説明

Fターム[5F140BK15]の内容

Fターム[5F140BK15]の下位に属するFターム

Fターム[5F140BK15]に分類される特許

1 - 20 / 46


【課題】被処理体の所定領域に注入された、N型領域を形成する元素のイオンを、アニール処理の前後において被処理体の内部に維持し、所望のキャリア濃度のN型領域を形成することを可能とする、半導体デバイスの製造方法を提供する。
【解決手段】減圧雰囲気とした真空チャンバ内に、シリコンからなる被処理体101を配して、該真空チャンバ内に導入した、N型領域106Nを形成する元素Xを含むガスをプラズマ励起し、励起された該元素Xのイオンを、被処理体101の所定領域に注入する前工程と、該元素Xが注入された被処理体101をアニール処理する後工程と、を含み、該前工程と該後工程との間に、該真空チャンバ内に導入した酸素元素を含むガスをプラズマ励起し、励起された該酸素元素のラジカルに、該被処理体101の所定領域を曝露する工程を、さらに備えてなることを特徴とする半導体デバイスの製造方法。 (もっと読む)


【課題】縦型のトランジスタにおいてゲートからシリサイドの位置を精度よく制御できるようにする。
【解決手段】柱状半導体14の中央部には、その周囲を囲むように、ゲート絶縁膜9が形成され、さらに、ゲート絶縁膜9の周囲を囲むように、ゲート層6が形成されている。この柱状半導体14の中央部、ゲート絶縁膜9、ゲート層6により、MIS構造が形成されている。ゲート層6の上下には、第1絶縁膜4が形成されている。第1絶縁膜4は、柱状半導体14にも接している。柱状半導体14の側面には、シリサイド18及びn型拡散層(不純物領域)19が形成されている。シリサイド18は、第1絶縁膜4によってセルフ・アラインされた位置に形成されている。 (もっと読む)


【課題】異なるチャネル長のトランジスタを有し、かつ、コンタクト抵抗の増加およびオン電流の減少を防止できる半導体装置の提供。
【解決手段】ピラートランジスタTr1と、前記ピラートランジスタTr1の下部拡散層7aへ信号または電源を供給するとともに、ポリシリコン層10aからの固相拡散し、下部拡散層7aを形成することにより、前記ピラートランジスタTr1のチャネル長d1を厚みにより制御する前記ポリシリコン層10aと、を具備してなることを特徴とする。 (もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


III-V族半導体装置における導電性の改善について示した。第1の改良は、チャネル層とは幅の異なるバリア層を有することである。第2の改良は、金属/Si、Ge、またはシリコン-ゲルマニウム/III-Vスタックの熱処理により、Siおよび/またはゲルマニウムドープIII-V層に、金属-シリコン、金属-ゲルマニウム、または金属-シリコンゲルマニウム層を形成することである。次に、金属層が除去され、金属-シリコン、金属-ゲルマニウム、または金属シリコンゲルマニウム層上に、ソース/ドレイン電極が形成される。第3の改良は、III-Vチャネル層上に、IV族元素および/またはVI族元素の層を形成し、熱処理し、III-Vチャネル層に、IV族および/またはVI族化学種をドープすることである。第4の改良は、III-V装置のアクセス領域に形成された、パッシベーション層および/またはダイポール層である。
(もっと読む)


サブストレートとサブストレートの上に形成された半導体ボディを有する半導体デバイスである。半導体ボディはソース領域とドレイン領域を有している。ソース領域、ドレイン領域、またはその組み合わせは、第一の側面、第二の側面、及び上面を有している。第一の側面は第二の側面と向かい合っており、上面は底面と向かい合っている。ソース領域、ドレイン領域、またはその組み合わせは、実質的に全ての第一の側面の上に、実質的に全ての第二の側面の上に、そして上面の上に、形成されたメタル層を有している。
(もっと読む)


【課題】微細化が進んだトランジスタにおいて、他の問題を生じさせずに抵抗を低減する。
【解決手段】シリサイド層9は、ソース・ドレイン領域8の表層及びソース・ドレイン拡張領域6に形成されている。シリサイド層9は、半導体基板1に垂直かつゲート幅方向に対して平行な断面でみたときに、ソース・ドレイン領域8の中央部からチャネル領域に近づくにつれて半導体基板1の内側(図中下側)に近づいており、かつチャネル領域側の端部がソース・ドレイン拡張領域6に延在している。 (もっと読む)


【課題】 高性能の半導体構造およびかかる構造を製造する方法を提供する。
【解決手段】 半導体構造は、半導体基板12の上面14上に位置する、例えばFETのような少なくとも1つのゲート・スタック18を含む。構造は更に、少なくとも1つのゲート・スタックのチャネル40上にひずみを誘発する第1のエピタキシ半導体材料34を含む。第1のエピタキシ半導体材料は、少なくとも1つのゲート・スタックの対向側に存在する基板内の1対のくぼみ領域28の実質的に内部で少なくとも1つのゲート・スタックの設置場所に位置する。くぼみ領域の各々において第1のエピタキシ半導体材料の上面内に拡散拡張領域38が位置する。構造は更に、拡散拡張領域の上面上に位置する第2のエピタキシ半導体材料36を含む。第2のエピタキシ半導体材料は、第1のエピタキシ半導体材料よりも高いドーパント濃度を有する。 (もっと読む)


【課題】高集積であり且つビット線を埋め込む必要のない3次元トランジスタを有する半導体記憶装置を提供する。
【解決手段】ゲートトレンチを介して両側に位置する第1及び第2の拡散層とゲートトレンチの底面に形成された第3の拡散層とを有する活性領域と、第1及び第2の拡散層にそれぞれ接続された第1及び第2の記憶素子と、第3の拡散層に接続されたビット線と、ゲート絶縁膜を介してゲートトレンチの第1の側面を覆い、第1の拡散層と第3の拡散層との間にチャネルを形成する第1のゲート電極と、ゲート絶縁膜を介してゲートトレンチの第2の側面を覆い、第2の拡散層と第3の拡散層との間にチャネルを形成する第2のゲート電極とを備える。本発明によれば、ゲートトレンチの両側面にそれぞれ別のトランジスタが形成されることから、従来の2倍の集積度が得られる。 (もっと読む)


【課題】耐圧性が高い電界効果トランジスタを提供すること。
【解決手段】p型の導電型を有する基板と、前記基板上に形成された高抵抗層と、前記高抵抗層上に形成され、p型の導電型を有するp型半導体層を前記基板側に配置したリサーフ構造を有する半導体動作層と、前記半導体動作層上に形成されたソース電極、ドレイン電極、およびゲート電極と、を備える。好ましくは、前記リサーフ構造は、前記p型半導体層上に形成されたn型の導電型を有するリサーフ層を備える。また、好ましくは、前記リサーフ構造は、前記p型半導体層上に形成されたアンドープのキャリア走行層と、前記キャリア走行層上に形成され該キャリア走行層とはバンドギャップエネルギーが異なるキャリア供給層とを備える。 (もっと読む)


【課題】短チャネル特性を低下させることなく、チャネル領域に十分な歪みを生じさせることのできる半導体層が埋め込まれたソース・ドレイン領域を有する半導体装置およびその製造方法を提供する。
【解決手段】N型のシリコン基板11の主面にゲート絶縁膜を介して形成されたゲート電極13と、ゲート電極13の下方に形成されるチャネル領域14を挟むように形成され、チャネル領域14に歪みを与えるためのゲルマニウム、P型不純物のボロンおよびボロンの拡散を抑制するためのカーボンを含有する第1半導体層15a、15bと、ゲルマニウムおよびボロンを含有する第2半導体層16a、16bと、が順に積層された構造を有するソース・ドレイン領域17a、17bと、第2半導体層16a、16bのゲート電極13側の側面からチャネル領域14に隣接するエクステンション領域18a、18bと、を具備する。 (もっと読む)


【課題】高い電流駆動力を有するn型半導体素子を提供する。
【解決手段】第1の主面を有し、III族の不純物を含み、1.2<N<10を満たすNを用いて(11N)面と表される、ないしはそれと結晶学的に等価な第1の面方位のみを前記第1の主面に有する、シリコンとゲルマニウムとの混晶層と、前記第1の主面上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記混晶層の[110]方向ないしそれと結晶学的に等価な方向に、前記ゲート電極を挟む様に形成され、V族の不純物を含む半導体よりなるソース・ドレイン領域と、を有し、前記混晶層は面内方向に圧縮歪みが印加されていることを特徴とする。 (もっと読む)


【課題】歪みチャネルを用いた場合のリーク電流を低減することができ、不良の発生を抑制して歩留まりの向上をはかる。
【解決手段】半導体基板10上に設けられた、基板10とは格子定数の異なる合金半導体からなる下地層20と、下地層20上に設けられた、下地層20とは格子定数が異なり、チャネル長方向及びチャネル幅方向の一方に引っ張り応力、他方に圧縮応力が付与されたチャネル半導体層30と、チャネル半導体層30を挟むように下地層20上に設けられたソース・ドレイン領域60,70と、チャネル半導体層30上にゲート絶縁膜40を介して設けられたゲート電極50とを備えた電界効果トランジスタであって、下地層20は、ソース・ドレイン領域60,70の下部に形成される空乏層61,71が下地層20内に収まる厚さよりも厚く形成され、且つ熱平衡臨界膜厚よりも薄く形成されている。 (もっと読む)


【課題】ドレイン電極からのホールリークが防止された横型のFETを提供することを課題とする。
【解決手段】基板の表面上に形成された第1導電型のチャネル層と、前記チャネル層上に形成されたソース電極、ドレイン電極及びゲート電極とを備え、前記ソース電極及びドレイン電極を前記チャネル層とオーミックコンタクトさせて電界効果型トランジスタを構成し、前記ドレイン電極の下部の前記チャネル層に第1導電型の拡散領域を備え、前記拡散領域が、式(1)Ns≧ε×Vmax/(q×t)(式中、εは前記チャネル層の誘電率[F/m]、Vmaxは前記電界効果型トランジスタの仕様最大電圧[V]、qは電荷量(1.609×10-19)[C]、tは前記基板の表面から前記拡散領域の底面までの距離[m]である)で表されるシート不純物濃度Ns[cm-2]を有していることを特徴とする電界効果型トランジスタにより上記課題を解決する。 (もっと読む)


【課題】インパクトイオン化領域にてキャリアがゲート絶縁膜に入り込むことがない半導体装置とその製造方法を提供する。
【解決手段】トランジスタ部分22と、ダイオード部分23を具備し、トランジスタ部分22は、第1導電型又は真性の半導体領域であるチャネル形成領域6と、チャネル形成領域6に接するゲート絶縁膜7と、チャネルを形成させるゲート電極8と、第2導電型あり、チャネル形成領域6に接し、ドレイン電圧が供給されるドレイン領域4と、第2導電型であり、チャネル形成領域6を介してドレイン領域4に対向し、チャネル形成領域6にチャネルが形成されたときにチャネル形成領域6を介してドレイン電圧が供給されるソース領域5とを含み、ダイオード部分23は、ソース領域5に電気的に接続されており、ソース領域5にドレイン電圧が供給されたときに、ダイオード部分23はインパクトイオン化現象が発生する領域を含む。 (もっと読む)


【解決手段】
非長方形形状を有していてよいキャビティに基いて歪誘起半導体合金を形成することができ、二酸化シリコン材質のような適切な保護層を設けることによって、非長方形形状は対応する高温処理の間にも維持され得る。その結果、歪誘起半導体材質の横方向のオフセットを小さくすることができる一方、キャビティエッチングプロセスの間に対応するオフセットスペーサの十分な厚みをもたらすことができるので、ゲート電極完全性を維持することができる。例えば、pチャネルトランジスタは六角形形状を伴うシリコン/ゲルマニウム合金を有することができ、それにより全体的な歪転移効率を顕著に高めることができる。 (もっと読む)


【課題】ゲート長が膜厚で規定された縦型の半導体装置であって、良好な信頼性のゲート絶縁膜を備え、微細化が容易な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置10の基板11上の、チャネル領域32に対応する領域を
除いた領域を種結晶領域として用い、チャネル領域32を迂回する形で、
基板11上に選択エピタキシャル成長又は固相エピタキシャル成長によってゲートとなる単結晶膜を結晶成長させる。この単結晶膜をCMPで窒化膜19の膜厚に規定し、この単結晶膜と絶縁膜からなる積層膜に、チャネルとなる任意の大きさの開口を形成する。この開口形成時にできた、単結晶膜の端面を酸化させることによりゲート酸化膜を形成する。 (もっと読む)


【課題】半導体と金属との界面において、接合する金属の実効仕事関数を最適化した半導体装置を提供することを可能にする。
【解決手段】半導体膜4aと、半導体膜上に形成された酸化膜6bと、酸化膜上に形成された金属膜12aとを備え、酸化膜がHf酸化膜或いはZr酸化膜であって、酸化膜に、V、Cr、Mn、Nb、Mo、Tc、W、Reから選ばれた少なくとも一つの元素が添加されている。 (もっと読む)


【課題】ゲート電極を活性化するために熱処理をしても閾値の負側へのシフトを抑制した
半導体装置の製造方法を提供する。
【解決手段】基板10上に熱酸化により形成された酸化膜19を介してゲート電極を設けた半導体装置の製造方法であって、基板10上に第1の酸化膜を形成する第1工程と、前記第1の酸化膜を不活性ガス雰囲気にて熱処理をする第2工程と、前記不活性ガスにて熱処理した第1の酸化膜を所定の膜厚となるようにエッチングして得られる第2の酸化膜を形成する第3工程と、前記第2の酸化膜上にゲート電極を形成して熱処理する第4工程と、を有する製造方法である。 (もっと読む)


【課題】ゲルマニウム層に浅いn型不純物拡散領域を形成可能とした半導体装置を提供する。
【解決手段】ゲルマニウムを主成分とするp型半導体と、前記p型半導体の表面に選択的に設けられた一対のn型不純物拡散領域と、前記一対のn型不純物拡散領域により挟まれた前記p型半導体の上に設けられたゲート絶縁層と、前記ゲート絶縁層の上に設けられたゲート電極と、を備え、前記n型不純物拡散領域の少なくとも一部は、シリコン及び炭素から選択された少なくともいずれかの添加元素を含有していることを特徴とする半導体装置が提供される。 (もっと読む)


1 - 20 / 46