説明

Fターム[5F140BF07]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467) | 金属 (3,194) | 高融点金属 (636)

Fターム[5F140BF07]に分類される特許

161 - 180 / 636


【課題】電界効果トランジスタの電気抵抗の小さい金属ゲート構造を提供する。
【解決手段】本発明は、集積回路製造に関するものであって、特に、低抵抗の金属ゲート電極を有する電界効果トランジスタに関するものである。電界効果トランジスタのゲート電極の例は、凹部326aを有し、かつ、第一抵抗を有する第一金属材料からなる下側部分326と、突起328aを有し、かつ、第二抵抗を有する第二金属材料からなる上側部分328とからなり、突起が凹部に延伸し、第二抵抗は第一抵抗より小さい材料で形成される。 (もっと読む)


【課題】ソース・ゲート間およびドレイン・ゲート間に発生する2次元電子ガスの濃度を最適にしたまま、オン抵抗を低くして、消費電力の低い半導体装置を提供する。
【解決手段】第2のAlGaN層6のAlの組成比は、第1のAlGaN層5のAlの組成比よりも大きい。このため、ゲート電極8に電圧を印加したとき、GaN層3の凹溝30の内面の側面31と第2のAlGaN層6との第1の界面S1に2次元電子ガスを発生させつつ、第2のAlGaN層6における凹溝30の内面の側面31に平行な部分と絶縁層7との第2の界面S2に2次元電子ガスを発生させることを抑制できる。 (もっと読む)


【課題】 スイッチング速度の低下やオン抵抗の増大を抑制しつつ、オフ耐圧を改善可能な半導体装置を提供する。
【解決手段】
半導体層11および12は、基板10上に形成され、第1の電極101、第2の電極102および絶縁膜14は、それぞれ、半導体層11および12上に形成され、絶縁膜14は、第1の電極101と第2の電極102との間に配置され、フィールドプレート電極17Aおよび17Bは、複数であり、かつ、絶縁膜14上に点在し、第1の電極101および第2の電極102は、半導体層11および12を介して電気的に接続されており、前記第1の電極と前記第2の電極との間の電圧印加時における電流の方向と垂直方向の各フィールドプレート電極の長さ、および、前記電流の方向と垂直方向に隣接する各フィールドプレート電極間の距離が、それぞれ、第1の電極101と第2の電極102との間の距離以下であることを特徴とする半導体装置。 (もっと読む)


量子井戸型半導体装置、および量子井戸型半導体装置を形成する方法について示した。本方法は、基板の上部に配置され、量子井戸チャネル領域を有するヘテロ構造を提供するステップを有する。また、この方法は、ソースおよびドレイン材料領域を形成するステップを有する。また、この方法は、ソースおよびドレイン材料領域に溝を形成するステップを有し、ドレイン領域から分離されたソース領域が提供される。また、この方法は、溝内のソース領域とドレイン領域の間に、ゲート誘電体層を形成するステップと、溝内のゲート誘電体層の上部に、ゲート電極を形成するステップとを有する。
(もっと読む)


マスキング材料、例えば、フォトレジストを除去するための方法、およびマスキング材料を除去することによって形成される電子デバイスが示される。例えば、マスキング材料を除去するための方法は、マスキング材料を、セリウムおよび少なくとも1つの追加的な酸化剤を含む溶液と接触させる工程を含む。セリウムは塩に含まれてもよい。塩は硝酸セリウムアンモニウムであってもよい。少なくとも1つの追加的な酸化剤は、マンガン、ルテニウムおよび/またはオスミウム含有化合物であってもよい。
(もっと読む)


【課題】チャネル層の厚みのバラツキを抑制できるJFET、MOSFETもしくはMESFETを備えた半導体装置およびその製造方法を提供する。
【解決手段】n+型層3に対して異方性エッチングを行うことによって凹部4を形成したのち、この凹部4内にエピタキシャル成長させることによってn型チャネル層5を形成する。これにより、n型チャネル層5を一定の膜厚かつ一定の濃度で形成することが可能となる。このため、従来の構造と異なり、n型チャネル層5の膜厚が一定なバラツキのない構造とすることが可能となる。したがって、JFETの特性も一定とすることが可能となる。 (もっと読む)


【課題】 高誘電体ゲート絶縁膜およびシリコン基板との界面を高品質化して、MISFETの特性向上を図る。
【解決手段】 シリコン基板11上にhigh−k膜21とゲート電極24を形成する半導体装置の製造方法において、high−k膜形成後にフッ素雰囲気でアニール処理23を施し、その後のプロセス温度を600℃以下で行う、半導体装置の製造方法。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】フィン電界効果トランジスタのソース/ドレイン構造を提供する。
【解決手段】基板上のフィンチャネル本体110a、110b、フィンチャネル本体110a、110b、上に配置されたゲート電極115、およびフィンチャネル本体110a、110b、に隣接して配置され、どのフィン構造も実質的に含まない、少なくとも1つのソース/ドレイン(S/D)領域120a,120b及び125a,125bを含むフィン電界効果トランジスタ(FinFET)。 (もっと読む)


【課題】縦型MOSトランジスタを備えた半導体装置を形成する際のゲート電極とコンタクトプラグとの短絡を防止することが可能な半導体装置及びその製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法は、前記半導体基板上にシリコン窒化膜(SiN膜)からなるマスク窒化膜のパターンを形成したのちに、溝および半導体ピラーを前記半導体基板に形成する第一工程と、前記マスク窒化膜を残存させたまま、前記溝を覆うゲート絶縁膜を形成したのちに前記半導体ピラーよりも低い高さのゲート電極を形成する第二工程と、前記溝を覆うように、シリコン酸窒化膜(SiON膜)からなるライナー膜を形成したのちに、前記ライナー膜上を覆い、かつ、前記溝内を充填するように層間膜(SOD膜)を形成する第三工程と、前記マスク窒化膜をエッチングにより選択的に除去する第四工程と、を採用する。 (もっと読む)


【課題】トランジスタのゲート電極上に第1の誘電体層を形成し、かつ金属層と接合したダマシン構造を形成する方法を提供する。
【解決手段】トランジスタのゲート電極上に第1の誘電体層を形成し、第1の誘電体層上にエッチストップ層を形成し、第1の誘電体層およびエッチストップ層を貫通する開口を形成し、トランジスタのソース/ドレイン(S/D)領域を露出し、開口内に、エッチストップ層の第1の上面と少なくとも部分的に実質的に同じ高さである表面を有する金属層を形成して、トランジスタのS/D領域に接触させ、さらに金属層と接合したダマシン構造を形成する。 (もっと読む)


【課題】オン抵抗が低いIII族窒化物系電界効果トランジスタおよびその製造方法を提供する。
【解決手段】本発明のIII族窒化物系電界効果トランジスタは、下地半導体層上に第1窒化物半導体層および第2窒化物半導体層が順次積層された窒化物半導体積層体と、窒化物半導体積層体の上面に接する、ソース電極およびドレイン電極と、ソース電極およびドレイン電極の間の窒化物半導体積層体における、第1窒化物半導体層の一部および第2窒化物半導体層が形成されていない領域であるリセス領域と、リセス領域上に形成された窒化物半導体膜と、リセス領域の内壁面、および第2窒化物半導体層の上面に形成された絶縁膜と、絶縁膜上に形成されたゲート電極とを有し、第2窒化物半導体層は、第1窒化物半導体層に比べて広い禁制帯幅を有し、窒化物半導体膜の上面は、第1窒化物半導体層の上面よりも低いことを特徴とする。 (もっと読む)


【課題】気体感応型の半導体装置を、補償の手間を少なくする、簡単で確実な信号形成および信号評価に関して改良する。
【解決手段】ゲート電極、および/または、このゲート電極を半導体チャネルから絶縁するゲート絶縁層、および/または、ゲート電極と半導体チャネルとの間に設けられるゲートスタック層が2つの面セクションを有し、この2つの面セクションは、複数の気体に対して異なる感度を有する。 (もっと読む)


【課題】MMICのSPDTスイッチなど、半導体デバイスとして用いるのに適したMOS−PHEMTの構造及びその製造方法を開示する。
【解決手段】MOS−PHEMT構造は、Al、HfO、La及びZrOからなる群から選ばれる材料からなるゲート誘電体層107を有することを特徴とし、これにより、このMOS−PHEMTの構造を含む、高周波スイッチデバイスなどの半導体構造が、直流電流の損失及び挿入損失の低下を防ぎ、隔絶性を向上させることができる。 (もっと読む)


【課題】高いチャネル移動度を有する電界効果トランジスタを提供する。
【解決手段】ゲート絶縁層と、前記ゲート絶縁層に接する第1半導体結晶層と、第1半導体結晶層に格子整合または擬格子整合する第2半導体結晶層とを有し、前記ゲート絶縁層、前記第1半導体結晶層および前記第2半導体結晶層が、ゲート絶縁層、第1半導体結晶層、第2半導体結晶層の順に配置されており、前記第1半導体結晶層がInx1Ga1−x1Asy11−y1(0<x1≦1、0≦y1≦1)であり、前記第2半導体結晶層がInx2Ga1−x2Asy21−y2(0≦x2≦1、0≦y2≦1、y2≠y1)であり、前記第1半導体結晶層の電子親和力Ea1が前記第2半導体結晶層の電子親和力Ea2より小さい電界効果トランジスタを提供する。 (もっと読む)


【課題】
電子デバイスにおける電力消費を低減するシステム及び方法が開示される。この構造及び方法は、大部分が、バルクCMOSのプロセスフロー及び製造技術を再利用することによって実現され得る。この構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することを可能にするとともに、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有し、それにより、電力制御の有意義な動的制御が可能になる。
(もっと読む)


【課題】高電圧を印加しても壊れにくい電界効果トランジスタを提供する。
【解決手段】電界効果トランジスタは、基板1、チャネル層3及びバリア層4と、バリア層4上にこの順で離間して設けられたソース電極6、ゲート電極7およびドレイン電極8とを備え、ソース電極6の直下に第1のn型不純物拡散領域12が設けられ、ドレイン電極8の直下に第2のn型不純物拡散領域13が設けられ、第2のn型不純物拡散領域の下側の前記チャネル層3および第2のn型不純物拡散領域の前記ゲート電極側の前記チャネル層3および前記バリア層4に第3のn型不純物拡散領域15が設けられる。第3のn型不純物拡散領域15は第2のn型不純物拡散領域13よりも低いn型不純物濃度を有し、ゲート電極とドレイン電極との間に電圧が印加されたときバリア層4およびチャネル層3においてその絶縁破壊強度を超える電界集中が生じることを抑制する。 (もっと読む)


【課題】
幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。一部の構造及び方法は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。一部の構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得る。
(もっと読む)


【課題】ノーマリオフでオン抵抗の低いHFETを実現すること。
【解決手段】HFET100は、第1キャリア走行層103上の互いに離間した2つの領域上に、2つに分離して形成されたノンドープのGaNからなる第2キャリア走行層104と、2つの分離した第2キャリア走行層104上にそれぞれ位置するAlGaNからなるキャリア供給層105を有している。第2キャリア走行層104とキャリア供給層105は、第1キャリア走行層103上に選択的に再成長させて形成した層である。第2キャリア走行層104とキャリア供給層105のヘテロ接合界面110は平坦性が高く、そのヘテロ接合界面110近傍は再成長に伴って混入した不純物はほとんど見られないため、2DEGの移動度を低下させることがなく、オン抵抗が低減されている。 (もっと読む)


【課題】 高性能の半導体構造およびかかる構造を製造する方法を提供する。
【解決手段】 半導体構造は、半導体基板12の上面14上に位置する、例えばFETのような少なくとも1つのゲート・スタック18を含む。構造は更に、少なくとも1つのゲート・スタックのチャネル40上にひずみを誘発する第1のエピタキシ半導体材料34を含む。第1のエピタキシ半導体材料は、少なくとも1つのゲート・スタックの対向側に存在する基板内の1対のくぼみ領域28の実質的に内部で少なくとも1つのゲート・スタックの設置場所に位置する。くぼみ領域の各々において第1のエピタキシ半導体材料の上面内に拡散拡張領域38が位置する。構造は更に、拡散拡張領域の上面上に位置する第2のエピタキシ半導体材料36を含む。第2のエピタキシ半導体材料は、第1のエピタキシ半導体材料よりも高いドーパント濃度を有する。 (もっと読む)


161 - 180 / 636