説明

Fターム[5F102GV09]の内容

接合型電界効果トランジスタ (42,929) | その他の構造 (2,409) | 表面保護膜を形成したもの (2,097) | ネイティブオキサイド(表面酸化膜) (143)

Fターム[5F102GV09]に分類される特許

41 - 60 / 143


【課題】電流電圧のパルス特性を向上させて電流電圧のDC特性に近づける。
【解決手段】半導体層と、半導体層上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極と、ゲート絶縁膜上に設けられ、ゲート絶縁膜上におけるゲート電極の端部の少なくとも一部においてゲート電極と接するゲート境界膜と、を備え、ゲート境界膜およびゲート絶縁膜は、同種の絶縁材料を含む半導体装置を提供する。ゲート電極およびゲート境界膜上に設けられた絶縁性の保護膜を更に備え、保護膜は、ゲート境界膜およびゲート絶縁膜とは別種の絶縁材料を含んでよい。 (もっと読む)


【課題】特性が均一であって、歩留りの高い半導体装置の製造方法を提供する。
【解決手段】第1の半導体層12及び第2の半導体層13が順次形成されている半導体層の表面にレジストパターンを形成する工程と、前記レジストパターンの開口領域における前記第2の半導体層の一部または全部をドライエッチングにより除去しゲートリセス22を形成する工程と、前記レジストパターンを除去した後、ゲートリセスの底面及び側面に付着しているドライエッチング残渣23を除去する工程と、前記ドライエッチング残渣を除去した後、前記ゲートリセスの底面、側面及び前記半導体層上に絶縁膜31を形成する工程と、前記ゲートリセスが形成されている領域に前記絶縁膜を介しゲート電極を形成する工程と、前記半導体層上にソース電極及びドレイン電極を形成する工程と、を有する。 (もっと読む)


【課題】ノーマリオフ動作を容易に実現することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板1上方に形成されたAlGaN層3と、AlGaN層3上に形成されたAlGaN層4と、AlGaN層4上に形成された電子走行層5と、電子走行層5上方に形成された電子供給層6と、が設けられている。AlGaN層3の組成をAlx1Ga1-x1N、AlGaN層4の組成をAlx2Ga1-x2Nと表すと、「0≦x1<x2≦1」の関係が成り立つ。AlGaN層4の上面には、AlGaN層4の下面に存在する正の電荷よりも多くの負の電荷が存在している。 (もっと読む)


【課題】化合物半導体層の表面におけるダングリングボンドを確実に低減させて閾値電圧の変動を抑えて安定化させ、高いトランジスタ特性を得ることができる信頼性の高い化合物半導体装置を実現する。
【解決手段】電極溝2Cの内壁面を含む化合物半導体層2の表面は、電極溝2Cを形成する際のドライエッチングによるエッチング残渣物12a及び変質物12bが除去されて、化合物半導体がフッ素(F)で終端されており、この電極溝2Cをゲート絶縁膜6を介してゲートメタルで埋め込み、或いは電極溝2Cを直接的にゲートメタルで埋め込んで、ゲート電極7が形成される。 (もっと読む)


【課題】最小ループと2セルループのオッドモード発振を共に抑制する高周波回路を提供する。
【解決手段】半導体基板上に並列に配列された複数のトランジスタと、第1の絶縁基板上に配置され、複数のトランジスタのゲート端子電極にそれぞれ接続された複数の入力整合回路と、第1の絶縁基板上に配置され、入力整合回路に隣接して配置された入力側第4発振抑制抵抗と、入力側第4発振抑制抵抗に直列接続された入力側第1キャパシタと、隣接する入力整合回路間を繋ぐ伝送線路上の点と入力側第1キャパシタ間に接続された入力側第1インダクタとを有する入力側発振抑制回路とを備え、入力側第1インダクタのインダクタンス値をL1、入力側第1キャパシタのキャパシタンス値をC1とすると、1/{2π(L1×C1)1/2}で表される入力側第1インダクタと入力側第1キャパシタの共振周波数が、2セルループの発振周波数fosc2に等しい高周波回路。 (もっと読む)


【課題】トランジスタをより高速に動作させることができる半導体装置及びその製造方法を提供する。
【解決手段】半導体装置の一態様には、基板1と、基板1の上方に形成された電子走行層3及び電子供給層4を備えたトランジスタと、基板1の上方に形成され、トランジスタのゲート11gに接続された窒化物半導体層7及び8と、窒化物半導体層7及び8を移動する電荷を制御する制御手段12、13、11s、及び16と、が設けられている。 (もっと読む)


【課題】高周波数動作が可能で、ゲートリーク電流や電流コラプスを抑制できる窒化物半導体装置を提供する。
【解決手段】ソース電極5とドレイン電極6との間の電子供給層4上に、電子供給層とショットキー接触する浮遊電極8を配置し、この浮遊電極上に絶縁膜9を介してゲート電極7を配置する。さらに、ソース電極とドレイン電極との間の電子供給層表面を珪素膜11で被覆する。 (もっと読む)


【課題】窒化物化合物半導体装置において、ゲートリーク電流を抑制する。
【解決手段】化合物半導体装置20は、基板21と、前記基板上方に形成された窒化物半導体よりなるキャリア走行層22を含む半導体積層構造と、前記半導体積層構造上方に形成されたゲート電極26、ソース電極27A、ドレイン電極27Bと、前記半導体積層構造上方であって、ゲート電極とソース電極の間、及び、ゲート電極とドレイン電極との間に形成された絶縁膜28と、前記絶縁膜のうち、ゲート電極とソース電極の間、及びゲート電極とドレイン電極の間に形成された開口と、前記開口に埋め込まれたアルミナ膜29と、を備える。 (もっと読む)


【課題】 AlGaN層上に容易に絶縁膜を形成することができる技術を提供する。
【解決手段】 AlGaN層と、AlGaN層の表面に形成されたAlGaN酸化膜とを備えている半導体装置の製造方法であって、アルカリ溶液48中にAlGaN層を有する基板40と陰極44とを浸した状態で、AlGaN層と陰極44との間にAlGaN層がプラスとなる電圧を印加するとともに、AlGaN層に紫外線を照射する酸化ステップを有している。 (もっと読む)


【課題】歩留まり良く形成することができ、高い信頼性を保つことができる、高周波特性が優れた窒化物半導体装置を提供する。
【解決手段】ソース電極5とドレイン電極6との間の電子供給層4上に、電子供給層とショットキー接触する浮遊電極8を配置し、この浮遊電極上に絶縁膜9を介してゲート電極7を配置する。特に絶縁膜を強誘電体材料とすると好ましい。 (もっと読む)


【課題】電流コラプスを抑制し、且つゲートリーク電流を低減するヘテロ接合電界効果トランジスタの製造方法の提供を目的とする。
【解決手段】本発明に係るヘテロ接合電界効果トランジスタの製造方法は、(a)チャネル層30、バリア層40、キャップ層50が順に積層された積層体を備える窒化物半導体層を準備する工程と、(b)前記窒化物半導体層上にSiを含まないキャップ膜110を形成する工程と、(c)工程(b)の後、前記窒化物半導体層に選択的に不純物を注入し、熱処理により前記不純物を活性化して不純物領域60を形成する工程と、(d)工程(c)の後、キャップ膜110を除去して不純物領域60上にソース電極80及びドレイン電極90を形成する工程と、(e)前記窒化物半導体層の少なくとも一部を除去した領域にゲート電極100を形成する工程と、を備える。 (もっと読む)


【課題】制御性の良い製造方法のみで形成することができる高周波数動作が可能なノーマリオフ型の窒化物半導体装置を提供する。
【解決手段】ソース電極5とドレイン電極6との間の電子供給層4上に、電子供給層とショットキー接触する浮遊電極8を配置し、この浮遊電極8上に絶縁膜9を介してゲート電極7を配置する。そして、ゲート電極に正バイアス印加し、浮遊電極に電子を蓄積される。 (もっと読む)


【課題】電界効果型トランジスタの表面に、誘電性材料の堆積/成長させ、誘電性材料をエッチングし、および、メタルを蒸着させる、連続的なステップを用いる、シングルゲートまたはマルチゲートプレートの製造プロセスの提供。
【解決手段】本製造プロセスは、誘電性材料の堆積/成長が、典型的には、非常によく制御できるプロセスなので、フィールドプレート動作を厳しく制御できる。さらに、デバイス表面に堆積された誘電性材料は、デバイスの真性領域から除去される必要はない。このため、乾式または湿式のエッチングプロセスで受けるダメージの少ない材料を用いることなく、フィールドプレートされたデバイスを、実現することができる。マルチゲートフィールドプレートを使うと、マルチ接続を使用するので、ゲート抵抗を減らすこともでき、こうして、大周辺デバイスおよび/またはサブミクロンゲートデバイスの性能を向上することができる。 (もっと読む)


【課題】チャネル層をInAsから構成するヘテロ構造の電界効果トランジスタで、高速で安定した動作ができるようにする。
【解決手段】キャップ層105の表面を塩酸からなる処理液で処理する。処理液は、例えば、塩化水素の37質量%水溶液を、水で5倍(体積)に希釈したものである。次に、基板101を処理液中より引き上げ、直ちにキャップ層105の表面に付着している塩酸を除去する。この塩酸の除去では、水を用いることなく、例えば、キャップ層105の表面に窒素ガスを吹き付けることで付着している塩酸を除去する。 (もっと読む)


【課題】ゲート電極の端部でのバイアス電界集中が緩和され、且つ動作時のオン抵抗の増大が抑制された化合物半導体装置を提供する。
【解決手段】キャリア供給層22、及びキャリア供給層22との界面近傍において二次元キャリアガス層23が形成されるキャリア走行層21を有する化合物半導体層20と、化合物半導体層20の主面200上に配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で主面200上に配置されたゲート電極5と、ゲート電極5とドレイン電極4間で主面200上方に配置されたフィールドプレート6と、フィールドプレート直下の二次元キャリアガス層が形成される領域内に配置された、上方にフィールドプレート若しくはゲート電極が配置されていない二次元キャリアガス層が形成される領域よりも導電率が低い低導電性領域210とを備える。 (もっと読む)


【課題】ノーマリーオフ半導体素子のための高品質の酸化物からなる絶縁膜を提供する。
【解決手段】半導体積層構造を有する基板3の上に、酸化物を含む絶縁膜を形成する工程において、酸化物を構成する元素単体ないしは元素の化合物を半導体積層構造を有する基板3の上に付着させる際に、水素ガス中に高純度水を加熱ないしは冷却することにより水蒸気圧を精密制御して混入させることにより、元素単体ないしは元素の化合物を酸化させる酸素分圧を精密に制御して、酸化物の組成を精密制御し、もって半導体積層構造を有する基板3と物理化学的に整合する絶縁膜を形成する。 (もっと読む)


【課題】高いしきい値電圧と低いリーク電流のノーマリーオフの半導体素子を提供する。
【解決手段】基板2の上に少なくともAlを含むIII族窒化物からなる下地層(バッファー層)3を設けた上で、III族窒化物、好ましくはGaNからなる第1の半導体層(チャネル層)4と、少なくともAlを含むIII族窒化物、好ましくはAlxGa1−xNであってx≧0.2である第2の半導体層(電子供給層)6が積層されてなる半導体層群からなるHEMT構造の半導体素子の上に、AlN−Al2O3の混晶からなる絶縁膜7を形成し、その上にゲート電極9を形成した。 (もっと読む)


【課題】高いしきい値電圧と低いリーク電流のノーマリーオフの半導体素子を提供する。
【解決手段】基板2の上に少なくともAlを含むIII族窒化物からなる下地層(バッファー層)3を設けた上で、III族窒化物、好ましくはGaNからなる第1の半導体層(チャネル層)4と、少なくともAlを含むIII族窒化物、好ましくはAlxGa1−xNであってx≧0.2である第2の半導体層(電子供給層)6が積層されてなる半導体層群からなるHEMT構造の半導体素子の上に、Al2O3−Ga2O3の混晶からなる絶縁膜7を形成し、その上にゲート電極9を形成した。 (もっと読む)


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】半導体装置を構成する半導体層の表面上にAlOx層を安価に形成でき、且つAlOx層を厚膜化できる半導体装置の製造方法を提供する。
【解決手段】半導体基板1と、前記半導体基板1上に形成された窒化物系化合物半導体層2、3、4と、前記窒化物系化合物半導体層2、3、4上に隣接して形成された酸化アルミニウム層7と、を備える半導体装置の製造方法であって、
前記窒化物系化合物半導体層2、3、4上に多結晶又は非晶質の窒化アルミニウム層6を形成する第1の工程と、前記多結晶又は非晶質の窒化アルミニウム層6を熱酸化して前記酸化アルミニウム層7を得る第2の工程と、を備えることを特徴とする半導体装置の製造方法。 (もっと読む)


41 - 60 / 143