説明

Fターム[5F092BE27]の内容

ホール/MR素子 (37,442) | 各素子に共通の特徴 (1,980) | 膜厚 (322)

Fターム[5F092BE27]に分類される特許

101 - 120 / 322


【課題】磁化方向が膜面垂直方向に安定であり、磁気抵抗変化率が制御された磁気抵抗効果素子及びその磁気抵抗効果素子を用いた磁気メモリを提供する。
【解決手段】磁気抵抗効果素子を構成する強磁性層106,107の材料を、3d遷移金属を少なくとも1種類含んだ強磁性材料で構成することで、磁気抵抗変化率を制御し、且つ、強磁性層の膜厚を原子層レベルで制御することで磁化方向を膜面内方向から膜面垂直方向に変化させた。 (もっと読む)


【課題】 磁気デバイスにおける垂直磁気異方性と保持力とを向上させる。
【解決手段】 MAMR構造20は、Ta/M1/M2なる構造(例えば、M1はTi、M2はCu)の複合シード層22の上に、[CoFe/Ni]X等のPMA多層膜23を有する。複合シード層22とPMA多層膜23との間の界面、および、PMA多層膜23の積層構造内の各一対の隣接層間における1以上の界面の一方または双方に界面活性層を形成する。超高圧アルゴンガスを用いたPMA多層膜23の成膜により、各[CoFe/Ni]X間の界面を損傷するエネルギーを抑える。低パワープラズマ処理および自然酸化処理の一方または両方を複合シード層22に施すことにより、[CoFe/Ni]X多層膜との界面を均一化する。各[CoFe/Ni]X層間に酸素界面活性層を形成してもよい。保磁力は、180〜400°C程度の熱処理によっても増加する。 (もっと読む)


【課題】磁気トンネル接合素子を用いた磁気ランダムアクセスメモリ(MRAM)において、磁気トンネル接合素子形成プロセスで、磁気トンネル接合素子の側壁に導電性膜などが形成されてしまうと、トンネルバリア層から素子側壁導電性膜へ、電流リークが発生する。電流リークを防止し、信頼性の高い磁気トンネル接合素子を用いたMRAMおよびその製造方法を提供することを目的とする。
【解決手段】
素子側壁導電性膜であるTaO層60の上面60Uよりも、トンネルバリア層42の下面42Lの位置のほうが高く形成できるように、バッファ層30上に磁気トンネル接合素子を形成する。そのために、バッファ層30の膜厚と、トンネルバリア層下面位置42Lと、磁気トンネル接合素子周辺に形成されたTaO層60の上面60Uと、の関係をあらかじめ求めておき、当該関係に基づき、バッファ層30の成膜膜厚を決定する。 (もっと読む)


【課題】 スピン注入層の強固さを向上させ、より大きな発振磁界を生成可能なSTO構造を提供する。
【解決手段】 Ta層と、fcc[111]またはhcp[001]結晶配向構造を有する金属層M1とを含む複合シード層21の上に、高い垂直磁気異方性(PMA)を示す多層構造(磁性層A1/磁性層A2)x を含むスピン注入層22を形成する。さらに、スピン注入層22の上に、非磁性スペーサ層23、高飽和磁束密度層(高Bs層)を含む磁界発生層(FGL)24およびキャップ層25を順次形成する。薄いシード層であってもスピン注入層22の強固さを向上させ得る。高いPMAの多層構造(A1/A2)x と高Bs層との結合を含む複合SILを用いれば、スピン注入層をより強固にできる。高いPMAの多層構造(A1/A2)Y と高Bs層との結合を含む複合FGLを用いれば、高Bs層内部に部分的PMAを確立でき、容易なFGL発振が可能になる。 (もっと読む)


【課題】本発明は、MR変化率の高い磁気抵抗効果素子及びそれを用いた磁気記録再生装置を提供する。
【解決手段】キャップ層と、磁化固着層と、前記キャップ層と前記磁化固着層との間に設けられた磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられたトンネル絶縁スペーサ層と、前記磁化固着層中、前記磁化固着層と前記トンネル絶縁スペーサ層との間、前記トンネル絶縁スペーサ層と前記磁化自由層との間、前記磁化自由層中、及び前記磁化自由層と前記キャップ層との間の何れかに設けられ、Zn、In、Sn、及びCdから選択される少なくとも1つの元素、並びにFe、Co、及びNiから選択される少なくとも1つの元素を含む酸化物を有する機能層と、を備えた積層体と、前記積層体の膜面に垂直に電流を流すための一対の電極と、を備えたことを特徴とする磁気抵抗効果素子。 (もっと読む)


【課題】ホールセンサ出力の、磁束密度に対する直線性を向上させる。
【解決手段】絶縁性基板または半絶縁性基板10上に形成された膜厚方向に電子移動度の分布を有する化合物半導体薄膜を用いた磁気センサにおいて、導電層20となる化合物半導体薄膜を、第一の半導体層21と第二の半導体層22と第三の半導体層23とをこの順に積層して構成し、前記第一の半導体層21が前記絶縁性基板または半絶縁性基板10に接するように配置し、前記第二の半導体層のキャリア移動度を、前記第一の半導体層及び前記第三の半導体層のキャリア移動度よりも高く、且つ前記第二の半導体層22の不純物濃度を、前記第一の半導体層21及び前記第三の半導体層23の不純物濃度よりも大きくする。 (もっと読む)


【課題】膜面垂直通電(CPP)読み取りセンサの縦バイアス積層構造を提供する。
【解決手段】CPP読み取りセンサの検知層構造を安定化させるための、改良された縦バイアス積層構造を有する読み取りヘッドが提供される。縦バイアス積層構造は、2つの側部領域の各々において、絶縁層によってCPP読み取りセンサから分離され、絶縁層とCPP読み取りセンサとともに、読み取りヘッド内の上側および下側強磁性シールドの間に挟まれる。本発明の好ましい実施形態において、縦バイアス積層構造は主として、Fe−Pt縦バイアス層を含み、シード層を持たないため、絶縁層のみの厚さで、Fe−Pt縦バイアス層とCPP読み取りセンサの間の間隔が決定される。シード層を持たないFe−Pt縦バイアス層は、アニーリング後に良好な膜面内の硬磁性を呈し、間隔が狭いため、この安定化方式は有効である。 (もっと読む)


【課題】極めて小さいサイズまでスケールダウン可能な磁気センサ設計。
【解決手段】装置100は、主軸を有し、磁気抵抗積層体110を含む。磁気抵抗積層体は第1および第2の対向する面を有し、フリー層とスペーサ層とリファレンス層とを含む。スペーサ層は第1およびリファレンス層間に位置決めされている。フリー層は第1の平面内に自由磁場配向を有する磁性材料を含む。スペーサ層は非磁性材料を含む。リファレンス層は第2の平面内にピン止めされた磁場配向を有する磁性材料を含む。第2の平面は第1の平面に垂直で装置の主軸に平行である。装置は、磁気抵抗積層体の外表面の少なくとも一部分を取囲む絶縁層120と、絶縁層の少なくとも一部分を取囲む遮蔽層130と、磁気抵抗積層体と遮蔽層との間の電気的接続を提供する導電層140とをさらに含む。 (もっと読む)


【課題】電流誘起磁壁移動を利用して書き込みを行うメモリセルを有する磁気メモリにおいて、より低い書き込み電流で書き込み可能にするための技術を提供する。
【解決手段】磁気メモリのメモリセル80が、Ti、Zr、Nb、Mo、Hf、Ta、Wのいずれか、又はこれらの群から選択される2以上の材料からなる第1下地層41と、第1下地層41の上に形成された、Cu、Rh、Pd、Ag、Ir、Pt、Auのいずれか、又はこれらの群から選択される2以上の材料からなる第2下地層42と、第2下地層42の上に形成された、垂直磁気異方性を有する磁壁移動層10とを備えている。磁壁移動層10は、磁化方向が反転可能な磁化自由領域13を有しており、磁化自由領域13の磁化方向は、書き込み電流を磁化自由領域13に流すことによって電流誘起磁壁移動によって反転される。第2下地層の膜厚は、0.9nm以下である。 (もっと読む)


【課題】小さな電流密度でスピン注入磁化反転することができる、スピン注入デバイス及びスピン注入磁気装置並びに磁気メモリ装置を提供する。
【解決手段】 単層の強磁性固定層26からなるスピン偏極部9とスピン偏極部9上に形成された第1の非磁性層からなる注入接合部7とを有しているスピン注入部1と、スピン注入部1に接して設けられる強磁性フリー層27と、強磁性フリー層27の表面に形成された第2の非磁性層28と、を備え、第1の非磁性層が絶縁体または導電体からなり、第2の非磁性層28がRu、Ir、Rhの何れかでなり、外部磁界を印加しないで、且つ、スピン偏極部9と強磁性フリー層27の表面に形成される第2の非磁性層28との膜面垂直方向に電流を流して強磁性フリー層27の磁化を反転させる。 (もっと読む)


【課題】低保磁力、低磁歪および低RA値を確保しつつ、高いTMR比を得る。
【解決手段】フリー層18は、トンネルバリア層17の側から第1の強磁性層、挿入層および第2の強磁性層が順に積層された複合構造を有する。第1の強磁性層は、CoFe合金、または、そのCoFe合金にNiなどを添加してなる合金を含み、かつ、正の磁歪定数を有する。第1の強磁性層の上面はプラズマエッチ処理がなされている。挿入層は、Fe,CoおよびNiから選択される少なくとも一種の磁性元素と、Ta,Ti,W,Zr,Hf,Nb,Mo,V,MgおよびCrから選択される少なくとも一種の非磁性元素とを含む。第2の強磁性層は、CoFeやNiFeなどからなり、負の磁歪定数を有する。 (もっと読む)


【課題】従来技術よりも角度誤差が低減された磁気抵抗センサ素子を提供し、このような磁気抵抗センサ素子を、自動車の精確な角度センサとして使用することができるようにすることにある。
【解決手段】第1の固着薄膜(35)は、第1の強磁性材料製とりわけCoFe合金製であり、前記第2の固着薄膜(33)は、第2の強磁性材料製とりわけCoFe合金製であり、前記中間薄膜(34)は、非磁性材料製とりわけルテニウム製である磁気抵抗センサ素子において、前記第1の固着薄膜(35)の厚みは、第2の固着薄膜(33)の厚みよりも0.2nm〜0.8nmだけ小さい。 (もっと読む)


【課題】オフセット電圧の変動の小さいGaAsホール素子を提供すること。
【解決手段】n−GaAs層からなる感磁部22を、n−GaAs層22よりもバンドギャップの大きいAlGaAsからなる第1及び第2の絶縁層23a,23bで挟み、かつ、n−GaAs層22のキャリア濃度を5×1016/cm3以上、1×1018/cm3以下とすることにより、n−GaAs層22の下部から側面への電子の移動、及び側面での電子のトラップの影響を抑制することができる。 (もっと読む)


【課題】より良好な磁化特性を発現し、高記録密度化や高集積化に対応可能であると共に高い信頼性を有する磁気トンネル接合素子を提供する。
【解決手段】本発明のMTJ素子は、NiFeからなり、かつ、平坦化された上面を有する基体としての下部磁気シールド層110と、Taからなり、かつ、スパッタエッチング処理により表層がアモルファス化された被覆層125と、シード層140と、ピンニング層50と、ピンド層60と、Al膜が酸化処理されてなるトンネルバリア層70と、磁化フリー層80と、キャップ層90と、NiFeからなり、下部磁気シールド層110と共に積層面と直交する方向にセンス電流を流すための電流経路となる上部磁気シールド層100とを順に備えたものである。 (もっと読む)


【課題】GMRあるいはMTJデバイスのような非平行MR素子のリファレンス層におけるピンド磁化の方向を同時に設定可能なMR素子の磁化方法を提供する。
【解決手段】複数の非平行MR素子の各リファレンス層(サブAP1層)15の厚みを対応する磁気ピンド層(サブAP2層)13よりも薄くする。これら複数のMR素子を、サブAP2層13の磁化方向を磁場方向に向けるのに十分な方向と大きさを有する磁場中に配置する。そののち、磁場の大きさを零になるまで減少させ、磁場の大きさが零になったときに、MR素子を熱処理する。それによって各サブAP1層15の磁化方向を当該MR素子の長手方向に沿うように固定する。 (もっと読む)


【課題】巨大な垂直磁気異方性定数を持つ材料を用いた垂直磁化膜を利用することなく、レファレンス層と高周波磁気発振層の磁化方向を反平行にする必要がなく、高周波磁気発振層に注入する偏極電子として反射電子を用いる必要がない磁気記録ヘッドを提供する。
【解決手段】負の磁気異方性定数を持つ磁性材料を主成分とする高周波磁界発振層18と、スピンが偏極した電子を高周波磁界発振層18に供給するレファレンス層14と、高周波磁界発振層18とレファレンス層14間に配置された非磁性層16と、を有する高周波磁界発振素子11と、主磁極12と、を備える。 (もっと読む)


【課題】垂直異方性をもつMgOベースの磁気トンネル接合(MTJ)デバイスを提供すること。垂直異方性をもつMgOベースの磁気トンネル接合(MTJ)デバイスは、MgOトンネル障壁によって分離された垂直磁化をもつ強磁性ピンおよび自由層を本質的に含む。金属Mg堆積とその後の酸化処理によってまたは反応性スパッタリングによって作製されるMgOトンネル障壁の微細構造はアモルファスまたは不完全な(001)面垂直方向組織をもつ微晶質である。
【解決手段】本発明では、少なくとも強磁性ピン層のみまたは強磁性ピンおよび自由層の両方が、トンネル障壁と強磁性ピン層のみとの間に、またはトンネル障壁とピンおよび自由層の両方との間に位置する結晶好適結晶粒成長促進(PGGP)シード層を有する構造とすることが提案される。この結晶PGGPシード層は、堆積後アニーリングに際してMgOトンネル障壁の結晶化および好適結晶粒成長を誘起する。 (もっと読む)


【課題】垂直磁気トンネル接合構造体並びにそれを含む磁性素子、及びその製造方法を提供することである。
【解決手段】本発明の垂直磁気トンネル接合は、上部磁性層及び下部磁性層のうちいずれか1層の磁性層に自由層を含み、トンネリング層と自由層との間に、分極強化層と交換遮断層とが積層されており、該交換遮断層は、非晶質の非磁性層であり、該分極強化層は、Fe層、体心立方(bcc)構造を有するFe系合金層、CoFeB系非晶質合金層、L21型ホイスラ(Heusler)合金層及びそれらの複合層のうちいずれか1層であり、該非晶質非磁性層は、ジルコニウム・ベース非晶質合金層、チタン・ベース非晶質合金層、パラジウム・ベース非晶質合金層、アルミニウム・ベース非晶質合金層及びそれらの複合層のうちいずれか1層であり、また該非晶質非磁性層は、全体的には非晶質であるが、局所的にはナノ結晶構造を有するものでありうる。 (もっと読む)


【課題】磁化固定層または磁化自由層の膜厚を薄くすることによるMR比の劣化を抑制することができる磁気抵抗効果ヘッドを提供する。
【解決手段】磁化方向が固定されている磁化固定層230と、磁化方向が変化する磁化自由層250と、磁化固定層と磁化自由層との間に配置された絶縁体を用いて形成されているバリア層240と、を備え、磁化固定層または磁化自由層の少なくとも一方は、バリア層側から順に、結晶層233a,233cとアモルファス磁性層233bとの積層構造として、バリア層の反対側にアモルファス磁性層を有する磁気抵抗効果ヘッドとする。 (もっと読む)


【課題】高いMR比のTMRリード・ヘッドを実現する。
【解決手段】本発明の一実施形態において、TMRリード・ヘッドにおいて、固定層の第1強磁性層は反平行結合層と絶縁障壁層との間に形成されている。第1強磁性における反平行結合層との界面を形成する層を、CoxFe(0≦x≦15)で形成する。これにより、薄い反平行結合層を使用しても高温でのアニール処理における固定層の不安定化を抑えることができ、第1強磁性層と第2強磁性層との強い結合を維持することができる。第1強磁性層において、主強磁性層とCoxFe(0≦x≦15)界面層との間に、Co系アモルファス金属層を形成する。これにより、高温アニール処理における第1強磁性層の適切な結晶化を促進することができ、高いMR比を実現する。 (もっと読む)


101 - 120 / 322