発生する回路、及び回路ブロック出力部など負荷の重い論理回路には、ゲートとバックゲートとを接続したトランジスタを用い、そのゲート入力信号でバックゲートを直接制御する。 (もっと読む)


【課題】不良を抑制しつつ微細化を達成した半導体装置の提供を目的の一とする。または、良好な特性を維持しつつ微細化を達成した半導体装置の提供を目的の一とする。
【解決手段】絶縁層と、絶縁層中に埋め込まれたソース電極、およびドレイン電極と、絶縁層表面、ソース電極表面、およびドレイン電極表面、の一部と接する酸化物半導体層と、酸化物半導体層を覆うゲート絶縁層と、ゲート絶縁層上のゲート電極と、を有し、絶縁層表面の一部であって、酸化物半導体層と接する領域は、その二乗平均平方根粗さ(RMS)が1nm以下であり、絶縁層表面の一部とソース電極表面との高低差、または絶縁層表面の一部とドレイン電極表面との高低差は、5nm未満の半導体装置である。 (もっと読む)


【課題】サリサイドプロセスにより金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】全反応方式のサリサイドプロセスを用いず、部分反応方式のサリサイドプロセスによりゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bの表面に金属シリサイド層41を形成する。金属シリサイド層41を形成する際の熱処理では、ランプまたはレーザを用いたアニール装置ではなく、カーボンヒータを用いた熱伝導型アニール装置を用いて半導体ウエハを熱処理することにより、少ないサーマルバジェットで精度良く薄い金属シリサイド層41を形成し、最初の熱処理によって金属シリサイド層41内にNiSiの微結晶を形成する。 (もっと読む)


【課題】ゲート絶縁膜の一部を高誘電体膜で構成した場合に好適な2種ゲート構造を提供する。
【解決手段】基板1上に窒化シリコン膜よりも比誘電率が大きい高誘電体膜、例えば酸化チタン膜6(内部回路のゲート絶縁膜)を堆積した後、酸化チタン膜6の上部に窒化シリコン膜7を堆積する。窒化シリコン膜7は、次の工程で基板1の表面を熱酸化する時に酸化チタン膜6が酸化されるのを防ぐ酸化防止膜として機能する。次に、内部回路領域に窒化シリコン膜7と酸化チタン膜6を残し、I/O回路領域の窒化シリコン膜7と酸化チタン膜6を除去した後、基板1を熱酸化することによって、I/O回路領域の基板1の表面に酸化シリコン膜8(I/O回のゲート絶縁膜)を形成する。 (もっと読む)


【課題】半導体と金属の反応速度を制御してメモリセル領域と周辺回路領域とのシリサイド反応の差による不具合を解消する不揮発性半導体記憶装置とその製造方法を提供する。
【解決手段】シリコン基板1の上面にゲート絶縁膜4、第1の導電膜5を形成し、これらをエッチングして素子分離絶縁膜2を埋め込み形成する。電極間絶縁膜6、ゲルマニウム膜7aを形成する。周辺回路領域のゲート電極PGの電極間絶縁膜6に開口6aを形成し、この上に多結晶シリコン膜9aを形成する。ゲート電極MG、PGおよび容量性素子Capの分離加工後に層間絶縁膜10を埋め込む。多結晶シリコン膜9aの上部を露出させ、金属膜を形成してシリサイド化をする。この時、メモリセル領域ではシリサイドが速く進行するが、ゲルマニウム膜7aに達するとジャーマナイド反応は遅くなり、その間に周辺回路領域のシリサイド反応を促進させることができる。 (もっと読む)


【課題】集積度が高くリソグラフィーコストが低いn型及びp型FETの積層構造を有した半導体装置を提供すること。
【解決手段】半導体装置100は、半導体基板1上にそれぞれ離隔しつつ列状に形成された第1グループの複数の柱状ゲート電極10と、前記半導体基板1上であって前記第1グループの隣接する柱状ゲート電極10間に形成された第1導電型の第1半導体層12と、前記第1半導体層の上であって前記第1グループの隣接する柱状ゲート電極間に形成された第1絶縁層20と、前記第1絶縁層20の上であって前記第1グループの隣接する柱状ゲート電極10間に形成された前記第1導電型と異なる第2導電型の第2半導体層13とを備え、前記第1半導体層12をチャネルとする前記第1導電型の第1MOSFETが形成され、前記第2半導体層13をチャネルとする前記第2導電型の第2MOSFETが形成されている。 (もっと読む)


【課題】半導体装置の小型化を図ることを課題とする。
【解決手段】炭化珪素基体1と、炭化珪素基体1上に形成された第1導電型のドリフト領域2と、ドリフト領域2の主面に接するようにドリフト領域2内に形成された第2導電型のウェル領域3と、ドリフト領域2の主面に接するようにウェル領域3内に形成された第1導電型のソース領域4と、ドリフト領域2とソース領域4に挟まれたウェル領域3上にゲート絶縁膜5を介して形成されたゲート電極6と、ウェル領域3とソース領域4に接続されたソース電極7と、炭化珪素基体1に接続されたドレイン電極9とを備えたトランジスタと、ドリフト領域2に形成された第2導電型の拡散領域10からなるアノードと、第2導電型の拡散領域10内に形成された第1導電型の拡散領域11からなるカソードとを備え、カソードはゲート電極6に接続されて構成されたダイオード12とを有することを特徴とする。 (もっと読む)


【課題】不純物拡散領域の抵抗値のばらつきを抑制しうる半導体装置の製造方法を提供する。
【解決手段】半導体層にドーパント不純物を添加し、0.1秒〜10秒の活性化熱処理を行う。次いで、半導体層にイオン注入を行い、半導体層のドーパント不純物が添加された領域をアモルファス化する。次いで、0.1ミリ秒〜100ミリ秒の活性化熱処理を行い、アモルファス化した半導体層を再結晶化することにより、半導体層にドーパント不純物の拡散領域を形成する。 (もっと読む)


221 - 240 / 1,808