説明

Fターム[5F048BF06]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 配線・電極・コンタクト (11,486) | 材料 (4,535) | シリサイド (1,808)

Fターム[5F048BF06]に分類される特許

241 - 260 / 1,808


【課題】ポリシリコン抵抗体の上に急速熱酸化処理により形成され、シリサイド化ブロック用酸化膜の一部として用いる熱酸化膜の膜厚が多種のポリシリコン抵抗体間でばらつくことにより、ポリシリコン抵抗体が部分的にシリサイド化されることを回避する。
【解決手段】多種のポリシリコン抵抗体全てにおいて、急速熱酸化処理によりポリシリコン抵抗体上に生成される熱酸化膜の膜厚と、ポリシリコン抵抗体を含む非シリサイド化領域に形成された保護酸化膜の膜厚との和が、シリサイド化ブロック用酸化膜としてのブロック性能を確保するために必要な膜厚以上となるように、保護酸化膜の膜厚を決定する。多種のポリシリコン抵抗体間で急速熱酸化処理により生成される熱酸化膜の膜厚に差が生じる場合でも、熱酸化膜と保護酸化膜とをシリサイド化ブロック用酸化膜として用いることにより、充分なブロック性能を確保することができる。 (もっと読む)


【課題】半導体装置の小型化を図ることを課題とする。
【解決手段】炭化珪素基体1と、炭化珪素基体1上に形成された第1導電型のドリフト領域2と、ドリフト領域2の主面に接するようにドリフト領域2内に形成された第2導電型のウェル領域3と、ドリフト領域2の主面に接するようにウェル領域3内に形成された第1導電型のソース領域4と、ドリフト領域2とソース領域4に挟まれたウェル領域3上にゲート絶縁膜5を介して形成されたゲート電極6と、ウェル領域3とソース領域4に接続されたソース電極7と、炭化珪素基体1に接続されたドレイン電極9とを備えたトランジスタと、ドリフト領域2に形成された第2導電型の拡散領域10からなるアノードと、第2導電型の拡散領域10内に形成された第1導電型の拡散領域11からなるカソードとを備え、カソードはゲート電極6に接続されて構成されたダイオード12とを有することを特徴とする。 (もっと読む)


【課題】不純物拡散領域の抵抗値のばらつきを抑制しうる半導体装置の製造方法を提供する。
【解決手段】半導体層にドーパント不純物を添加し、0.1秒〜10秒の活性化熱処理を行う。次いで、半導体層にイオン注入を行い、半導体層のドーパント不純物が添加された領域をアモルファス化する。次いで、0.1ミリ秒〜100ミリ秒の活性化熱処理を行い、アモルファス化した半導体層を再結晶化することにより、半導体層にドーパント不純物の拡散領域を形成する。 (もっと読む)


【課題】シェアードコンタクトを備えた半導体装置において、コンタクトホールの開口不良やコンタクト抵抗の増大を防止しつつ、接合リーク電流の発生に起因する歩留まりの低下を防止する。
【解決手段】半導体基板100におけるゲート電極103の両側にソース/ドレイン領域106が形成されている。シェアードコンタクトは、ソース/ドレイン領域106とは接続し且つゲート電極103とは接続しない下層コンタクト113と、下層コンタクト113及びゲート電極103の双方に接続する上層コンタクト118とを有する。 (もっと読む)


【課題】ドレイン耐圧を向上させる半導体装置及びその製造方法を提供すること。
【解決手段】基板100表面内に第1、第2拡散層206を形成する工程と、前記基板上に第1トランジスタを形成する工程と、前記ゲート電極の第1側壁及び第2側壁にそれぞれ第1、第2絶縁膜202を形成することにより、前記第1、第2拡散層の表面の一部の領域を被覆する工程と、この第2拡散層上に第3絶縁膜203を形成する工程と、前記第1〜第3絶縁膜、ゲート電極201、及び前記基板表面をそれぞれ第4絶縁膜204で被覆する工程と、前記ゲート電極の表面、及び第3絶縁膜に対して前記第2絶縁膜と前記第3絶縁膜との間の第1領域と相対する第2領域における前記第2拡散層の表面を露出しつつ、前記第1領域における前記第2拡散層の表面が露出しないよう前記第4絶縁膜を除去する工程とを具備する。 (もっと読む)


【課題】MOSトランジスタ、容量素子を有する半導体装置の製造コストを削減できる製造方法を提供する。
【解決手段】MOSトランジスタのゲート電極が第1のポリシリコン膜から成り、容量が第1のポリシリコン膜と容量膜と第2のポリシリコン膜から成り、ノーマリーオフトランジスタと容量下部電極の低抵抗化を同時に行い、N型MOSトランジスタと容量上部電極の低抵抗化を同時に行うことを特徴とする半導体回路装置の製造方法。 (もっと読む)


【課題】閾値電圧が低く、かつ、ゲート絶縁膜のリーク電流を抑制可能な半導体装置およびその製造方法を提供する。
【解決手段】メタルゲート電極103,203の材料として、Taを含むTa膜18,38を用いる。Ta膜18,38中には多くの窒素が含まれており、その窒素の一部がゲート絶縁膜102,202中に拡散することにより、TiNに比べてフラットバンド電圧Vfbが高くなり、NMOSFET100およびPMOSFET200の閾値電圧Vthを低くすることができる。また、Ta膜18,38中の窒素がHfSiON膜17,37中に拡散することにより、ゲート絶縁膜の絶縁性を高くすることができ、ゲートリーク電流Jgを抑制できる。 (もっと読む)


【課題】良好な電気的特性を有する半導体装置及びその製造方法を提供する。
【解決手段】質量数が比較的小さいドーパント不純物を導入することにより第1のトランジスタ34a及び第2のトランジスタ34bのチャネルドープ層18を形成する工程と、質量数が比較的大きいドーパント不純物を導入することにより第3のトランジスタ34cのチャネルドープ層20を形成する工程と、質量数の比較的小さいドーパント不純物を導入することにより第1のトランジスタのポケット領域26を形成する工程と、質量数の比較的大きいドーパント不純物を導入することにより第2のトランジスタ及び第3のトランジスタのポケット領域36を形成する工程とを有している。 (もっと読む)


【課題】 フィン型MISトランジスタ、プレーナ型MISトランジスタ及び抵抗素子を集積化した半導体装置において、的確な製造方法を提供する。
【解決手段】 フィン部10aを形成する工程と、フィン部の側面に第1のゲート絶縁膜14及び第1のゲート電極膜15を形成する工程と、フィン部並びにフィン部の側面に形成された第1のゲート絶縁膜及び第1のゲート電極膜を囲み、第1のゲート電極膜に接する半導体導電部16aを形成する工程と、半導体導電部上並びにプレーナ型MISトランジスタ形成領域及び抵抗素子形成領域に、第2のゲート絶縁膜20及び第2のゲート電極膜21を形成する工程と、半導体導電部上及び抵抗素子形成領域に形成された第2のゲート絶縁膜及び第2のゲート電極膜を除去する工程と、半導体導電部上並びにプレーナ型MISトランジスタ形成領域及び抵抗素子形成領域に、抵抗素子用の半導体膜を形成する工程とを備える。 (もっと読む)


【課題】素子分離領域が低濃度拡散領域におけるゲート電極近傍の部分より浅い場合に半導体装置の平面寸法の大型化を抑制しつつ素子分離をより確実に行う。
【解決手段】半導体装置100は、第1導電型の不純物領域(N型ウェル領域51)と、第2導電型の低濃度拡散領域(P型オフセット拡散領域3)を有する複数のMOSトランジスタ(高圧PチャネルMOSトランジスタ11)と、素子分離領域6を有する。低濃度拡散領域は、素子分離領域6に接する第1部分3aは素子分離領域6と同じ深さであるか又はそれよりも浅く、第1部分3aよりもゲート電極1側の第2部分3bは素子分離領域6よりも深い。更に、第1導電型であり、不純物領域よりも不純物濃度が高く、素子分離領域6の底面と、素子分離領域6に隣接する低濃度拡散領域の各々とに接しているチャネルストッパー領域(N型チャネルストッパー領域9)を有する。 (もっと読む)


【課題】チャネルに応力が印加されるMOSトランジスタの特性のばらつきを防ぐことができる半導体装置の製造方法を提供すること。
【解決手段】半導体基板10の上にゲート絶縁膜を形成する工程と、ゲート絶縁膜の上にゲート電極14cを形成する工程と、ゲート電極14cの側面にサイドウォール15a、15bを形成する工程と、サイドウォール15a、15bを形成した後に、有機アルカリ溶液又はTMAHをエッチング液として用いて、ゲート電極14cの横の半導体基板10に穴10a、10bを形成する工程と、穴10a、10bにソース/ドレイン材料層18a、18bを形成する工程とを有する。 (もっと読む)


【課題】耐圧の異なるトランジスタが同一半導体基板上に混載されている場合においても、それらのトランジスタの性能が向上するようにストレスライナ膜を構成することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に混載された低耐圧トランジスタおよび高耐圧トランジスタ上に形成するストレスライナ膜11、12は、互いに膜質を異ならせることができる。ここで、ストレスライナ膜11は、低耐圧トランジスタの性能が効果的に改善され、高耐圧トランジスタの性能があまり改善されないように膜質を設定することができる。また、ストレスライナ膜11は、高耐圧トランジスタの性能が効果的に改善され、低耐圧トランジスタの性能があまり改善されないように膜質を設定することができる。 (もっと読む)


【課題】シリサイドプロセス前にイオン注入を行う半導体装置であって、より確実にMISFETにおけるリーク電流の抑制が図れるものを実現する。
【解決手段】マスク層RMによりPチャネル型MISFETを覆いつつ、Nチャネル型MISFETのN型ソース領域およびN型ドレイン領域に、イオン(F,Si,C,Ge,Ne,Ar,Krのうち少なくとも一種類を含む)を注入する。その後、Nチャネル型MISFETおよびPチャネル型MISFETの各ゲート電極、ソース領域およびドレイン領域にシリサイド化(Ni,Ti,Co,Pd,Pt,Erのうち少なくとも一種類を含む)を行う。これにより、Pチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流を劣化させること無く、Nチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流(基板リーク電流)の抑制が図れる。 (もっと読む)


【課題】メモリ混載ロジックデバイスのRAM領域の閾値電圧のばらつきを低減する。
【解決手段】本発明の半導体装置は、ロジック領域101と、RAM領域102とが設けられたシリコン基板1と、ロジック領域101に形成されたNMOSトランジスタ20と、RAM領域102に形成されたNMOSトランジスタ40と、を備える。NMOSトランジスタ20、40は、ゲート絶縁膜5とメタルゲート電極6との順でシリコン基板1上に積層された積層構造を有する。NMOSトランジスタ20は、シリコン基板1とメタルゲート電極6との間に、構成元素として、ランタン、イッテルビウム、マグネシウム、ストロンチウム及びエルビウムからなる群から選択される元素を含む、キャップメタル4を有する。NMOSトランジスタ40には、キャップメタル4が形成されていない。 (もっと読む)


【課題】メタルゲート電極内に基板面に対して平行な金属とシリコンなどとの境界又はシリサイドとシリコンなどとの境界を含むメタルゲート電極において、トランジスタの接続抵抗が小さく、高速動作時のトランジスタの遅延又はトランジスタ特性のばらつきなどの特性劣化の懸念がなく、且つ、低コストな構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板101上に、ゲート絶縁膜105と、pMIS用金属材料109又はnMIS用金属材料111と、ゲート電極材料112と、ゲート側壁メタル層122とを備えている。 (もっと読む)


【課題】信頼性を損なうことなく更なる集積化を実現し得る半導体装置を提供する。
【解決手段】第1のトランジスタL1のゲート電極を含み、第1のコンタクト層48aを介して第2のトランジスタL2のソース/ドレイン拡散層20に電気的に接続される、直線状の第1のゲート配線16aと、第2のトランジスタL2のゲート電極を含み、第2のコンタクト層48bを介して第1のトランジスタのソース/ドレイン拡散層22に電気的に接続される、第1のゲート配線と平行な直線状の第2のゲート配線16bと、第1のゲート配線及び第2のゲート配線を覆うように形成された絶縁膜であって、第1のゲート配線と第2のトランジスタのソース/ドレイン拡散層とを露出し、長辺方向が第1のゲート配線の長手方向である第1の開口部46aが形成された絶縁膜と、第1の開口部内に埋め込まれた第1のコンタクト層とを有している。 (もっと読む)


【課題】微細化されたMISFETのゲート電極の加工精度を向上することができる技術を提供する。
【解決手段】シリコン上にニッケルプラチナ合金膜を形成する(S101)。そして、第1加熱処理を実施する(S102)。このとき、第1加熱処理において、加熱温度は250℃〜270℃であり、加熱時間は30秒未満である。続いて、未反応のニッケルプラチナ合金膜を除去する(S103)。その後、第2加熱処理を実施する(S104)。このとき、第2加熱処理において、加熱温度は、450℃〜600℃である。 (もっと読む)


【課題】貼り合わせSOI基板を使用せずに、容易なプロセスにより、高速なMIS電界効果トランジスタを提供する。
【解決手段】p型のSi基板1上に、一部に空孔4を有するシリコン酸化膜2が設けられ、空孔4を挟んでシリコン酸化膜2上に延在したp型のSOIC基板(Si)5が設けられ、シリコン窒化膜3により素子分離されている。空孔4に自己整合して、SOIC基板5上にゲート酸化膜10を介してゲート電極11が設けられ、ゲート電極11の側壁にサイドウォール12が設けられ、SOIC基板5には、ゲート電極11に自己整合してn型ソースドレイン領域(7、8)及びサイドウォール12に自己整合してn型ソースドレイン領域(6、9)が設けられ、n型ソースドレイン領域には、バリアメタル15を有する導電プラグ16を介してバリアメタル18を有するCu配線19が接続されている構造からなるNチャネルのMIS電界効果トランジスタ。 (もっと読む)


【課題】Siチヤネルを有するNMOSとSiGeチャネルを有するPMOSで、NMOSには引張り歪みを与える、PMOSには、表面のダングリングボンドを減少させることができる半導体装置を提供する。
【解決手段】単結晶シリコン基板50の一部領域にシリコンゲルマニウムチャネル膜54aを形成し、PMOSトランジスタを、シリコン膜60aを形成し、NMOSトランジスタを形成する。単結晶シリコン基板、シリコンゲルマニウムチャネル膜、PMOSトランジスタ、NMOSトランジスタの表面上に、反応ガス、雰囲気ガス及び水素ガスを含む蒸着ガスを用いて、シリコン窒化膜82を形成し、PMOSトランジスタは、シリコンゲルマニウムチャネル膜表面のダングリングボンドの除去により、ホールスキャタリングが抑制され、NMOSトランジスタには引張り歪みを与えることにより動作特性の改善ができる。 (もっと読む)


【課題】占有面積が小さく、所望の耐圧と熱破壊の防止を両立した保護トランジスタを提供する。
【解決手段】ゲート長方向の一方の側でゲート直下の領域に隣接しているゲート・ドレイン間領域REgdが、ゲート幅方向に互いに隣接する領域として、第1領域REgd1と第2領域REgd2とを有する。第1領域は、ドレイン耐圧が相対的に大きく、第2領域は、ドレイン電極(ドレインコンタクト部に設けられているシリサイド層10D)からの距離が平面視で第1領域より遠く、ドレイン耐圧が相対的に小さい。このため、耐圧が低いゲート・ドレイン間領域REgd2の加熱部分Aからドレインコンタクト部が遠いが、面積は小さく(または拡大しない)構造となっている。 (もっと読む)


241 - 260 / 1,808