説明

Fターム[5F140BG28]の内容

Fターム[5F140BG28]の下位に属するFターム

Fターム[5F140BG28]に分類される特許

81 - 100 / 1,343


【課題】MOSFET特性を改善することができる半導体装置及びその製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置は、基板と、基板の上方に形成されたゲート電極と、ゲート電極の下に形成されたゲート絶縁膜と、ゲート絶縁膜の下に、シリコン基板の材料に比して広いバンドギャップを持つチャネル層材料により形成されたチャネル層と、チャネル方向に沿ってチャネル層を挟むように基板に形成されたソース領域とドレイン領域と、チャネル層とソース領域との間のシリコン基板に、チャネル層のソース側端部とオーバーラップするように形成され、且つ、チャネル層とともにキャリアがトンネルするヘテロ界面を成すソースエクステンション層とを有する。 (もっと読む)


【課題】信頼性の高いLocalSOI構造を有する基板を低コストで作製する。
【解決手段】第1の半導体からなる基板10上に、結晶成長により第2の半導体からなる層及び前記第1の半導体からなる層12を順次形成する半導体層形成工程と、前記第2の半導体からなる層をエッチングにより除去し開口領域13を形成する開口領域形成工程と、前記開口領域に、窒化物膜、炭化物膜又は酸化物膜を含む材料により形成される酸化遅延膜14を前記開口領域の入口における膜厚が所定の膜厚となるように成膜する酸化遅延膜成膜工程と、前記第1の半導体からなる基板及び前記第1の半導体からなる層の前記第1の半導体の一部を熱酸化することにより、前記開口領域に熱酸化膜15を形成する熱酸化工程とを有することを特徴とする、Local SOI半導体基板の製造方法。 (もっと読む)


【課題】短チャネルでもオフ特性の優れたトランジスタ等の半導体装置を提供する。
【解決手段】ソース102aの周囲をエクステンション領域103aおよびハロー領域105a、ドレイン102bの周囲をエクステンション領域103bおよびハロー領域105bで取り囲むように配置し、また、不純物濃度の低い基板101がソース102a、ドレイン102bと接しない構造とする。さらに、ゲート絶縁物109を介して高仕事関数電極104を設け、基板101の表面近傍にエクステンション領域103aおよびエクステンション領域103bより侵入する電子を排除する。このような構造とすることにより、短チャネルでもチャネル領域の不純物濃度を低下させることができ、良好なトランジスタ特性を得ることができる。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


【課題】注入した不純物の拡散を抑制しつつ結晶欠陥を低減する半導体装置の製造方法を提供する。
【解決手段】実施の形態の半導体装置の製造方法は、リンまたはボロンを分子状イオンの形態で含有する第1の不純物80と、リンまたはボロンよりも注入量が少ない炭素、フッ素または窒素を分子状イオンの形態で含有する、もしくは、リンまたはボロンよりも注入量が少ない炭素を原子イオンの形態で含有する第2の不純物81と、を半導体層1に注入して不純物注入層9を形成する工程を含む。 (もっと読む)


【課題】ソース領域とドレイン領域間のリーク電流の発生が抑制された、LOCOS分離構造の半導体装置及び半導体装置の製造方法を提供する。
【解決手段】半導体基板の上部の一部に互いに離間して形成された第1導電型のソース領域及びドレイン領域と、ソース領域とドレイン領域に挟まれた領域を含んで半導体基板上に配置されたゲート絶縁膜と、半導体基板上にゲート絶縁膜と連続して配置された、ゲート絶縁膜よりも膜厚の厚いLOCOS絶縁膜と、ゲート絶縁膜上及びゲート絶縁膜周囲のLOCOS絶縁膜上に渡り連続的に配置された多結晶シリコン膜からなるゲート電極とを備え、ゲート電極のチャネル幅方向の端部である周辺領域におけるゲート閾値電圧がゲート電極の中央領域におけるゲート閾値電圧よりも高い。 (もっと読む)


【課題】より良い製造工程で良好な特性の半導体装置を製造する技術を提供する。
【解決手段】導電性膜上に第1領域1Asを覆い、第1領域と隣接する第2領域1Adを開口したマスク膜を形成し、導電性膜中に不純物イオンを注入し、導電性膜を選択的に除去することにより、第1領域と第2領域との境界を含む領域にゲート電極GE1を形成する。その後、熱処理を施し、ゲート電極の側壁に側壁酸化膜7を形成し、ゲート電極の第2領域側の端部の下方に位置する半導体基板中にドレイン領域を形成し、ゲート電極の第1領域側の端部の下方に位置する半導体基板中にソース領域を形成する。かかる工程によれば、ドレイン領域側のバーズビーク部7dを大きくし、ソース領域側のバーズビーク部を小さくできる。よって、GIDLが緩和され、オフリーク電流を減少させ、また、オン電流を増加させることができる。 (もっと読む)


【課題】シリサイド化金属ゲートと、シリサイド化ソース領域およびドレイン領域とを備える進歩したゲート構造物と、同ゲート構造物を製造する方法と、を提供する。
【解決手段】シリサイド化金属ゲートと、シリサイド化金属ゲートに接するシリサイド化ソース領域およびドレイン領域とを備える進歩したゲート構造物を提供する。詳しくは、広義に、第一の厚さを有する第一のシリサイド金属のシリサイド化金属ゲートと、隣接する第二の厚さを有する第二の金属のシリサイド化ソース領域およびドレイン領域とを含み、第二の厚さは第一の厚さより薄く、シリサイド化ソース領域およびドレイン領域は少なくともシリサイド化金属ゲートを含むゲート領域の端に位置合わせした半導体構造物を提供する。さらに、シリサイド化金属ゲートと、シリサイド化金属ゲートに接するシリサイド化ソース領域およびドレイン領域とを備える進歩したゲート構造物を製造する方法も提供する。 (もっと読む)


【課題】高周波特性を低下させることなくLDMOSFETを有するチップの面積を縮小する。
【解決手段】LDMOSFETのソース領域と基板1の裏面に形成されたソース裏面電極36とを電気的に接続するp型打ち抜き層4を不純物を高濃度でドープした低抵抗のp型多結晶シリコン膜もしくは低抵抗の金属膜から形成する。そして、LDMOSFETの基本セルのソース同士を電気的に接続するソース配線は配線24Aのみとし、ソース配線を形成する配線層数は、ドレイン配線(配線24B、29B、33)を形成する配線層数より少なくする。 (もっと読む)


【課題】n型FET及びp型FET(電界効果トランジスター)のうち、一方のFETの電流駆動能力の低下を抑制し、他方のFETの電流駆動能力の向上を図る。
【解決手段】n型FET及びp型FETを覆うように、第1の膜を形成する工程と、その後、p型(n型)FET上の前記第1の膜に対して、イオン注入法によって選択的に不純物を打ち込む工程とを有し、n型(p型)FETのチャネル形成領域には、n型(p型)FET上の前記第1の膜によって、主として、n型(p型)FETのゲート電極のゲート長方向に引張(圧縮)応力が発生しており、不純物を打ち込む工程によって、前記p型(n型)FETのチャネル形成領域に発生する引張(圧縮)応力は、n型(p型)FETのチャネル形成領域に発生する引張(圧縮)応力よりも小さくなっている。 (もっと読む)


【課題】従来のゲートラスト法の問題点を解決し、さらなる微細化に対応できるゲート構造を実現する。
【解決手段】半導体領域101上から、ダミーゲート構造を除去してリセス107aを形成した後、リセス107aの底部の半導体領域101の表面上に界面層108を形成する。次に、界面層108上及びリセス107aの側壁上に高誘電率絶縁膜109を形成すした後、リセス107a内部の高誘電率絶縁膜109上に、ゲート電極の少なくとも一部となる金属含有膜110を形成する。界面層108上に形成されている部分の高誘電率絶縁膜109の厚さは、リセス107aの側壁上に形成されている部分の高誘電率絶縁膜109の厚さよりも厚い。 (もっと読む)


【課題】基板に対して斜め方向からイオン注入を行う工程を含む半導体装置の製造方法においてゲート電極サイズの縮小化とリーク電流特性の改善を両立することができる製造方法を提供する。
【解決手段】
半導体基板の表面にゲート電極を形成する。ゲート電極のゲート長方向と交差するゲート幅方向における両端面を被覆するレジストマスクを形成する。半導体基板にゲート長方向成分およびゲート幅方向成分を有する注入方向で不純物イオンを注入して半導体基板の表面のゲート電極を挟む両側にゲート電極とオーバーラップした低濃度不純物層を形成する。ゲート電極の側面を覆うサイドウォールを形成する。ゲート電極およびサイドウォールをマスクとして不純物イオンを注入して半導体基板の表面のゲート電極を挟む両側にゲート電極から離間した高濃度不純物層を形成する。 (もっと読む)


【課題】好適な電界効果トランジスタ、その使用、およびその製造方法を提供すること。
【解決手段】窪み(72)に沿ってドープチャネル領域が配置された半導体基板(10)を有する、縦型電界効果トランジスタが説明される。「埋め込まれた」接続領域(18、54)は、半導体基板(10)の表面に達する。第2の接続領域(16)が、同一の表面の窪みの開口部の近傍内に配置される。好ましくは、分離窪み(70、74、76)が、チャネル領域と導電性配線(54)との間、および電界効果トランジスタと隣接する電気部品との間に製造される。電界効果トランジスタは優れた電気特性を有し、容易に製造される。 (もっと読む)


【課題】新規なDTMOSトランジスタの製造方法を提供する。
【解決手段】半導体装置の製造方法は、第1領域と、第1領域に接続しこれより幅狭の第2領域と、第2領域に接続しこれより幅狭の第3領域とを含む半導体領域の画定工程、半導体領域に第1導電型不純物でウェル領域を形成する工程、ウェル領域上へのゲート絶縁膜形成工程、第3領域を幅方向に横断する第1部と、第1部から第1領域上に延びた第2部とを含むゲート電極を形成する工程、ゲート電極側面に、第2領域の一部を覆い他の一部を露出させるサイドウォールを形成する工程、第1領域及び第2領域の他の一部にゲート電極及びサイドウォールをマスクとし第2導電型不純物を注入する工程、熱処理による第2導電型不純物拡散工程、サイドウォールの一部を薬液で除去する工程、第1領域及び第2領域の他の一部へのシリサイド層形成工程を有する。 (もっと読む)


【課題】半導体デバイスを提供する。
【解決手段】理論的な金属:酸素化学量論比を有する高kゲート誘電体、前記高kゲート誘電体の上部に設置された、Mを遷移金属として、組成がMxAlyで表されるアルミナイドを含むNMOS金属ゲート電極、および前記高kゲート誘電体の上部に設置された、アルミナイドを含まないPMOS金属ゲート電極、を有するCMOS半導体デバイス。 (もっと読む)


【課題】構造が簡単なトランジスタにより、サステイン耐圧を改善し且つサステイン耐圧のばらつきの抑制及びトランジスタ形成後のドレイン抵抗及び接合プロファイルの調整が可能な、自由度が高い半導体装置を実現できるようにする。
【解決手段】半導体装置は、p型ウェル102に形成され、互いに並行に延びると共に、ゲート長方向の幅が比較的に大きい第1ゲート電極125と、ゲート長方向の幅が比較的に小さい第2ゲート電極126と、p型ウェル102における第1ゲート電極125及び第2ゲート電極126同士の間に形成されたLDD低濃度領域135と、該p型ウェル102における第1ゲート電極125及び第2ゲート電極126のそれぞれの外側に形成されたLDD中濃度領域134とを有している。LDD低濃度領域135の不純物濃度は、LDD中濃度領域134の不純物濃度よりも低い。 (もっと読む)


【課題】NBTIを改善することのできるトランジスタ構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板101と、半導体基板101の上部に形成されたn型ウェル領域102と、n型ウェル領域102上に形成され、ゲート絶縁膜104と、下部ゲート電極105、及び下部ゲート電極105上に形成された上部ゲート電極106を含むゲート電極120とを有するpチャネル型MISトランジスタとを備える。下部ゲート電極105は、結晶粒界を有する多結晶の金属窒化物で構成されており、当該結晶粒界には金属窒化物を構成する元素とは異なる元素が偏析されている。 (もっと読む)


【課題】半導体デバイスの小面積化を実現する。
【解決手段】電極と、第1絶縁体と、バンドギャップが2eV以上の第1半導体と、第2絶縁体と、第2半導体とが積層されており、第1半導体に接する1つ以上の電極と、第2半導体に接する2つ以上の電極とを少なくとも備えることを特徴とする半導体デバイス。 (もっと読む)


【課題】半導体装置の耐圧を向上させる。
【解決手段】半導体装置10は、p型半導体基板1、p型半導体基板1内に設けられたn型ドリフト領域3、及びn型ドリフト領域3内に設けられたp型ボディ領域4を含む。p型ボディ領域4の側面とn型ドリフト領域3とのpn接合部22の上方に、そのpn接合部22に沿って、環状のゲート電極6が設けられる。このゲート電極6の一部を挟んでn型ドリフト領域3内及びp型ボディ領域4内にそれぞれ、n型ドレイン領域7及びn型ソース領域8が設けられる。 (もっと読む)


【課題】本発明はコンタクト開口をエッチングにより形成した場合にその下に位置する埋込絶縁膜がエッチングされないようにした構造の提供を目的とする。
【解決手段】本発明は、半導体基板と、半導体基板の主面に形成され活性領域を横断して素子分離領域まで延在するトレンチと、トレンチの下部側に形成された埋込型ゲート電極と、活性領域において埋込型ゲート電極の上方のトレンチ内を充填し、かつ、素子分離領域において埋込型ゲート電極の上方のトレンチ内を完全には充填せずにトレンチの内側面に接して配置されるサイドウォールを構成するキャップ絶縁膜と、素子分離領域においてサイドウォールの内側のトレンチを埋めて埋込型ゲート電極に接続形成されたパッドコンタクトプラグと、パッドコンタクトプラグおよびキャップ絶縁膜上を覆う層間膜と、パッドコンタクトプラグに接続するゲートコンタクトプラグとを具備してなる。 (もっと読む)


81 - 100 / 1,343