説明

Fターム[5F110HJ22]の内容

薄膜トランジスタ (412,022) | ソース、ドレイン−不純物領域 (11,069) | 不純物領域の製法 (6,364) | 不純物導入後の処理 (2,071)

Fターム[5F110HJ22]の下位に属するFターム

Fターム[5F110HJ22]に分類される特許

21 - 40 / 190


【課題】酸化物半導体を用いた半導体装置に安定した電気的特性を付与し、高信頼性化する。
【解決手段】酸化物半導体層を含むトランジスタにおいて、酸化物半導体層の上面部及び下面部に、酸化物半導体層と同種の成分でなるバッファ層が接して設けられたトランジスタ、及び該トランジスタを含む半導体装置を提供する。酸化物半導体層に接するバッファ層としては、アルミニウム、ガリウム、ジルコニウム、ハフニウム、又は希土類元素から選択された一以上の元素の酸化物を含む膜を適用することができる。 (もっと読む)


【課題】酸化物半導体を用いたトランジスタは、非晶質シリコンを用いたトランジスタと比較して信頼性が劣る場合があった。そこで、信頼性が高い酸化物半導体を用いたトランジスタを有する半導体装置を提供する。
【解決手段】酸化物半導体膜に含まれる水素、窒素および炭素などの不純物は酸化物半導体膜の半導体特性を低下させる要因となる。例えば、酸化物半導体膜に含まれる水素および窒素は、酸化物半導体膜を用いたトランジスタのしきい値電圧をマイナス方向へシフトさせてしまう要因となる。また、酸化物半導体膜に含まれる窒素、炭素および希ガスは、酸化物半導体膜中に結晶領域が生成されることを阻害する。そこで、酸化物半導体膜の不純物濃度を低減することで、高い信頼性を有するトランジスタを作製する。 (もっと読む)


【課題】用途に合わせて要求される電気的特性を備えた酸化物半導体層を用いたトランジスタ、及び該トランジスタを有する半導体装置を提供する。
【解決手段】酸化物絶縁膜上に、半導体層、ソース電極層又はドレイン電極層、ゲート絶縁膜、及びゲート電極層が順に積層されたトランジスタにおいて、該半導体層としてバンドギャップの異なる少なくとも2層の酸化物半導体層を含む酸化物半導体積層を用いる。酸化物半導体積層には、酸素又は/及びドーパントを導入してもよい。 (もっと読む)


【課題】酸化物半導体をチャネル形成領域に用いたトランジスタの電気特性のしきい値電圧をプラスにすることができ、所謂ノーマリーオフのスイッチング素子を実現するトランジスタ構造を提供する。
【解決手段】異なるエネルギーギャップを有する、少なくとも第1の酸化物半導体層及び第2の酸化物半導体層を積層させた酸化物半導体積層であって、化学量論的組成比よりも過剰に酸素を含む領域を有する酸化物半導体積層を用いてトランジスタを形成する。 (もっと読む)


【課題】酸化物半導体をチャネル形成領域に用いたトランジスタの電気特性のしきい値電圧をプラスにすることができ、所謂ノーマリーオフのスイッチング素子を実現するトランジスタ構造およびその作製方法を提供することを課題とする。
【解決手段】第1の酸化物半導体層上に、電子親和力が第1の酸化物半導体層の電子親和力よりも大きく、またはエネルギーギャップが第1の酸化物半導体層のエネルギーギャップよりも小さい第2の酸化物半導体層を形成し、さらに第2の酸化物半導体層を包むように第2の酸化物半導体層の側面及び上面を覆う第3の酸化物半導体層を形成する。 (もっと読む)


【課題】単一基板上にソース・ドレインを同一工程で同時形成したIII−V族半導体のnMISFETおよびIV族半導体のpMISFETのソース・ドレイン領域抵抗または接触抵抗を小さくする。
【解決手段】Ge基板上に形成されたPチャネル型MISFETの第1ソースおよび第1ドレインが、Ge原子とニッケル原子との化合物、Ge原子とコバルト原子との化合物またはGe原子とニッケル原子とコバルト原子との化合物からなり、III−V族化合物半導体からなる半導体結晶層に形成されたNチャネル型MISFETの第2ソースおよび第2ドレインが、III族原子およびV族原子とニッケル原子との化合物、III族原子およびV族原子とコバルト原子との化合物、または、III族原子およびV族原子とニッケル原子とコバルト原子との化合物からなる半導体デバイスを提供する。 (もっと読む)


【課題】TFTの特性が十分に安定した半導体装置を提供する。
【解決手段】絶縁性基板1上に下地層2を形成し、その上に局所的に半導体層3を形成する。次に、この半導体層3を覆うようにゲート絶縁膜4を形成し、ゲート絶縁膜4上の一部にゲート電極5を形成する。次に、ゲート絶縁膜4越しに半導体層3に不純物を注入して、ソース領域6、ドレイン領域7及びLDD領域8を形成する。そして、ゲート絶縁膜4を、希フッ酸により洗浄してエッチングする。次に、ゲート電極5を覆うように電極保護絶縁膜9を形成し、この電極保護絶縁膜9の表層部の全面を希フッ酸により洗浄してエッチング除去する。これにより、ゲート絶縁膜4及び電極保護絶縁膜9内に導入されたキャリアトラップを除去する。 (もっと読む)


【課題】新たなロジックインメモリ構造を提供する。また、より消費電力の低い信号処理回路を提供する。また、より消費電力の低い電子機器を提供する。
【解決手段】オフ電流の低いトランジスタを用いて記憶素子を構成することで、記憶機能と演算機能を組み合わせた回路を提供する。オフ電流の低いトランジスタを用いることで、オフ電流の低いトランジスタのソースまたはドレインの一方と、他のトランジスタのゲートとの間などに電荷を保持することができる。そのため、オフ電流の低いトランジスタのソース又はドレインの一方と、他のトランジスタのゲートと、の間のノード等を記憶素子として用いることができる。また、加算器の動作に伴うリーク電流を著しく低減することができる。これにより、消費電力の低い信号処理回路を構築することが可能である。 (もっと読む)


【課題】高速動作、低消費電力である半導体装置の提供。
【解決手段】結晶性のシリコンをチャネル形成領域に有する第1のトランジスタを用いた記憶素子と、当該記憶素子のデータを記憶する容量素子と、当該容量素子における電荷の供給、保持、放出を制御するためのスイッチング素子である第2のトランジスタとを有する。第2のトランジスタは第1のトランジスタを覆う絶縁膜上に位置する。第1及び第2のトランジスタは、ソース電極又はドレイン電極を共有している。上記絶縁膜は、加熱により一部の酸素が脱離する第1の酸化絶縁膜と、酸素の拡散を防ぎ、なおかつ当該第1の酸化絶縁膜の周囲に設けられた第2の酸化絶縁膜とを有し、第2のトランジスタが有する酸化物半導体膜は、上記第1の酸化絶縁膜に接し、かつチャネル形成領域である第1の領域と、第1の領域を挟み、第1及び第2の酸化絶縁膜に接する一対の第2の領域とを有する半導体装置。 (もっと読む)


【課題】動作速度の低下を抑制しつつ、消費電力を低減する。
【解決手段】第1の半導体領域の上に絶縁領域を有し、且つ絶縁領域の上に第2の半導体領域を有する基板に設けられた第1の電界効果トランジスタと、基板の上に設けられた絶縁層と、絶縁層の一平面に設けられ、酸化物半導体層を含む第2の電界効果トランジスタと、第2の電界効果トランジスタのソース及びドレインと同一工程により形成され、第1の電界効果トランジスタの閾値電圧を制御するための電圧が供給される制御端子と、を備える。 (もっと読む)


【課題】新たな構成の不揮発性の記憶素子、それを用いた信号処理回路を提供する。
【解決手段】第1の回路と第2の回路とを有し、第1の回路は第1のトランジスタと第2のトランジスタとを有し、第2の回路は第3のトランジスタと第4のトランジスタとを有する。第1の信号に対応する信号電位は、オン状態とした第1のトランジスタを介して第2のトランジスタのゲートに入力され、第2の信号に対応する信号電位は、オン状態とした第3のトランジスタを介して第4のトランジスタのゲートに入力される。その後、第1のトランジスタ及び第3のトランジスタをオフ状態とする。第2のトランジスタの状態と第4のトランジスタの状態との両方を用いて、第1の信号を読み出す。第1のトランジスタ及び第3のトランジスタは、チャネルが酸化物半導体層に形成されるトランジスタとする。 (もっと読む)


【課題】消費電力を抑えることができる信号処理装置を提供する。
【解決手段】信号処理装置が有する記憶回路に、酸化物半導体にチャネルが形成されるトランジスタを適用することで、電力の供給を停止している間もデータの保持(記憶)を可能とする。記憶回路に記憶されているデータは、信号処理装置への電力の供給を停止している間も、破壊すること無く読み出すことができる。 (もっと読む)


【課題】記憶回路におけるデータの保持期間を長くする。また、消費電力を低減する。また、回路面積を小さくする。また、1回のデータの書き込みに対する該データの読み出し可能回数を増やす。
【解決手段】記憶回路を具備し、記憶回路は、ソース及びドレインの一方にデータ信号が入力される第1の電界効果トランジスタと、ゲートが第1の電界効果トランジスタのソース及びドレインの他方に電気的に接続される第2の電界効果トランジスタと、一対の電流端子を有し、一対の電流端子の一方が第2の電界効果トランジスタのソース又はドレインに電気的に接続される整流素子と、を備える。 (もっと読む)


【課題】高い電界効果移動度を有し、しきい値電圧のばらつきが小さく、かつ高い信頼性を有する酸化物半導体を用いたトランジスタを提供する。また、該トランジスタを用い、これまで実現が困難であった高性能の半導体装置を提供する。
【解決手段】トランジスタに、インジウム、スズ、亜鉛およびアルミニウムから選ばれた二種以上、好ましくは三種以上の元素を含む酸化物半導体膜を用いる。該酸化物半導体膜は、基板加熱しつつ成膜する。また、トランジスタの作製工程において、近接の絶縁膜または/およびイオン注入により酸化物半導体膜へ酸素が供給され、キャリア発生源となる酸素欠損を限りなく低減する。また、トランジスタの作製工程において、酸化物半導体膜を高純度化し、水素濃度を極めて低くする。 (もっと読む)


【課題】微細化による電気特性の変動が生じにくい半導体装置を提供する。
【解決手段】第1の領域と、第1の領域の側面に接した一対の第2の領域と、一対の第2
の領域の側面に接した一対の第3の領域と、を含む酸化物半導体膜と、酸化物半導体膜上
に設けられたゲート絶縁膜と、ゲート絶縁膜上に第1の領域と重畳した第1の電極と、を
有し、第1の領域は、CAAC酸化物半導体領域であり、一対の第2の領域及び一対の第
3の領域は、ドーパントを含む非晶質な酸化物半導体領域であり、一対の第3の領域のド
ーパント濃度は、一対の第2の領域のドーパント濃度より高い半導体装置である。 (もっと読む)


【課題】低温プロセスを実現する半導体装置の作製方法、及び半導体装置を提供する。
【解決手段】結晶構造を有する半導体層の一部にp型を付与する不純物元素及び水素を同時に添加することによって、一部の上層部分を非晶質化するとともに、一部の下層部分に結晶質を残存させ、加熱処理を行うことによって、一部の中の水素を拡散させる。 (もっと読む)


【課題】3層以上の配線を接続する際に、最も効率的にかつ最小面積で接続を行えるコンタクト構造を実現可能な半導体装置およびその製造方法、並びに表示装置を提供する。
【解決手段】基板201上に3層以上のn層の導電層202〜204が積層して形成され、n層の導電層がコンタクトパターンを介して接続され、コンタクトパターンが形成される一つの主コンタクト領域には、(n−1)個の導電層202,203を接続する(n−1)個の接続領域211,212を有し、(n−1)個の導電層のうち基板201に対する積層方向(基板201の主面に対する法線方向)において第1層より上層の導電層は、その終端部がコンタクトパターンCPTNの縁の一部に臨むように形成され、(n−1)個の導電層は、第n層の導電層により電気的に接続されている。第n層の導電層は、コンタクトパターンCPTNであるコンタクト孔を埋めつくよう形成されている。 (もっと読む)


【課題】酸化物半導体を用いるトランジスタにおいて、電気特性の良好なトランジスタ及びその作製方法を提供する。
【解決手段】下地絶縁膜上に形成される酸化物半導体膜と、当該酸化物半導体膜とゲート絶縁膜を介して重畳するゲート電極と、酸化物半導体膜に接し、ソース電極及びドレイン電極として機能する一対の電極とを備えるトランジスタであり、下地絶縁膜は、酸化物半導体膜と一部接する第1の酸化絶縁膜と、当該第1の酸化絶縁膜の周囲に設けられる第2の酸化絶縁膜とを有し、トランジスタのチャネル幅方向と交差する酸化物半導体膜の端部は、第2の酸化絶縁膜上に位置するものである。 (もっと読む)


【課題】素子面積の増大を抑制しつつ、駆動電流の高いON/OFF比と安定した特性を実現できる半導体装置及びその製造方法を提供する。
【解決手段】絶縁層と、絶縁層上に形成された半導体層と、半導体層に形成された部分空乏型のトランジスター10とを備え、トランジスター10は、半導体層上に絶縁膜を介して形成されたゲート電極14と、ゲート電極14両側下の半導体層に形成されたソース15又はドレイン16と、ボディーの下部に設けられた不純物層17,18とを有し、不純物層17,18は、ボディー領域の下部の両側端部に形成され、ソース15、ドレイン16とは接しない。 (もっと読む)


【課題】酸化物半導体膜を用いたトランジスタに安定した電気的特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】酸化物半導体膜を用いた半導体装置であるトランジスタにおいて、酸化物半導体膜から水素を捕縛する膜(水素捕縛膜)、および水素を拡散する膜(水素透過膜)を有し、加熱処理によって酸化物半導体膜から水素透過膜を介して水素捕縛膜へ水素を移動させる。具体的には、酸化物半導体膜を用いたトランジスタの下地膜または保護膜を、水素捕縛膜と水素透過膜との積層構造とする。このとき、水素透過膜を酸化物半導体膜と接する側に、水素捕縛膜をゲート電極と接する側に、それぞれ形成する。その後、加熱処理を行うことで酸化物半導体膜から脱離した水素を、水素透過膜を介して水素捕縛膜へ移動させることができる。 (もっと読む)


21 - 40 / 190