説明

Fターム[5F140BE05]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜の製造 (6,009) | ゲート絶縁膜を形成するための処理 (4,399)

Fターム[5F140BE05]の下位に属するFターム

直接変換 (2,415)
堆積 (1,850)
エッチング (53)

Fターム[5F140BE05]に分類される特許

21 - 40 / 81


【課題】低い閾値電圧を有するFETおよび高い閾値電圧を有するFETのいずれも高性能な特性を有する半導体装置を提供する。
【解決手段】半導体装置100は、FET102と、FET102よりも高い閾値電圧を持つFET104を同一半導体基板上に備える。FET102は、ゲート絶縁膜114とゲート電極126を備える。FET104は、ゲート絶縁膜114とゲート電極121を備える。FET102のゲート電極126、FET104のゲート絶縁膜114、ゲート電極121はHf、Zr、Al、La、Pr、Y、Ta、Wからなる群から選択される少なくとも一つの金属を含む。FET104のゲート絶縁膜114とゲート電極121との界面における前記金属の濃度は、FET102のゲート絶縁膜114とゲート電極126との界面における前記金属の濃度よりも高い。 (もっと読む)


【課題】金属酸化膜半導体電界効果トランジスタ(MOSFET)において、本発明の目的は、high−K誘電膜と金属ゲートとの間の界面特性を向上させることにより、電気的特性およびデバイス性能を向上させることである。
【解決手段】high−K誘電体上に金属ゲートを蒸着することによりMOSFETの製造においてhigh−K誘電膜と金属ゲートとの間の界面を向上させる方法は、熱アニーリングモジュール内で、その上にhigh−K誘電膜が蒸着された基板をアニールするアニーリングステップと、金属ゲート蒸着モジュール内で、前記アニールされた基板上に金属ゲート材料を蒸着させる蒸着ステップとを含み、真空を破ることなく、前記アニーリングステップおよび前記蒸着ステップが連続的に行なわれることを特徴とする。 (もっと読む)


【課題】薄膜化した場合でもSBDやSILCが生じ難く、高い絶縁破壊耐性(SILC、TZDB、TDDBの改善)が得られる絶縁膜、それを用いた半導体素子、信頼性の高い電子デバイスおよび電子機器を提供すること。
【解決手段】主として半導体材料で構成された半導体基板2に接触して設けられ、シリコン、酸素原子、および、これらの原子以外の少なくとも1種の原子Xを含有する絶縁性無機材料を主材料として構成され、水素原子を含むゲート絶縁膜3であって、その厚さ方向の少なくとも一部において、前記原子Xの総濃度をAとし、前記水素原子の濃度をBとしたとき、B/Aが10以下なる関係を満足する領域を有している。これにより、薄膜化した場合でもSBDやSILCが生じ難く、高い絶縁破壊耐性を得ることができる。 (もっと読む)


【課題】金属酸化膜半導体電界効果トランジスタ(MOSFET)において、本発明の目的は、high−K誘電膜と金属ゲートとの間の界面特性を向上させることにより、電気的特性およびデバイス性能を向上させることである。
【解決手段】high−K誘電体上に金属ゲートを蒸着することによりMOSFETの製造においてhigh−K誘電膜と金属ゲートとの間の界面を向上させる方法は、熱アニーリングモジュール内で、その上にhigh−K誘電膜が蒸着された基板をアニールするアニーリングステップと、金属ゲート蒸着モジュール内で、前記アニールされた基板上に金属ゲート材料を蒸着させる蒸着ステップとを含み、真空を破ることなく、前記アニーリングステップおよび前記蒸着ステップが連続的に行なわれることを特徴とする。 (もっと読む)


【課題】 化学酸化膜形成法により、厚膜の絶縁被膜形成にも応じることの可能な半導体への絶縁性被膜の形成方法並びにそれを用いた半導体装置の製造方法を実現する。
【解決手段】 酸化性溶液内に、表面に酸化シリコンを含む被膜形成用基材とシリコン又はシリコン含有固体またはシリコンを含む膜で覆われた固体とを浸漬して、前記酸化性溶液の沸点以下の温度で加熱して、前記基材上に稠密な酸化シリコン膜を形成することにより、被処理用シリコン基板1上に厚膜の酸化シリコン膜4を化学的形成法で実現して、絶縁性被膜の形成並びにそれを用いた半導体装置の製造を実用的短時間で達成することができる。 (もっと読む)


【課題】SiO/SiC構造を備える、たとえばMOSFETなどの半導体装置は、界面準位密度の低減が不十分である。
【解決手段】SiC基板1の一方の主表面上に形成させたSiCエピタキシャル層2の一方の主表面上に、あらかじめSi薄膜3を形成させて、このSi薄膜3の内部に窒素原子を注入させる。この状態で、SiCエピタキシャル層2の一方の主表面上を酸窒化させる。 (もっと読む)


【課題】炭素の混入と、組成のばらつきを低減した絶縁膜を形成する。
【解決手段】絶縁膜の形成方法において、基板上にシリコン層と金属層を順次形成してシリコンと金属の2層構造を形成し、前記シリコンと前記金属とが目標とする組成で金属珪化物を生成する反応温度を選択し、前記2層構造を加熱して金属珪化物層を形成する。前記金属のうち、未反応で残る部分を除去する。前記金属珪化物層を酸化又は窒化して、絶縁膜を形成する。 (もっと読む)


【課題】ゲート絶縁膜や層間絶縁膜を熱的に安定な高誘電率絶縁膜から構成し、半導体装置を製造する際の熱処理を経ても、前記高誘電率絶縁膜の、他の構成部材との反応を抑制し、前記半導体装置の特性変動を抑制する。
【解決手段】側壁をSiO2、SiN及びSiONの少なくとも一つから構成し、上部絶縁膜又はゲート絶縁膜を、希土類金属、Y、Zr、及びHfからなる群より選ばれる少なくとも一つの金属M、Al及びSiの酸化物から構成し、金属Mに対するSiの個数比Si/Mを、金属MとAlとの複合酸化物中のSiO2固溶限における比率以上であるとともに、前記上部絶縁膜又は前記ゲート絶縁膜の誘電率をAl2O3と一致する比率以下とし、金属Mに対するAlの個数比Al/Mを、Alの作用で金属Mの酸化物の結晶化を抑制する比率以上であるとともに、金属Mの作用でAl2O3の結晶化を抑制する比率以下として、半導体装置を構成する。 (もっと読む)


【課題】同一導電型のチャネル領域を有し、かつ閾値電圧の異なる複数の半導体素子を有する半導体装置を提供する。
【解決手段】閾値電圧が互いに異なる2つのトランジスタが同一半導体基板上に形成された半導体装置において、トランジスタのゲート電極は、半導体基板上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成された、第2金属を含み第1金属を主成分とする金属層とを含み、更に、一方のトランジスタが、ゲート絶縁膜と金属層との間に、第2金属の酸化膜を含む。 (もっと読む)


【課題】Hf等の金属の拡散の制御が容易で、所要の膜厚を持つ絶縁膜を生産性良く形成することが可能な絶縁膜の形成方法を提供する。
【解決手段】シリコン基板101の表層部を酸化してシリコン酸化膜102を形成する第1工程と、シリコン酸化膜102の表面にイオン103を照射してシリコン酸化膜の表層部をSi−O結合の切断された反応促進層104とする第2工程と、非酸化性雰囲気中においてスパッタにより反応促進層104の上に金属膜105を堆積し、反応促進層104を金属シリケート膜106にする第3工程と、金属膜105をラジカル酸化により酸化すると共に金属膜105からシリコン酸化膜102へと金属を拡散させ金属シリケート膜107を形成する第4工程と、金属シリケート膜107をラジカル窒化により窒化する第5工程を有する。イオンの入射エネルギーは、2eV以上且つ20eV以下である。 (もっと読む)


【課題】高誘電率ゲート絶縁膜としての使用に適する高誘電率絶縁膜を良好な制御性をもって生産性良く形成する。
【解決手段】シリコン基体101の表層部を酸化してシリコン酸化膜102とする第1工程と、非酸化性雰囲気中においてスパッタによりシリコン酸化膜102の上に金属膜103を形成する第2工程と、非酸化性雰囲気中での加熱を行うことで、金属膜103を構成する金属原子をシリコン酸化膜102中に拡散させる第3工程と、金属原子が拡散したシリコン酸化膜102をラジカル酸化により酸化し、金属原子とシリコン原子と酸素原子とを含む金属シリケート膜104を形成する第4工程とを備える。 (もっと読む)


【課題】高誘電率ゲート絶縁膜としての使用に適し、低EOTと低界面準位が両立できる絶縁膜を形成する。
【解決手段】Si基板101の上にスパッタによりHf−Si膜102を形成する第1工程と、Hf−Si膜を酸化してHfSiO膜103を形成する第2工程と、HfSiO膜を窒化してHfSiON膜105を形成する第3工程を含む。第2工程において、Hf−Si膜を酸化する際にHf−Si膜に近紫外光を照射し、Si基板の表層部を酸化してSiO膜104を形成する。近紫外光の波長は220〜380nmである。近紫外光の光源として、Krエキシマランプ、KrFエキシマランプ、XeClエキシマランプまたはXeFエキシマランプを用いる。第2工程では、プラズマ励起、光励起またはオゾン供給を用いて活性化された酸素を用いてHf−Si膜を酸化する。 (もっと読む)


【課題】所定の耐圧で、所定のON抵抗を得ることができる実用可能なリサーフ型LDMOSを提供する。
【解決手段】第1導電型不純物の半導体層と、半導体層に形成の局所絶縁層7と、局所絶縁層を挟んで、第2導電型不純物のドレイン層8、ソース層11と、局所絶縁層上からソース層に至る半導体層上のゲート電極13と、を備えた半導体素子において、ドレイン層下、局所絶縁層下、およびゲート電極下の半導体層に、第2導電型不純物をドレイン層より低濃度の低濃度拡散層と、ゲート電極と半導体層の間に、ゲート電極のソース層側端部から局所絶縁層に向かって、局所絶縁層に達することなく延在した第1のゲート絶縁膜と、ゲート電極と半導体層の間に、局所絶縁層の他の側の端部からソース層に向かって延在して第1のゲート絶縁膜に接続された、膜厚が第1のゲート絶縁膜の膜厚より厚く、局所絶縁層の膜厚の半分よりも薄い第2のゲート絶縁膜と、を有する。 (もっと読む)


【課題】 ゲート絶縁膜が大気やメタル電極のエッチング液等に曝されて劣化することなく、仕事関数の異なるnMOS、pMOSに適したメタルゲートMISFETを含む半導体装置の製造方法を提供する。
【解決手段】 メタル電極を有するn型MISトランジスタ及びp型MISトランジスタを備えた半導体装置の製造方法であって、単結晶シリコン基板100上に設けられたゲート絶縁膜102と、ゲート絶縁膜102上に設けられた第一の金属膜103、第二の金属膜104、第三の金属膜105、導電層106を備えたゲート電極108とを備えた構造であって、熱工程によって第二の金属膜104の構成元素を第一の金属膜103を通してゲート絶縁膜102中へ拡散させることによって、n型MISトランジスタ及びp型MISトランジスタそれぞれに適した仕事関数に変化させる。 (もっと読む)


【課題】 窒素導入量を低減させることなく、絶縁膜へのダメージの導入を抑制し、かつ絶縁膜と半導体基板との界面における窒素濃度の増大を抑制することが可能な半導体装置の製造方法を提供する。
【解決手段】 (a)半導体基板の表面上に、シリコンと酸素とを含む絶縁膜を形成する。(b)前記絶縁膜を活性窒素雰囲気に晒し、該絶縁膜に、その表面側から窒素を導入する。(c)前記工程(b)の後、酸素原子含有ガス中で熱処理を行う。(d)前記工程(c)の後、前記工程(b)と工程(c)とを、この順番に少なくとも1回繰り返す。 (もっと読む)


【課題】Vfbシフトと移動度低下を低減し、界面特性にすぐれたゲート絶縁膜構成を有する半導体装置を提供する。
【解決手段】シリコン基板を直接窒化して、シリコン窒化膜を形成し、前記シリコン窒化膜を、N2OとH2を含む混合ガスでアニールして、シリコン酸窒化(SiON)膜を形成する。このようなシリコン酸窒化膜は、半導体装置のゲート絶縁膜に適用することができる。 (もっと読む)


【課題】移動度の低下を極力抑えつつゲートリーク電流が低い良好なゲート絶縁膜を有するMOSFETを含む半導体装置、及びその製造方法を提供する。
【解決手段】半導体層と、ゲート電極と、膜厚が1nm以上で少なくとも半導体層側からその厚み方向に1nmまでの領域は窒化酸化シリコン膜(SiON)から構成され、かつシリコンと酸素の原子数比(O/Si)が0.01〜0.30、シリコンと窒素の原子数比(N/Si)が0.05〜0.30であるゲート絶縁膜と、ソース/ドレイン領域と、を備えたMOSFETを有する半導体装置。 (もっと読む)


【課題】半導体装置の製造コストを低減する。
【解決手段】半導体装置の製造方法は、高誘電率膜が形成された基板を処理室内に搬入するステップと、前記処理室に接続されたプラズマユニットによるプラズマによって活性化した窒素原子を含むガスを前記処理室内に供給して前記高誘電率膜に対してプラズマ窒化処理を施すステップと、前記処理室内に成膜ガスを供給して前記プラズマ窒化処理後の高誘電率膜上に電極膜を形成するステップと、前記電極膜形成後の基板を前記処理室内から搬出するステップと、前記プラズマユニットによるプラズマによって活性化したクリーニングガスを前記処理室内に供給して前記処理室内をクリーニングするステップと、を有する。
(もっと読む)


【課題】微細ショットキーMISFETのソース電極がチャネル端の表面ポテンシャルをピニングすることで発生するトランジスタ性能の劣化を防止する。
【解決手段】ショットキーMISFETを構成する、半導体基板上に形成したソース金属電極8と半導体基板中のチャネル領域11との接触で形成されるショットキー障壁高さとφB0、半導体基板のバンドギャップEと、半導体基板の真性キャリア濃度nと、デバイスの動作温度Tと、ボルツマン係数kに対して、少なくともソース電極と接するチャネル端近傍の不純物濃度NCHを、NCH≦n・exp((qφB0−0.5E)/kT)の条件を満たすようにする。 (もっと読む)


【課題】N−chトランジスタとP−chトランジスタとの境界の寸法制御性に優れ、工程数の増加を最小限に抑制しながら、N−chトランジスタ及びP−chトランジスタのゲートパターンの高さが可能な限り揃った構造を実現する。
【解決手段】基板上のHigh−k膜よりなる絶縁膜上にポリシリコンを形成する。該ポリシリコン膜をエッチングする際にハロゲン系ガスを用いた低バイアス処理を施すことにより、下地のHigh−k膜の膜質を改善しながら、N−chトランジスタ及びP−chトランジスタに独立した仕事関数を持つ金属電極を形成する。 (もっと読む)


21 - 40 / 81