説明

Fターム[5F140AC36]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 動作、用途、素子構造 (4,642) | 薄膜トランジスタ、TFT、SOI、SOS (1,150)

Fターム[5F140AC36]に分類される特許

161 - 180 / 1,150


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】ノーマリーオフ半導体素子のための高品質の酸化物からなる絶縁膜を提供する。
【解決手段】半導体積層構造を有する基板3の上に、酸化物を含む絶縁膜を形成する工程において、酸化物を構成する元素単体ないしは元素の化合物を半導体積層構造を有する基板3の上に付着させる際に、水素ガス中に高純度水を加熱ないしは冷却することにより水蒸気圧を精密制御して混入させることにより、元素単体ないしは元素の化合物を酸化させる酸素分圧を精密に制御して、酸化物の組成を精密制御し、もって半導体積層構造を有する基板3と物理化学的に整合する絶縁膜を形成する。 (もっと読む)


【課題】縦型のトランジスタにおいてゲートからシリサイドの位置を精度よく制御できるようにする。
【解決手段】柱状半導体14の中央部には、その周囲を囲むように、ゲート絶縁膜9が形成され、さらに、ゲート絶縁膜9の周囲を囲むように、ゲート層6が形成されている。この柱状半導体14の中央部、ゲート絶縁膜9、ゲート層6により、MIS構造が形成されている。ゲート層6の上下には、第1絶縁膜4が形成されている。第1絶縁膜4は、柱状半導体14にも接している。柱状半導体14の側面には、シリサイド18及びn型拡散層(不純物領域)19が形成されている。シリサイド18は、第1絶縁膜4によってセルフ・アラインされた位置に形成されている。 (もっと読む)


【課題】低い寄生抵抗(例えば、Rpara)および/または高い駆動電流の改善された特性を有するフィンフェットを提供する。
【解決手段】フィンフェット100およびフィンフェットの製造方法が提供される。フィンフェットは、半導体基板106上に、2つまたは複数のフィン102,104と、前記フィンの側面に設けられるエピタキシャル層108,110と、前記エピタキシャル層の表面上を覆うように設けられる金属−半導体化合物112,114とを備える。フィンは、前記半導体基板の表面上に対して実質的に垂直な側面を有する。前記エピタキシャル層は、前記フィンの側面に対して斜角を有して延設される表面を有する。フィンフェットは、前記金属−半導体化合物上に設けられるコンタクト116を含み得る。 (もっと読む)


【課題】良好な特性を有し且つ微細化を実現した半導体装置とその製造方法を提供する。
【解決手段】半導体装置は、平面状シリコン層212上の柱状シリコン層208、柱状シリコン層208の底部領域に形成された第1のn型シリコン層113、柱状シリコン層208の上部領域に形成された第2のn型シリコン層144、第1及び第2のn型シリコン層113,144の間のチャネル領域の周囲に形成されたゲート絶縁膜140、ゲート絶縁膜140の周囲に形成され第1の金属シリコン化合物層159aを有するゲート電極210、ゲート電極210と平面状シリコン層212の間に形成された絶縁膜129a、柱状シリコン層208の上部側壁に形成された絶縁膜サイドウォール223、平面状シリコン層212に形成された第2の金属シリコン化合物層160、及び第2のn型シリコン層144上に形成されたコンタクト216を備える。 (もっと読む)


【課題】半導体装置を構成する半導体層の表面上にAlOx層を安価に形成でき、且つAlOx層を厚膜化できる半導体装置の製造方法を提供する。
【解決手段】半導体基板1と、前記半導体基板1上に形成された窒化物系化合物半導体層2、3、4と、前記窒化物系化合物半導体層2、3、4上に隣接して形成された酸化アルミニウム層7と、を備える半導体装置の製造方法であって、
前記窒化物系化合物半導体層2、3、4上に多結晶又は非晶質の窒化アルミニウム層6を形成する第1の工程と、前記多結晶又は非晶質の窒化アルミニウム層6を熱酸化して前記酸化アルミニウム層7を得る第2の工程と、を備えることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】新規なFinFET構造及びその製造方法を提供する。
【解決手段】シングルゲートフィンFET構造100は、2つの拡大された頭部、及び当該拡大された頭部と下層の超薄型ボディとを連結する2つの徐々に細くなる首部を有するアクティブフィン構造を含む。2つのソース/ドレイン領域102,104が、2つの拡大された頭部にそれぞれドープされる。絶縁領域26が、2つのソース/ドレイン領域の間に挿入される。溝分離構造24が、音叉形状のフィン構造の一方の側に配置される。片面サイドウォールゲート電極12bが、アクティブフィン構造における、溝分離構造とは反対側の垂直なサイドウォールに配置される。 (もっと読む)


【課題】導電膜を有する半導体装置は、導電膜の内部応力の影響を受ける。内部応力について検討する。
【解決手段】絶縁表面上に設けられたnチャネル型TFTを有する半導体装置は、半導体膜が引っ張り応力を受けるように、導電膜、例えばゲート電極に不純物元素が導入され、絶縁表面上に設けられたpチャネル型TFTを有する半導体装置は、半導体膜が圧縮応力を受けるように、導電膜、例えばゲート電極に不純物が導入されている。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38の上部に、ドレイン電極36側及びソース電極34側に庇状に突き出したフィールドプレート40が形成され、基板32の表面層とフィールドプレート40との間に誘電体膜46が形成され、誘電体膜46は、フィールドプレート40のドレイン電極36側及びソース電極34側の終端面と面一状態となるように切れ込み、ドレイン電極36側の下端からドレイン電極36に接続するようにドレイン電極36に向かって延びており、且つ、ソース電極34側の下端からソース電極34に接続するようにソース電極34に向かって延びている。 (もっと読む)


【課題】高周波信号経路を切り替えるために半導体基板上に形成された、小型でかつ低歪特性を実現するスイッチング素子を提供する。
【解決手段】スイッチング素子の一例であるFET100は半導体基板109上に形成された櫛型の2つのソース・ドレイン電極101と、2つのソース・ドレイン電極101の間を這うように配置された少なくとも2本のゲート電極102と、隣り合うゲート電極102の間に挟まれ、かつ、隣り合うゲート電極102に沿って配置された導電層103とを備え、ゲート電極102の2つのソース・ドレイン電極101の指状部と平行な部分である直線部108の直下に位置する層が、ゲート電極102の隣り合う一対の直線部108をつなぐ部分である屈曲部107の直下に位置する層から、電気的に分離されている。 (もっと読む)


【課題】シリコン基板裏面をソース電極として使用するLDMOSFETにおいて、出力効率向上のため、基板抵抗を下げようとして高濃度ボロンドープ基板を用いると、ソースドレイン間のリーク不良が、多発することが、本願発明者等によって明らかにされた。更に、この不良解析の結果、ソース不純物ドープ領域からP型エピタキシ層を貫通してP型基板に至るP型ポリシリコンプラグに起因する不所望な応力が、このリーク不良の原因であることが明らかにされた。
【解決手段】本願発明は、LDMOSFETを含む半導体装置であって、LDMOSFETのソース不純物ドープ領域の近傍の上面から下方に向けてエピタキシ層内をシリコン基板の近傍まで延び、前記エピタキシ層内にその下端があるシリコンを主要な成分とする導電プラグを有する。 (もっと読む)


【課題】ゲート耐電圧が高くかつオン抵抗が低減されたノーマリオフ型GaN系FETを提供する。
【解決手段】ノーマリオフ型GaN系FETは、第1種GaN系半導体からなるチャネル層4と、このチャネル層上で互いに隔てて設けられた第2種GaN系半導体からなる一対の電子供給層5と、これら電子供給層の間でチャネル層を覆うゲート絶縁膜7と、チャネル層にオーミックコンタクトしているソース電極およびドレイン電極と、ゲート絶縁膜上に形成されたゲート電極とを備え、ゲート絶縁膜はチャネル層上に順次堆積された第1と第2の絶縁層を含み、第1絶縁層7aはSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有し、第2絶縁層7bは第1絶縁層に比べて大きなε×Eを有し、ここでεは誘電率を表し、Eは絶縁破壊電界を表している。 (もっと読む)


【課題】デバイスのオン状態及びオフ状態の両方の破壊電圧を同時に最適化する高電圧トランジスタ構造。
【解決手段】高電圧トランジスタは、半導体基板のメサを定める第一及び第二の溝を含む。第一及び第二のフィールドプレート部材は、それぞれ、第一及び第二の溝に配置され、第一及び第二のフィールドプレート部材の各々は、誘電体層でメサから分離されている。メサは複数の部分を含み、各部分は、実質的に一定のドーピング濃度勾配を持ち、一の部分の勾配は、他の部分の勾配よりも少なくとも10%大きい。 (もっと読む)


【課題】低閾値動作が可能な電界効果トランジスタを提供する。
【解決手段】n型半導体領域2と、半導体領域に離間して形成されたソース領域およびドレイン領域12a、12bと、ソース領域12aとドレイン領域12bとの間の半導体領域上に形成され、シリコンと酸素を含む第1絶縁膜4と、第1絶縁膜上に形成され、Hf、Zr、Tiから選ばれた少なくとも1つの物質と酸素を含む第2絶縁膜8と、第2絶縁膜上に形成されたゲート電極10と、を備え、第1絶縁膜と第2絶縁膜との界面7aを含む界面領域7に、Geが導入されており、Geの面密度が、界面領域7内の第1絶縁膜4側においてピークを有している。 (もっと読む)


【課題】Cu系合金配線膜と半導体層との間に通常設けられるバリアメタル層を省略しても優れた低接触抵抗を発揮し得、さらに密着性に優れた配線構造を提供する。
【解決手段】本発明の配線構造は、基板の上に、基板側から順に、半導体層と、Cu合金層とを備えた配線構造であって、前記半導体層と前記Cu合金層との間に、基板側から順に、窒素、炭素、フッ素、および酸素よりなる群から選択される少なくとも一種の元素を含有する(N、C、F、O)層と、CuおよびSiを含むCu−Si拡散層との積層構造を含んでおり、前記(N、C、F、O)層を構成する窒素、炭素、フッ素および酸素のいずれかの元素は前記半導体層のSiと結合しており、前記Cu合金層は、Cu−X合金層(第一層)と第二層とを含む積層構造である。 (もっと読む)


【課題】バイアス条件によらず、モデルに対する解析精度を向上させる。
【解決手段】本発明による半導体回路の設計支援方法は、第1モデル22を用いて、プロセスパラメータが変動したときのデバイス特性の変動量102を算出するステップと、第2モデル23を用いて算出されたデバイス特性と実測値21との誤差に対して、変動量102で規格化するステップと、演算装置11が、規格化された誤差を用いて第2モデル23に対する解析を行うステップとを具備する。 (もっと読む)


【課題】高い移動度、低いオン抵抗を備えたノーマリオフ型の電界効果トランジスタを提供する。
【解決手段】III族窒化物系化合物半導体からなるチャネル層104と、前記チャネル層上に形成されたAlInGaNからなる界面層106と、前記界面層上に形成され、前記界面層に達するリセス部を備えたIII族窒化物系化合物半導体からなる電子供給層108と、前記リセス部を挟んで、前記電子供給層108上に形成されたソース電極110およびドレイン電極112と、前記リセス部の内表面に形成された絶縁膜120と、前記絶縁膜上に形成されたゲート電極114とを備える。 (もっと読む)


【課題】 高密度で、構造部寸法がより小さく、より正確な形状の半導体構造体及び電子デバイスを提供する。
【解決手段】 炭素ベース材料の上面上に配置された少なくとも一層の界面誘電体材料を含む、半導体構造体及び電子デバイスが提供される。少なくとも一層の界面誘電体材料は、炭素ベース材料のものと同じである、典型的には六方晶短距離結晶結合構造を有し、従って、少なくとも一層の界面誘電体材料が、炭素ベース材料の電子構造を変えることはない。炭素ベース材料のものと同じ短距離結晶結合構造を有する少なくとも一層の界面誘電体材料の存在により、炭素ベース材料と、誘電体材料、導電性材料、又は誘電体材料及び導電性材料の組み合わせを含む、上にある任意の材料層との間の界面結合が改善される。その結果、改善された界面結合が、炭素ベース材料を含むデバイスの形成を容易にする。 (もっと読む)


【課題】 ミリ波以上の周波数において、安定して、高い利得および動作周波数が得られる電界効果トランジスタを提供する。
【解決手段】 基板11上の動作層13の上に、ソース電極14、ドレイン電極15、ゲート電極18、絶縁膜17が形成され、
ゲート電極18は、ソース電極14とドレイン電極15の間に配置され、
絶縁膜17は、ゲート電極18とドレイン電極15の間に配置され、
フィールドプレート電極19は、絶縁膜17上に形成され、かつ、ソース電極14と電気的に接続され、
ゲート電極18上部は、ソース電極14側およびドレイン電極15側に突出し、
フィールドプレート電極19下端は、ゲート電極18下端よりも下方に配置され、
フィールドプレート電極19上端は、ゲート電極19上部においてドレイン電極15側に最も突出した部分よりも下方に配置されている電界効果トランジスタ。 (もっと読む)



161 - 180 / 1,150