説明

Fターム[5F140BA02]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 基板材料 (9,253) | 4族 (5,747) | SiC (638)

Fターム[5F140BA02]に分類される特許

41 - 60 / 638


【課題】素子特性の低下を抑制することが可能な半導体装置を提供する。
【解決手段】シリコン基板11と、シリコン基板11の表面に形成された炭化シリコン膜12と、炭化シリコン膜12の表面に形成された、開口部13hを有するマスク材13と、開口部13hにおいて露出した炭化シリコン膜12を基点としてエピタキシャル成長された、炭化シリコン膜12及びマスク材13を覆う単結晶炭化シリコン膜14と、単結晶炭化シリコン膜14の表面に形成された半導体素子20と、を含み、マスク材13の上には、単結晶炭化シリコン膜14が会合して形成された会合部12Sbが存在しており、半導体素子20はボディコンタクト領域21を有しており、ボディコンタクト領域21は、シリコン基板11の表面と直交する方向から見て会合部12Sbと重なる位置に配置されている。 (もっと読む)


【課題】ゲート電極によるチャネルのポテンシャル制御性を大幅に向上させ、信頼性の高い所期の高耐圧及び高出力を得ることのできる化合物半導体装置を実現する。
【解決手段】AlGaN/GaN・HEMTは、Si基板1と、Si基板1の上方に形成された電子走行層2bと、電子走行層2bの上方に形成された電子供給層2cと、電子供給層2cの上方に形成されたソース電極4、ドレイン電極5及びゲート電極6とを含み構成されており、電子走行層2cは、平面視でソース電極4とドレイン電極5とを結ぶ方向と交差する方向に並ぶ複数の段差、例えば第1の段差2ca、第2の段差2cb、第3の段差2ccを有する。 (もっと読む)


【課題】ゲートリーク電流が少なく、かつ電流コラプスが抑えられた半導体装置の提供。
【解決手段】第1の態様においては、窒化物系半導体で形成された半導体層110と、半導体層上に開口を有して設けられ、タンタル酸窒化物を含む第1絶縁膜120と、第1絶縁膜の開口において半導体層上に積層された第2絶縁膜130と、第2絶縁膜上に設けられたゲート電極140と、を備える半導体装置を提供する。ここで、第2絶縁膜は、第1絶縁膜より絶縁性が高い絶縁膜により構成される。 (もっと読む)


【課題】ゲート絶縁膜の破壊を防止すると共に、信頼性を向上させた、ノーマリオフの双方向動作が可能な窒化物系半導体装置を提供する。
【解決手段】窒化物系半導体素子10は、第1MOSFET部30及び第2MOSFET部31を備えており、第1ゲート電極26と第2ゲート電極27との間に設けられた第1SBD金属電極28及び第2SBD金属電極29がAlGaN層20とショットキー接合されている。第1SBD金属電極28と第1電極24とが接続されており、電気的に短絡していると共に、第2SBD金属電極29と第2電極25とが接続されており、電気的に短絡している。 (もっと読む)


【課題】バッファ層を有する半導体素子において、チャネルの基準電位を固定する半導体素子及びその製造方法を提供する。
【解決手段】基板10と、基板上に設けられ、エネルギーギャップの異なる複数種類の窒化物半導体が積層された積層体を少なくとも1層有するバッファ層20と、バッファ層上に設けられた窒化物半導体のチャネル層30と、バッファ層の側面に電気的に接続された側面電極60と、チャネル層の上方に形成され、チャネル層と電気的に接続されたチャネル電極52,56とを備える半導体素子。 (もっと読む)


【課題】MISあるいはMOS界面の欠陥密度(界面準位密度)を簡便かつ高い精度で求める。
【解決手段】絶縁物/半導体界面における界面欠陥に起因する容量CITが無視できる程度の高周波におけるC−V特性を元に、酸化膜容量の影響を排除した半導体容量(CD+CIT)を計算するステップと、1/(CD+CIT2を低周波(準静電的)C−V特性から計算される表面ポテンシャルψsに対してプロットするステップと、ψs−1/(CD+CIT2プロットの外挿値が原点を通るように定数項を定めることにより、表面ポテンシャルψsの絶対値を確定するステップと、を有することを特徴とする絶縁物/半導体界面の評価方法。 (もっと読む)


【課題】SOI基板を用いることなく、絶縁層上にフィン型半導体を形成する。
【解決手段】半導体基板1上に支柱型半導体4を形成し、支柱型半導体4の下部を埋め込む絶縁層5を半導体基板1上に形成し、支柱型半導体4の上部の側面に接合されたフィン型半導体6を絶縁層5上に形成し、フィン型半導体6を絶縁層5上に残したまま支柱型半導体4を除去する。 (もっと読む)


【課題】トンネル型FETのオン電流とオフ電流との比と、単位基板面積あたりのオン電流を増大させる。
【解決手段】実施形態によれば、半導体装置は、半導体基板と、前記半導体基板上に絶縁膜を介して形成されたゲート電極と、前記ゲート電極の側面に形成されたゲート絶縁膜とを備える。さらに、前記装置は、前記半導体基板上に順に積層された第1導電型の下部主端子層と、中間層と、第2導電型の上部主端子層とを有し、前記ゲート絶縁膜を介して前記ゲート電極の側面に形成された積層体とを備える。さらに、前記上部主端子層は、前記ゲート電極の側面に、前記ゲート絶縁膜と半導体層を介して形成されている。 (もっと読む)


【課題】窒化物半導体層をチャネルとして用いたトランジスタにおいて、閾値電圧を高くする。
【解決手段】第2窒化物半導体層200は、Alの組成比が互いに異なる複数の窒化物半導体層を順次積層した構造を有するため、Al組成が階段状に変化している。第2窒化物半導体層200を形成する複数の半導体層は、それぞれが同一方向に分極している。そしてゲート電極420に近い半導体層は、ゲート電極420から遠い半導体層よりも、分極の強度が強く(又は弱く)なっている。すなわち複数の半導体層は、ゲート電極420に近づくにつれて、分極の強度が一方向に変化している。この分極の方向は、複数の半導体層内の界面において負の電荷が正の電荷よりも多くなる方向である。 (もっと読む)


【課題】finFETにおける高集積化可能な、高濃度ソースドレインの形成方法の提供。
【解決手段】ソース領域、ドレイン領域およびソース領域とドレイン領域の間のチャネル領域を有するフィンを形成する。チャネル領域にダイレクトコンタクトする絶縁層と、絶縁層にダイレクトコンタクトする伝導性のゲート物質とを有するゲートスタックを形成する。チャネル領域を残したまま、ソース領域およびドレイン領域をエッチング除去する。ソース領域およびドレイン領域に隣接したチャネル領域の両側にソースエピタキシー領域およびドレインエピタキシー領域を形成する。ソースエピタキシー領域およびドレインエピタキシー領域は、エピタキシャル半導体を成長させながら、その場ドープされる。 (もっと読む)


【課題】SiCが用いられる半導体層中において、簡易な工程で再現性よく埋め込み絶縁層を形成する。
【解決手段】単結晶のSiC12の表面の温度を局所的に急激に上昇させ、その後で急激に冷却することによって、単結晶を局所的に非晶質化層30を形成することができる。この非晶質層30は、元の単結晶SiCの導電型や抵抗率に関わらず、高抵抗層(絶縁層)となる。このため、こうした非晶質層を埋め込み絶縁層と同様に使用することができる。このためには、(1)レーザー光を効率的に吸収する層100を局所的に半導体層の上に形成してからレーザー光を照射する、(2)レーザー光を局所的に半導体層に照射する、という2つの手段のいずれかを用いることができる。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


【課題】SOI基板に形成されるMOSトランジスタの特性を向上することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に埋込絶縁層2を介して形成される第1半導体層3と、前記第1半導体層3及び前記絶縁層2内に形成され、前記第1半導体層3に接する第2半導体層12と、前記第2半導体層12の上に形成されるゲート絶縁膜13と、前記ゲート絶縁膜13上に形成されるゲート電極14gと、前記ゲート電極14gの側壁に形成されるサイドウォール7とを有する。 (もっと読む)


【課題】トランジスタの電流駆動力増大を図りつつ、オフリーク電流を低減させる。
【解決手段】半導体突出部2は、半導体基板1上に形成されている。ソース/ドレイン層5、6は、半導体突出部2の上下方向に設けられている。ゲート電極7、8は、半導体突出部2の側面にゲート絶縁膜4を介して設けられている。チャネル領域3は、半導体突出部2の側面に設けられ、ドレイン層6側とソース層5側とでポテンシャルの高さが異なっている。 (もっと読む)


【課題】種結晶を用いた昇華システムにおいて形成された結晶の欠陥レベルが低く、より大きく、高品質のSiC単結晶ウェハを製造する方法を提供する。
【解決手段】少なくとも約100mmの直径と、約25cm−2未満のマイクロパイプ密度とを有し、また、3C、4H、6H、2Hおよび15Rポリタイプからなる群から選択されるポリタイプを有するSiC単結晶ウェハ。なお、マイクロパイプ密度は、表面上にある全マイクロパイプの総数を、ウェハの表面積で割ったものを表す。 (もっと読む)


【課題】フィンがバルク半導体上に形成されている場合においても、電流駆動力増大を図りつつ、オフリーク電流を低減させる。
【解決手段】フィン型半導体層1の両側面には、チャネル領域7のポテンシャルを制御するゲート電極4が配置され、チャネル領域7には、フィン型半導体層1のソース層2側から根元BM側にかけてポテンシャルバリアPB1、PB2が形成されている。 (もっと読む)


【課題】ヘテロ接合を有する半導体装置において、リーク電流と電流コラプスのトレードオフ関係を打破し、リーク電流と電流コラプスの双方を抑制すること。
【解決手段】半導体装置1の電子走行層4は、炭素が導入されている高抵抗領域4aを含んでいる。電子走行層4と電子供給層5のヘテロ接合5aと平行な断面において、高抵抗領域4aの炭素の濃度分布が、ドレイン電極12とソース電極18の少なくともいずれか一方の下方で相対的に濃く、ドレイン電極12と絶縁ゲート部16の間で相対的に薄くなるような断面が存在している。 (もっと読む)


【課題】閾値電圧(Vth)の経時的に変動する現象を抑制することで、高信頼性を保つことが可能なMIS型半導体装置を提供する。
【解決手段】本発明は、半導体ボディ領域とゲート絶縁膜の間に半導体ボディ領域とは逆の半導体極性のチャネル層を有するMIS型半導体装置であり、当該半導体装置のフラットバンド電圧Vfbを−10ボルト以下とすることにより、半導体ボディ領域表面近傍に誘起されるキャリア電荷密度を当該半導体装置の動作保証範囲内において所定量以下に抑制する。 (もっと読む)


【課題】ゲート絶縁膜を形成する際に、界面準位を低減しつつ、EOTのさらなる低減が実現可能な金属酸化物高誘電体エピタキシャル膜の製造方法、および基板処理装置を提供すること。
【解決手段】単結晶領域102を有する基板101上に、金属膜であって、該金属膜の酸化物の誘電率が酸化シリコン膜よりも高く、かつ金属膜の酸化物が単結晶領域102とエピタキシャル関係を有する金属膜103を、単結晶領域102と金属膜103とが界面反応しない基板温度で形成する(図1(b))。金属膜103が形成された基板101を、上記界面反応しない基板温度で、単結晶領域102と金属膜103とが界面反応しない酸素分圧の酸素ガス雰囲気に暴露する(図1(c))。酸素ガス雰囲気に暴露された基板103を、上記酸素分圧の酸素ガス雰囲気に保持し、金属膜の酸化物である金属酸化物高誘電体膜が結晶化する基板温度で熱処理する(図1(d)。 (もっと読む)


【課題】Si−CMOSプロセス時術とコンパチブルなHEMT装置の製造法を提供する。
【解決手段】基板101を提供するステップと、III族窒化物層のスタックを基板上に形成するステップと、窒化シリコンからなり、スタックの上方層に対して上に位置すると共に当接する第1パッシベーション層301を形成し、第1パッシベーション層が、現場でスタックに堆積されるステップと、第1パッシベーション層に対して上に位置すると共に当接する誘電体層を形成するステップと、窒化シリコンからなり、誘電体層に対して上に位置すると共に当接する第2パッシベーション層303を形成し、第2パッシベーション層が、LPCVD、MOCVD又は同等の手法によって450℃より高い温度で堆積されるステップと、ソースドレイン・オーミック接触とゲート電極601を形成するステップとを備える。 (もっと読む)


41 - 60 / 638