説明

磁気トンネル接合素子

【課題】より良好な磁化特性を発現し、高記録密度化や高集積化に対応可能であると共に高い信頼性を有する磁気トンネル接合素子を提供する。
【解決手段】本発明のMTJ素子は、NiFeからなり、かつ、平坦化された上面を有する基体としての下部磁気シールド層110と、Taからなり、かつ、スパッタエッチング処理により表層がアモルファス化された被覆層125と、シード層140と、ピンニング層50と、ピンド層60と、Al膜が酸化処理されてなるトンネルバリア層70と、磁化フリー層80と、キャップ層90と、NiFeからなり、下部磁気シールド層110と共に積層面と直交する方向にセンス電流を流すための電流経路となる上部磁気シールド層100とを順に備えたものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トンネル磁気抵抗効果を示す磁気トンネル接合素子に関する。
【背景技術】
【0002】
磁気トンネル接合(MTJ;magnetic tunnel junction)素子は、上部電極層および下部電極層と、それらの間に設けられた極薄の誘電体層(トンネルバリア層)とを有しており、上部電極層および下部電極層における相対的な磁化方向によって、トンネルバリア層を通過するスピン分極したトンネル電子の流れ(トンネル電流)の抵抗値が変化するように構成された可変抵抗体である。トンネル電子は、例えば上部電極層を通過する際に、上部電極層の磁化方向によってスピン分極する。トンネル電子がトンネルバリア層を通過する確率(トンネリング確率)は、そのときの下部電極層の磁化方向に依存する。なぜなら、トンネリング確率はスピンに依存し、トンネル電流はトンネルバリア層を挟む上部電極および下部電極における相対的な磁化方向に依存するからである。
【0003】
このようなMTJ素子では、一般的に、2つの電極層のうちの一方が、一定方向に固定された磁化方向を示すピンド層であり、他方が、外部からの刺激(外部磁界)に応じて自由に回転する磁化方向を示すフリー層である。フリー層の磁化方向が連続的に回転することが可能であれば、連続的に変化する外部磁界によって作動するので、可変抵抗デバイスや再生磁気ヘッドに適用可能である。一方、フリー層の磁化方向が、ピンド層の磁化方向に対して平行であるか逆平行であるかのいずれかのみに限定される場合、MTJ素子はスイッチとして振る舞い、ピンド層と平行であるときには低抵抗(トンネリング確率が高い状態)となり、ピンド層と逆平行である場合には高抵抗(トンネリング確率が低い状態)となる。したがって、データ格納およびデータ検索を行うメモリデバイスに適用可能である。
【0004】
現在のところ、MTJ素子は、磁気ランダムアクセスメモリ(MRAM;magnetic random access memory)アレイにおける磁気メモリセルとして用いられている。このようなMRAMアレイにおいて書込動作を行う際には、互いに直角をなすように交差する2種類の電流供給線(ディジットラインおよびビットライン)によって書き込み磁場が形成され、この書込磁界によって、フリー層の磁化方向がピンド層の磁化方向と平行または逆平行となるように設定される。一方、読出動作の際には、センス電流がMTJ素子に供給され、MTJ素子が高抵抗状態であるか低抵抗状態であるかが検出されるようになっている。
【0005】
また、MTJ素子は、トンネル磁気抵抗効果(TMR;Tunneling magneto-resistive)型再生磁気ヘッド(以下、TMRヘッドという。)にも適用されている。この場合、フリー層の磁化方向は、記録媒体(ハードディスクやテープなど)からの信号磁界の作用によって回転する。この信号磁界は、TMRヘッドに組み込まれたMTJ素子に対して相対的に記録媒体が動くことにより変化する。フリー層の磁化方向が変化すると、ピンド層とトンネルバリア層とフリー層とを通過するセンス電流が抵抗の変化を感知し、電圧変化として現れる。この電圧変化は、外部回路によって検出され、記録媒体に格納された情報として再生される。
【0006】
MRAMアレイやTMRヘッドに適用される高品質のMTJ素子を形成するにあたっては、そのMTJ素子を構成する各層を極めて薄く作製する必要があり、かなりの困難を伴うこととなる。これに関し、例えば、Sun等は、特許文献1においてMTJ素子を形成する際の困難さについて述べている。
【0007】
MTJ素子に対しては、第1に、伝導電子の効果的なスピン分極を得るために、ピンド層およびフリー層のそれぞれの磁化が強いことが要求される。これは、各層が極端に薄いというMTJ素子自身の構造上の問題である。第2に、トンネルバリア層の抵抗値が十分に低いことが要求される。トンネルバリア層の抵抗値が高いと、十分なSN比(signal-to-noise ratio)が得られないという問題が生じるからである。もしトンネルバリア層の厚みが十分に薄く、抵抗値を低減できるのであれば、記録媒体対向面のラッピングを行うなどの製造工程を短縮することができる。Sun等は、以下のような構成のMTJ素子について開示している。
「タンタル(Ta)層/ニッケル鉄合金(NiFe)層/コバルト鉄合金(CoFe)層/トンネルバリア層/CoFe層/ルテニウム(Ru)層/CoFe層/白金マンガン合金(PtMn)層/Ta層」
このような構造のMTJ素子は、上部導電リード層と下部導電リード層との間に挟まれるように構成される。ここで、左側から順に各層について説明する。Ta層がシード層であり、NiFe層/CoFe層がフリー層であり、トンネルバリア層を挟んでCoFe層/Ru層/CoFe層がピンド層であり、PtMn層がピンニング層であり、Ta層が保護層である。Sun等は、このようなMTJ素子におけるトンネルバリア層としては、ニッケルクロム合金(NiCr)の酸化物(例えばNiCrOX)が好ましいと述べている。このようなトンネルバリア層は、6.6Ω・μm2の接合抵抗RA(MTJ素子の形成面積Aと単位面積あたりの抵抗Rとの積)を生み出すものである。
【0008】
Sun等は、以下の2種類の構成のMTJ素子を有するTMRヘッドについても開示している。
「Ta/NiFe/MnPt/Co90Fe10/Ru/Co50Fe50/[Al/NOX]/CoFe−Ni82Fe18/Ta」
(ここで、[Al/NOX]は、アルミニウム層を自然酸化法により酸化処理したトンネルバリア層である。)
「Ta/NiFe/IrMn/Co84Fe16/[Al(0.45)Hf(0.15)/NOX]/CoFe−Ni82Fe18/Ta」
(ここで、[Al(0.45)Hf(0.15)/NOX]は、0.45nm厚のアルミニウム層と0.15nm厚のハフニウム層とを自然酸化法により酸化処理したトンネルバリア層である。)
なお、これら2種類の構成において、タンタル層と、MnPt層またはIrMn層との間に設けられたNiFe層は、MnPt層またはIrMn層の成長を促す緩衝層(シード層)である。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許第6574079号明細書
【発明の概要】
【発明が解決しようとする課題】
【0010】
ところで、最近では、磁気記録媒体の高記録密度化やMRAMアレイの高集積化が著しく進んでいることから、MTJ素子のさらなる高性能化が強く求められるようになってきている。
【0011】
本発明はかかる問題に鑑みてなされたもので、その目的は、より良好な磁化特性を発現し、高記録密度化や高集積化に対応可能であると共に高い信頼性を有する磁気トンネル接合素子を提供することにある。
【課題を解決するための手段】
【0012】
本発明における磁気トンネル接合素子は、以下の(A1)〜(A9)の各構成要件を順に備えるようにしたものである。
(A1)ニッケル鉄合金(NiFe)からなり、かつ、平坦化された上面を有する基体としての第1磁気シールド層。
(A2)タンタル(Ta)からなり、かつ、スパッタエッチング処理により表層がアモルファス化された被覆層。
(A3)シード層。
(A4)反強磁性材料からなるピンニング層。
(A5)ピンド層。
(A6)アルミニウム(Al)膜が酸化処理されてなるトンネルバリア層。
(A7)強磁性材料からなる磁化フリー層。
(A8)キャップ層。
(A9)ニッケル鉄合金(NiFe)からなり、第1磁気シールド層と共に積層面と直交する方向にセンス電流を流すための電流経路となる第2磁気シールド層。
【0013】
本発明における磁気トンネル接合素子では、タンタル(Ta)からなり、かつ、スパッタエッチング処理により表層がアモルファス化された被覆層と、シード層とを順に備えるようにしたので、ピンニング層およびピンド層を介して設けられたトンネルバリア層が、非常に優れた平滑性および均質性を有するものとなる。このため、トンネルバリア層が非常に薄いものであっても、それを備えた磁気トンネル接合素子は十分な接合抵抗を有するものとなる。
【0014】
本発明における磁気トンネル接合素子では、シード層が、35原子パーセント(at%)以上45原子パーセント(at%)以下のクロム(Cr)を含有するニッケルクロム合金(NiCr)により構成され、4.0nm以上6.0nm以下の厚みを有していることが望ましい。また、被覆層が、6.0nm以上8.0nm以下の厚みとなるように形成されたタンタル膜を、スパッタエッチング処理により2.0nm以上3.0nm以下の厚み分だけ除去したものであることが望ましい。ピンニング層は、マンガン白金合金(MnPt)により構成され、10.0nm以上20.0nm以下の厚みを有していることが望ましい。ピンド層は、Co90Fe10からなり1.5nm以上2.0nm以下の厚みをなす第1磁化固着層と、ルテニウム(Ru)からなり0.7nm以上0.8nm以下の厚みをなす結合層と、Co75Fe25またはCo50Fe50からなり1.8nm以上2.5nm以下の厚みをなす第2磁化固着層とを順に含み、かつ、第1磁化固着層と第2磁化固着層とが互いに逆平行の磁化を示し、反強磁性結合するように構成されていることが望ましい。トンネルバリア層は、アルミニウム原子2つ分の厚みを有するアルミニウム層を自然酸化法により酸化処理したものであることが望ましい。あるいはトンネルバリア層は、0.1nm以上0.2nm以上の厚みを有するハフニウム(Hf)層と0.4nm以上0.5nm以上の厚みを有するアルミニウム(Al)層との2層構造を自然酸化処理することによって得られたハフニウムおよびアルミニウムの複合酸化物(HfAlOx)からなる単層構造をなすものであることが望ましい。磁化フリー層は、0.5nm以上1.5nm以下の厚みを有するコバルト鉄合金(Co90Fe10)層と、2.5nm以上3.5nm以下の厚みを有するニッケル鉄合金(Ni82Fe18)層とを含んでいることが望ましい。キャップ層は、タンタル(Ta)からなり、20.0nm以上30.0nm以下の厚みを有していることが望ましい。
【発明の効果】
【0015】
本発明における磁気トンネル接合素子によれば、ニッケル鉄合金からなる第1磁気シールド層と、タンタルからなり、かつ、スパッタエッチング処理により表層がアモルファス化された被覆層と、シード層と、反強磁性材料からなるピンニング層と、ピンド層と、アルミニウム膜を酸化処理してなるトンネルバリア層と、強磁性材料からなる磁化フリー層と、キャップ層と、ニッケル鉄合金からなり、第1磁気シールド層と共に積層面と直交する方向にセンス電流を流すための電流経路となる第2磁気シールド層とを順に設けるようにしたので、トンネルバリア層が非常に優れた平滑性および均質性を有するものとなる。このため、トンネルバリア層における十分な電気絶縁性が確保され、より大きな抵抗変化率を得ることができるうえ、絶縁破壊電圧を向上させることができる。よって、高記録密度化や高集積化に対応可能であると共に高い信頼性を確保することができる。
【図面の簡単な説明】
【0016】
【図1】本発明における第1の実施の形態のMTJ素子を形成する工程を表す積層断面図である。
【図2】本発明における第2の実施の形態のMTJ素子を形成する工程を表す積層断面図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0018】
[第1の実施の形態]
最初に、図1(A)〜図1(D)を参照して、本発明における第1の実施の形態としての磁気トンネル接合(MTJ;magnetic tunnel junction)素子について以下に説明する。本実施の形態のMTJ素子は、特に、MRAMアレイにおける磁気メモリセルとして好適に用いられる構造を有するものである。MRAMアレイは複数の磁気メモリセル(MTJ素子)がマトリックス状に配置された集合体であり、磁気情報の書き換え、格納および検出を行う際に使用される駆動回路(associate circuitry)と接続されている。このようなMRAMアレイでは、MTJ素子が、複数のワード線と複数のビット線との各交差点において、ワード線と電気絶縁性と保ちつつビット線と電気的に接続されるように構成されている。
【0019】
本実施の形態におけるMTJ素子は、例えば、
「NiCr/Ru/Ta(SE)/NiCr/MnPt/CoFe/[Al/ROX]/CoFe/NiFe/Ru」
という積層構造をなすものである。上記の「NiCr/Ru/Ta(SE)」は、平滑な(smooth)下部導電リード層である。詳細には、「NiCr」が第1シード層であり、「Ru」が非磁性金属層であり、「Ta(SE)」がスパッタエッチング処理されて表層がアモルファス化された被覆層である。さらに「Ta(SE)」の上に形成された「NiCr/MnPt/CoFe」が下部電極である。詳細には「NiCr」が第2シード層であり、「MnPt」がピンニング層であり、「CoFe」がピンド層である。また、「[Al/ROX]」はアルミニウム層をラジカル酸化法を利用して酸化処理することにより得られるトンネルバリア層である。このトンネルバリア層の上に形成された「CoFe/NiFe/Ru」が上部電極である。詳細には「CoFe/NiFe」が磁化フリー層であり、「Ru」が上部導電リード層を兼ねたキャップ層である。なお、下部導電リード層および上部導電リード層は、MTJ素子に対して、その積層面と直交する方向にセンス電流を流すための電流経路となる。
【0020】
以下、上記構成を有する本実施の形態のMTJ素子を形成する方法について順に説明する。以下で述べる全ての層は、超高真空装置の中でスパッタリングにより形成される。超高真空装置としては、例えば、プラズマ酸化用チャンバをも兼ねる超高真空スパッタリングチャンバを備えたアネルバ(Anelva)社製7100システムである。このアネルバ社製7100システムでは、スパッタリングによるデポジッション(成膜)操作と、エッチング操作との双方を実施することが可能である。なお、これは本発明の必須要件ではなく、デポジッション操作とエッチング操作とを個別の装置で行うようにしてもよい。ただし、真空状態を保持したまま、デポジッション用チャンバとエッチング用チャンバとの移動を行うようにする必要がある。
【0021】
最初に、図1(A)に示したように、平坦化された上面を有する基板10を用意する。基板10は、例えばシリコン(Si)やそのほかの半導体からなるものであり、トランジスタやダイオードなどのデバイスを含むように構成されたものである。
【0022】
基板10を用意したのち、基板10上に第1シード層20、非磁性金属層30およびタンタル(Ta)膜40を順に積層する。第1シード層20については、クロム(Cr)を35%〜45%含有するニッケルクロム合金(NiCr)を用いて例えば5nm以上10nm以下(好ましくは5nm)の厚みとなるように形成する。非磁性金属層30については、ルテニウム(Ru)を用いて、例えば25nm以上100nm以下(好ましくは40nmの厚みとなるように形成する。さらに、タンタル膜40については、タンタル(Ta)を用いて6.0nm以上8.0nm以下(好ましくは6.0nm)の厚みとなるように形成する。第1シード層20は、その上に形成される非磁性金属層30の結晶成長を促進する機能を有する。非磁性金属層30の結晶面は、その表面と平行をなすように配列される。
【0023】
タンタル膜40を形成したのち、図1(B)に示したように、タンタル膜40の上面をスパッタエッチング処理することにより被覆層45を形成する。ここでは、スパッタエッチング処理により、例えば2.0nm以上3.0nm以下(好ましくは3.0nm)の厚み分だけ除去するようにする。被覆層45は、その表層(スパッタエッチング処理された側)がアモルファス化されており、こののちに形成されるピンニング層50(後出)を形成する際の下地層となる。
【0024】
被覆層45を形成したのち、35at%以上45at%以下のクロムを含有するNiCrを用いて、例えば4nm以上6nm以下(好ましくは4nm)の厚みをなすように第2シード層85を形成する。
【0025】
続いて、図1(C)に示したように、第2シード層85の上に反強磁性材料を用いてピンニング層50を形成する。反強磁性材料としては、マンガン白金合金(MnPt)やイリジウムマンガン合金(IrMn)などが用いられる。MnPtを用いる場合には10.0nm以上20.0nm以下(好ましくは15.0nm)の厚みをなすように形成し、IrMnを用いる場合には、例えば9nmの厚みとなるように形成することが望ましい。
【0026】
さらに、ピンニング層50の上に、シンセティック反強磁性構造をなすピンド層60を形成する。具体的には、第1磁化固着層62と結合層64と第2磁化固着層66とを順に積層する。第1磁化固着層62については、Co90Fe10を用いて1.5nm以上2.5nm以下(好ましくは2.0nm)の厚みとなるように形成する。結合層64については、ルテニウム(Ru)を用いて0.7nm以上0.8nm以下(好ましくは0.75nm)の厚みとなるように形成する。さらに第2磁化固着層66については、Co75Fe25またはCo50Fe50を用いて1.0nm以上2.0nm以下(好ましくは1.5nm)の厚みとなるように形成する。結合層64の作用により、第1磁化固着層62と第2磁化固着層66とが互いに逆平行の磁化を示し、互いに強固な反強磁性結合を形成するようになる。なお、ピンド層60はCoFeなどからなる単層構造であってもよい。
【0027】
さらに、ピンド層60の上にトンネルバリア層70を形成する。ここでは、ピンド層60の上に0.7nm以上1.2nm以下(好ましくは1.0nm)の厚みを有するアルミニウム層(図示せず)を形成したのち、プラズマ酸化用チャンバ(プラズマ酸化処理室)の内部において、ラジカル酸化法(ROX;radical oxidation)を利用して上記アルミニウム層の酸化処理を施すことにより、トンネルバリア層70を形成するようにする。より詳細には、プラズマ酸化用チャンバには、上部イオン化電極と、下部イオン化電極と、それらの間に配置された格子状部材(キャップ)とが備えられている。このようなプラズマ酸化用チャンバの内部に、基板10上に、第1シード層20、非磁性金属層30、被覆層45、第2シード層85、ピンニング層50、ピンド層60およびアルミニウム層が順に積層された積層膜を載置したのち、このアルミニウム層を、下部イオン化電極と電気的に連結する。次いで、プラズマ酸化用チャンバへ0.5リットルの酸素ガスを投入すると共に500ワット(W)以上800ワット(W)以下の電力を上部イオン化電極へ供給することにより、格子状部材を通過してアルミニウム層の表面へ到達するように(酸素ガスが変換された)酸素種(酸素原子、酸素分子、酸素ラジカルおよび酸素イオン)からなるシャワーを形成する。
【0028】
最後に、図1(D)に示したように、トンネルバリア層70の上にCoFe層82とNiFe層84との2層構造からなる磁化フリー層80を形成したのち、磁化フリー層80の上にキャップ層90を形成する。磁化フリー層80については、0.5nm以上1.5nm以下(好ましくは1.0nm)の厚みをなすようにコバルト鉄合金(Co90Fe10)を用いてCoFe層82を形成したのち、CoFe層82の上に、2.0nm以上5.0nm以下(好ましくは3.0nm)の厚みをなすようにニッケル鉄合金(Ni82Fe18)からなるNiFe層84を形成するようにする。キャップ層90については、ルテニウムを用いて10nm以上30nm以下(好ましくは25nm)の厚みをなすように形成する。以上により、本実施の形態のMTJ素子の形成が完了する。
【0029】
このようにして得られたMTJ素子におけるトンネルバリア層70は、極めて厚みが薄いながらも、平滑(smooth)かつ均質(conformal)であり、高い絶縁破壊電圧を示すものである。これは、スパッタエッチング処理を施されてアモルファス化した表層を有する被覆層45と、その上に設けられたNiCrからなる第2シード層85とを含むようにしたことに起因する結果である。すなわち、第2シード層85の上に形成されるピンニング層50およびピンド層60の結晶性が向上して粗さが低減され、結果として、その上に設けられたトンネルバリア層70の平滑性および均質性も優れたものとなると考えられる。このため、トンネルバリア層70が非常に薄いものであっても、十分な電気絶縁性が確保され、より大きな抵抗変化率を得ることができるうえ、絶縁破壊電圧を向上させることができる。よって、高集積化に対応可能であると共に高い信頼性を確保することができる。
【0030】
[第2の実施の形態]
最初に、図2(A)〜図2(D)を参照して、本発明における第2の実施の形態としてのMTJ素子について以下に説明する。本実施の形態のMTJ素子は、例えば磁気ディスク装置などに搭載されて、磁気記録媒体(ハードディスク)に記録された磁気情報を読み出す磁気デバイスとして機能する磁気再生ヘッドのセンサ部として用いられるものである。
【0031】
本実施の形態のMTJ素子は、下部磁気シールド層と上部磁気シールド層との間に、例えば、
(1);「Ta(SE)/NiCr/AFM/SyAP/[Al/NOX]/Co90Fe10/Ni82Fe18/Ta」
(2);「Ta(SE)/NiCr/AFM/SyAP/[Al−Hf/NOX]/Co90Fe10/Ni82Fe18/Ta」
という構造を備えている。上記の「Ta(SE)」は、タンタル(Ta)膜を下部導電リード層の上に形成したのち、その一部をスパッタエッチング(SE;sputter-etching)により除去することにより得られたタンタル層を表している。また、下部磁気シールド層および上部磁気シールド層は、MTJ素子に対して、その積層面と直交する方向にセンス電流を流すための電流経路となるものである。また「NiCr」はシード層であり、「AFM」は反強磁性(anti-ferromagnetic)材料からなるピンニング層であり、「SyAP」はシンセティック構造を有するピンド層であり、「[Al/NOX]」および「[Al−Hf/NOX]」はアルミニウム層またはアルミニウム層とハフニウム層との積層体を自然酸化処理して得られるトンネルバリア層であり、「Co90Fe10/Ni82Fe18」は磁化フリー層であり、「Ta」はキャップ層である。
【0032】
以下、本実施の形態におけるMTJ素子の形成方法について説明する。以下で述べる全ての層は、超高真空装置の中でスパッタリングにより形成される。
【0033】
最初に、図2(A)に示したように、NiFeなどからなる基板としての下部磁気シールド層110を用意し、その上に、タンタル膜120を形成する。タンタル膜120については、5.0nm以上8.0nm以下の厚みとなるように(好ましくは6.0nmの厚みとなるように)形成する。
【0034】
次いで、図2(B)に示したように、タンタル膜120をスパッタエッチング処理により2.0nm以上3.0nm以下の厚み分(好ましくは3.0nmの厚み分)だけ除去することにより薄型化し、被覆層125を形成する。このスパッタエッチング処理により、タンタル膜120の表層をアモルファス化して平滑にすることができる。続いて、被覆層125の上に35at%以上45at%以下のクロム(Cr)を含有するNiCrを用いてシード層140を形成する。シード層140については、4nm以上6nm以下(特に5nm)の厚みとなるように形成することが望ましい。シード層140は、被覆層125により平滑性が促進される。
【0035】
さらに、シード層140の上に、例えばMnPtを用いて、10.0nm以上20.0nm以下(好ましくは15.0nm)の厚みとなるようにピンニング層50を形成する。あるいは、イリジウムマンガン合金(IrMn)を用いて、5.0nm以上10.0nm以下(好ましくは9.0nm)の厚みとなるように形成するようにしてもよい。
【0036】
さらに、ピンニング層50の上に、シンセティック反強磁性構造をなすピンド層60を形成する。具体的には、第1磁化固着層62と結合層64と第2磁化固着層66とを順に積層する。第1磁化固着層62については、Co90Fe10を用いて1.5nm以上2.0nm以下(好ましくは1.9nm)の厚みとなるように形成する。結合層64については、ルテニウム(Ru)を用いて0.7nm以上0.8nm以下(好ましくは0.75nm)の厚みとなるように形成する。さらに第2磁化固着層66については、Co75Fe25またはCo50Fe50を用いて1.8nm以上2.5nm以下(好ましくは2.0nm)の厚みとなるように形成する。結合層64の作用により、第1磁化固着層62と第2磁化固着層66とが互いに逆平行の磁化を示し、互いに強固な反強磁性結合を形成するようになる。
【0037】
さらに、図2(C)に示したように、ピンド層60の上にトンネルバリア層70を形成する。ここでは、例えばスパッタリング法により形成したアルミニウム層(図示せず)を、酸化用チャンバの内部において自然酸化法(in-situ法)により酸化処理し、例えば0.9nm以上1.0nm以下(特に0.9nm)の厚みをなす酸化アルミニウム(Al2 3 )を形成する。具体的には、111方向においてアルミニウム原子2つ分の厚みに相当する0.575nmの厚みとなるように111面のアルミニウム層を形成したのち、約15分間に亘り、約75mTorr(10.00Pa)の酸素ガス雰囲気中に晒すことで酸化処理を行うようにする。このような薄いアルミニウム層を酸化処理したものは、十分に広いバンドギャップを有しており、トンネルバリア層70として機能する。このトンネルバリア層70は、極めて平滑、かつ均質であると共に、高い絶縁破壊電圧を有するものとなる。これらは、被覆層125とその上に形成されたシード層140とを形成したことに起因する結果である。なお、0.575nm程度の厚みのアルミニウム層は、自然酸化法(in-situ法)による酸化処理に最も適している。これよりも厚みの大きな場合(例えば0.7nm〜1.2nm程度の場合)には、ラジカル酸化法(ROX;radical oxidation)が適している。
【0038】
また、変形例として、0.1nm以上0.2nm以下(好ましくは0.15nm)の厚みをなすハフニウム(Hf)層と、0.4nm以上0.5nm以下(好ましくは0.45nm)の厚みをなすアルミニウム層とを積層したのち、自然酸化法により上記の条件で酸化処理を施すことによりトンネルバリア層70を形成するようにすることも可能である。その場合、ハフニウムとアルミニウムとの単層の複合酸化物HfAlOxが形成されることとなる。
【0039】
続いて、図2(D)に示したように、トンネルバリア層70の上にCoFe層82とNiFe層84との2層構造からなる磁化フリー層80を形成したのち、磁化フリー層80の上にキャップ層90を形成する。磁化フリー層80については、0.5nm以上1.5nm以下(好ましくは1.0nm)の厚みをなすようにコバルト鉄合金(Co90Fe10)を用いてCoFe層82を形成したのち、CoFe層82の上に、2.5nm以上3.5nm以下(好ましくは3.0nm)の厚みをなすようにニッケル鉄合金(Ni82Fe18)からなるNiFe層84を形成するようにする。キャップ層90については、ルテニウムを用いて20nm以上30nm以下(好ましくは25nm)の厚みをなすように形成する。最後に、キャップ層90を覆うように、例えばNiFeからなる上部磁気シールド(導電リード)層100を形成する。以上により、本実施の形態のMTJ素子の形成が完了する。
【0040】
このようにして得られたMTJ素子におけるトンネルバリア層70は、上記第1の実施の形態と同様に、極めて厚みが薄いながらも、平滑(smooth)かつ均質(conformal)であり、高い絶縁破壊電圧を示すものである。これは、スパッタエッチング処理を施されてアモルファス化した表層を有する被覆層125と、その上に設けられたNiCrからなるシード層140とを含むようにしたことに起因する結果である。すなわち、シード層140の上に形成されるピンニング層50およびピンド層60の結晶性が向上して粗さが低減され、結果として、その上に設けられたトンネルバリア層70の平滑性および均質性も優れたものとなると考えられる。このため、トンネルバリア層70が非常に薄いものであっても、十分な電気絶縁性が確保され、より大きな抵抗変化率を得ることができるうえ、絶縁破壊電圧を向上させることができる。よって、高記録密度化に対応可能であると共に高い信頼性を確保することができる。
【実施例】
【0041】
次に、本発明の具体的な実施例について説明する。
【0042】
ここでは、上記第1の実施の形態に対応するMTJ素子に相当する3種類のサンプルを実施例1〜3として作製し、いくつかの評価項目について特性値を調査した。その結果を表1に示す。また、本実施例の比較対象として、従来例としてのサンプルを作製して同様の特性値を調査した。表1に併せて掲載する。
【0043】
【表1】

【0044】
表1に示したように、実施例1は、スパッタエッチング処理により表層がアモルファスかされた被覆層としてのタンタル層「Ta−SE」と、4nmの厚みを有する第2シード層としてのNiCr層と、15nmの厚みを有するピンニング層としてのMnPt層と、4nmの厚みを有するピンド層としてのCoFe層と、1nmの厚みを有するアルミニウム層をラジカル酸化法(ROX)により酸化処理して得られたトンネルバリア層としての酸化アルミニウム層とを順に備えたものである。実施例2は、第2シード層としてのNiCr層をNiFe層(厚さ5nm)に置換したものである。実施例3は、第2シード層としてのNiCr層をNiFe層(厚さ4nm)に置換したうえ、ピンニング層としてのMnPt層をMnIr層(厚さ9nm)に置換したものである。さらに、従来例は、スパッタエッチング処理がなされていない、通常の結晶化したタンタル層を備えるようにしたのである。ただし、トンネルバリア層については、いずれもラジカル酸化法によりアルミニウム層を酸化処理して得た同質のものとした。さらに、磁化フリー層については表1に示さないが、いずれも同様のものとした。
【0045】
各サンプルに対する評価項目は、抵抗変化率DR/R(%)、接合抵抗RA(Ω・μm2)および絶縁破壊電圧Vbである。その結果、実施例1〜3は、従来例と比べて全ての項目で良好な数値を示した。すなわち、本実施例では、適切な酸化処理がなされた良質なトンネルバリア層が得られたことにより非常に高い接合抵抗RA、抵抗添加率DR/Rおよび絶縁破壊電圧Vbを確保することができた。一方、従来例では、トンネルバリア層の酸化処理が不十分であると推測される。特に実施例1は、実施例2,3よりもよい結果が得られたことから、シード層としてNiCr層を用いることによりNiFe層を用いた場合と比べて、よりいっそう均質かつ平滑なトンネルバリア層が形成されることが確認できた。NiFe層は、タンタル層の表面において(111)方向に結晶成長する。このようなNiFe層の上にピンニング層を形成した場合には十分に大きな交換磁界が得られるものの、抵抗変化率DR/Rや接合抵抗RAあるいは絶縁破壊電圧Vbの向上にはあまり寄与しない。一方、NiCr層であれば、抵抗変化率DR/Rや接合抵抗RAあるいは絶縁破壊電圧Vbの飛躍的な向上を図ることが可能である。
【0046】
さらに、本実施例のトンネルバリア層について高分解能のTEM観察を実施したところ、非常に平滑かつ均質に酸化処理されていることが確認できた。
【0047】
以上、いくつかの実施の形態および実施例(以下、実施の形態等という。)を挙げて本発明を説明したが、本発明は上記実施の形態等に限定されず、種々の変形が可能である。すなわち当技術分野を熟知した当業者であれば理解できるように、上記実施の形態等は本願発明の一具体例であり、本願発明は、上記の内容に限定されるものではない。本発明の範囲と一致する限り、製造方法、材料、構造および寸法などについての修正および変更がなされてもよい。
【符号の説明】
【0048】
10…基板、20…第1シード層、30…非磁性金属層、40…タンタル膜、45…被覆層、50…ピンニング層、60…ピンド層、62…第1磁化固着層、64…結合層、66…第2磁化固着層、70…トンネルバリア層、80…磁化フリー層、85…第2シード層、90…キャップ層、100…上部磁気シールド層、110…下部磁気シールド層、120…タンタル膜、125…被覆層、140…シード層。

【特許請求の範囲】
【請求項1】
ニッケル鉄合金(NiFe)からなり、かつ、平坦化された上面を有する基体としての第1磁気シールド層と、
タンタル(Ta)からなり、かつ、スパッタエッチング処理により表層がアモルファス化された被覆層と、
シード層と、
反強磁性材料からなるピンニング層と、
ピンド層と、
アルミニウム(Al)膜が酸化処理されてなるトンネルバリア層と、
強磁性材料からなる磁化フリー層と、
キャップ層と、
ニッケル鉄合金(NiFe)からなり、前記第1磁気シールド層と共に積層面と直交する方向にセンス電流を流すための電流経路となる第2磁気シールド層と
を順に備えたことを特徴とする磁気トンネル接合素子。
【請求項2】
前記シード層は、35原子パーセント(at%)以上45原子パーセント(at%)以下のクロム(Cr)を含有するニッケルクロム合金(NiCr)により構成され、4.0nm以上6.0nm以下の厚みを有している
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項3】
前記タンタル(Ta)からなる被覆層は、6.0nm以上8.0nm以下の厚みを有するタンタル膜がスパッタエッチング処理により2.0nm以上3.0nm以下の厚み分だけ除去されたものである
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項4】
前記ピンニング層は、マンガン白金合金(MnPt)により構成され、10.0nm以上20.0nm以下の厚みを有している
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項5】
前記ピンド層は、
Co90Fe10からなり1.5nm以上2.0nm以下の厚みをなす第1磁化固着層と、
ルテニウム(Ru)からなり0.7nm以上0.8nm以下の厚みをなす結合層と、
Co75Fe25またはCo50Fe50からなり1.8nm以上2.5nm以下の厚みをなす第2磁化固着層と
が順に積層されたものであり、
前記第1磁化固着層と第2磁化固着層とが互いに逆平行の磁化を示し、反強磁性結合するように構成されている
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項6】
前記トンネルバリア層は、アルミニウム原子2つ分の厚みを有するアルミニウム層を自然酸化法により酸化処理したものである
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項7】
前記トンネルバリア層は、0.1nm以上0.2nm以上の厚みを有するハフニウム(Hf)層と0.4nm以上0.5nm以上の厚みを有するアルミニウム(Al)層との2層構造を自然酸化処理することによって得られたハフニウムおよびアルミニウムの複合酸化物(HfAlOx)からなる単層体である
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項8】
前記磁化フリー層は、
0.5nm以上1.5nm以下の厚みを有するコバルト鉄合金(Co90Fe10)層と、
2.5nm以上3.5nm以下の厚みを有するニッケル鉄合金(Ni82Fe18)層と
を含んでいる
ことを特徴とする請求項1に記載の磁気トンネル接合素子。
【請求項9】
前記キャップ層は、タンタル(Ta)からなり、20.0nm以上30.0nm以下の厚みを有している
ことを特徴とする請求項1に記載の磁気トンネル接合素子。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−146729(P2011−146729A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2011−41736(P2011−41736)
【出願日】平成23年2月28日(2011.2.28)
【分割の表示】特願2005−147225(P2005−147225)の分割
【原出願日】平成17年5月19日(2005.5.19)
【出願人】(500475649)ヘッドウェイテクノロジーズ インコーポレイテッド (251)
【出願人】(505121419)アプライド スピントロニクス インコーポレイテッド (14)
【氏名又は名称原語表記】Applied Spintronics Inc.
【Fターム(参考)】