説明

Fターム[5H018EE12]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 無機化合物 (2,351) | 金属酸化物 (1,566)

Fターム[5H018EE12]の下位に属するFターム

Fターム[5H018EE12]に分類される特許

41 - 60 / 969


【課題】長時間にわたって燃料電池の出力性能を高く維持することが可能な燃料電池用の電極材料を提供する。
【解決手段】導電性炭素微粒子上に複数の触媒金属粒子が担持され、該担持された触媒金属粒子が遷移金属の酸化物により一部もしくは全部を被覆されている触媒粒子からなり、電極材料における触媒金属の原子個数Aと遷移金属原子個数Bの原子個数比率が0<B/A≦3.5であることを特徴とする電極材料である。触媒金属粒子が、Pt、Ru、Rh、Pd、Co、Ni、Auのうち1つ以上の成分を含んでなる。遷移金属の酸化物が、Si、Zr、Ti、Mg、Al、Inの酸化物のうち1つ以上の酸化物を含んでなる。さらに、上記電極材料を用いた電極を備えてなる燃料電池である。 (もっと読む)


【課題】良好なサイクル特性を得ることを可能にする金属空気二次電池を提供することを目的とする。
【解決手段】本発明は、金属イオンを吸蔵・放出する負極材と、酸素を活物質とする正極材と、前記負極材と前記正極材の間に設置された電解質膜を有する金属空気二次電池において、正極材の一部に、酸素還元と酸素発生の両機能を備える触媒として、粒径が1nm〜30nmの金属粒子または金属酸化物粒子を用いており、1nm〜1μmの細孔径分布において、2nm〜30nmのみに極大細孔径を有する炭素材料を、金属空気二次電池の正極に用いることにより、上記課題を解決する。 (もっと読む)


【課題】優れた触媒活性を有する触媒微粒子の製造方法、及びカーボン担持触媒微粒子の製造方法を提供する。
【解決手段】内部粒子と、白金を含み当該内部粒子を被覆する最外層とを備える触媒微粒子の製造方法であって、酸素欠陥を有しない第1の金属酸化物からなる微粒子を含む逆ミセルの分散液を準備する工程、白金イオンを含む逆ミセルの分散液を準備する工程、並びに、少なくとも、前記第1の金属酸化物からなる微粒子を含む逆ミセルの分散液、前記白金イオンを含む逆ミセルの分散液、及び犠牲剤を混合し、当該混合物にマイクロ波を照射することにより、前記第1の金属酸化物からなる微粒子の少なくとも表面を、酸素欠陥を有する第2の金属酸化物に還元し、且つ、当該第2の金属酸化物上に、前記白金イオンが還元されてなる白金を含む最外層を形成する還元工程を有することを特徴とする、触媒微粒子の製造方法。 (もっと読む)


【課題】炭素薄膜の製造方法、炭素薄膜を含んだ電子素子及び炭素薄膜を含んだ電気化学素子を提供する。
【解決手段】基板上にコールタール及びコールタールピッチのうち一つ以上を含んだ前駆体膜を形成する段階と、基板と前駆体膜との間の触媒膜、及び前駆体膜上の保護膜のうち一つ以上を形成する段階と、基板を熱処理し、基板上に炭素薄膜を形成する段階と、を含む炭素薄膜の製造方法である。 (もっと読む)


【課題】放電容量を大きくすることが可能な空気電池用正極を提供する。
【解決手段】空気電池用触媒が焼結されてなる多孔質焼結体を備え、細孔径50nm以上の細孔の全容積が、当該多孔質焼結体の体積の50%以下であり、細孔径1〜20nmの細孔の全容積が、上記多孔質焼結体の体積の5〜90%であり、好ましくは、細孔径0.1〜10μmの貫通孔を有し、好ましくは、空気電池用触媒が、マンガン酸化物である空気電池用正極。 (もっと読む)


【課題】比表面積が大きい固体酸化物形燃料電池用の燃料極または空気極を、簡便かつ安価な方法により作製可能とする粒子集合体の製造方法を提供する。
【解決手段】一次粒子径が1nm以上かつ20nm以下、分散粒径が1nm以上かつ100nm以下の正方晶ジルコニア粒子または安定化ジルコニア粒子を溶媒に分散させて粒子分散液を調製する工程Aと、該粒子分散液を噴霧することにより噴霧液体状態とし、この噴霧液体状態の粒子分散液を、−196℃以上かつ0℃以下の冷却物質に曝すことにより、前記粒子分散液を凍結させる工程Bと、該凍結した粒子分散液の溶媒を昇華させて、除去する工程Cとを有し、前記工程Aにおいて、前記粒子分散液における正方晶ジルコニア粒子または安定化ジルコニア粒子の含有率を1質量%以上かつ70質量%以下とし、工程Bにおいて、噴霧液体状態の液滴径を1μm以上かつ100μm以下とする。 (もっと読む)


【目的】高分子系電解質膜に大量のリン酸を予め含浸させることなく、長期にわたってセルの出力電圧が維持される中温型プロトン交換膜形燃料電池を提供することにある。
【解決手段】固体高分子形燃料電池14によれば、酸化剤電極30の酸化剤触媒層26と酸化剤ガス拡散層28との間に、その酸化剤触媒層26から酸化剤ガス拡散層28への液体のリン酸の移動を抑制するための少なくとも一層から成るリン酸移動抑制多孔質層42が設けられていることから、液体のリン酸が酸化剤触媒層26から酸化剤ガス拡散層28へ移動することが抑制されるので、高分子系電解質膜18および酸化剤触媒層26内に含まれる液体のリン酸が枯渇することが抑制され、高分子系電解質膜18に大量のリン酸を予め含浸させる必要がなく、長期にわたってセルの出力電圧が維持される利点がある。 (もっと読む)


【課題】電極触媒能力が高く、高温環境に晒されても劣化し難い、固体酸化物形燃料電池セルのカソード用材料を提供する。
【解決手段】燃料電池セルに用いられる複合材料は、(Ln1−xAe)(M11−yM2)O3−δで示されるペロブスカイト型酸化物からなる粒子と、酸素のイオン化反応に対して触媒機能を有するコアの表面がセラミックで多孔質状態に被覆されたセラミックコーティング粒子とを含む。この複合材料は、セラミックコーティング粒子を含んでいるため、高い電極触媒能力を有し、且つ、高温環境に晒されても劣化し難いカソード30を形成することができる。 (もっと読む)


【課題】燃料極に含まれるNi成分の電解質層側への拡散抑制効果をより高めた固体電解質形燃料電池を提供すること。
【解決手段】この固体電解質形燃料電池は、固体電解質層であるLSGMの粒界にMgOを点在させている。LDCを挟んでLSGMと反対側に形成されている燃料極から拡散されるNi成分は、この点在しているMgO粒子によって捕捉され、電解質層中を空気極側へ拡散することが抑制される。 (もっと読む)


【課題】固相反応の発生を抑制しつつ、高い電池性能を発揮できるようなカソードを形成できる複合材料を提供する。
【解決手段】
本発明の複合材料は、(Ln1−xAe)(M1−yFe)O3−δ(1)で示されるFe系ペロブスカイト型酸化物からなる粒子と、酸素のイオン化反応に対して触媒機能を有するコアの表面がセラミックで多孔質状態に被覆されたセラミックコーティング粒子とを含む。ここで開示される複合材料は、Fe系ペロブスカイト型酸化物からなる粒子を含んでいるため、固相反応が生じにくいカソード(空気極)を形成することができる。また、この複合材料では、上記セラミックコーティング粒子を含んでいるため、Fe系ペロブスカイト型酸化物を用いているにも関わらず高い電極触媒能力を有したカソードを形成することができる。 (もっと読む)


【課題】ガス拡散層の撥水性を発現させるために実行する界面活性剤の加熱分解時間の短時間化を実現する。
【解決手段】ガス拡散層基材に、撥水部材および界面活性剤を含む撥水層ペーストを塗工する。撥水層ペーストが塗工されたガス拡散層基材の撥水層ペーストの塗工面にセリウム含有酸化物を接触させる。撥水層ペーストの塗工面にセリウム含有物が接触されたガス拡散層基材を加熱して、撥水層ペーストに含まれる界面活性剤を分解除去する。 (もっと読む)


【課題】本発明の目的は、酸性電解質中、高電位でも安定であり、かつ比較的安価で、資源量が比較的多い材料からなり、より高い電流値を得ることのできる電極触媒の製造方法を提供することにある。
【解決手段】以下の第一材料および以下の第二材料を含む混合材料を、超臨界状態または亜臨界状態の水の存在下において水熱反応させて得られる混合前駆体スラリーをフリーズドライ法で乾燥して混合前駆体を得、得られた混合前駆体を第二材料が炭素材料に遷移しうる条件にて焼成することを特徴とする電極触媒の製造方法。
第一材料:4Aおよび5A族からなる群より選択される1種以上の元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素からなる群より選択される1種以上の元素とで構成される金属化合物
第二材料:炭素材料前駆体または炭素材料前駆体との導電性材料の混合物 (もっと読む)


【課題】燃料電池用正極材料、これを含む燃料電池用正極および固体酸化物形燃料電池を提供する。
【解決手段】ペロブスカイト型金属酸化物と、互いに異なる少なくとも2種のランタノイド異種元素によってドーピングされ、前記ランタノイド異種元素の平均イオン半径が、0.90〜1.02Åであるセリア系金属酸化物と、を含む燃料電池用正極材料。 (もっと読む)


【課題】高いプロトン伝導性又はプロトン・電子混合伝導性を有すると共に、中温域で動作可能であり、しかも緻密な構造を有する伝導性材料を創案する。
【解決手段】本発明の伝導性材料は、組成として、下記成分換算のモル%表示で、SnO2 3.5〜25%、P25 12〜40%、SiO2 10〜50%、B23 1〜40%、Al23+Ga23+In23+Y23(Al23、Ga23、In23、及びY23の合量) 0.1〜10%を含有することを特徴とする。 (もっと読む)


【課題】ナノ構造複合体空気極を含む固体酸化物燃料電池及びその製造方法を提供する。
【解決手段】本発明は、a)燃料極支持体と、b)燃料極支持体上に形成された固体電解質層と、c)固体電解質層上に形成されたナノ構造複合体空気極層と、を含み、複合体空気極層は、電極物質と電解質物質とが分子単位で混合されていながら、互いに反応または固溶されて単一物質を形成しないことを特徴とする固体酸化物燃料電池及びその製造方法に関するものであって、低温作動が可能であり、高性能を有し、安定性に優れる燃料電池を提供することができる。 (もっと読む)


【課題】容易に製造できるとともに、良好な電気的特性及びガス拡散性を有し、優れた発電特性を有する固体酸化物形燃料電池及びその製造方法を提供する。
【解決手段】固体酸化物形燃料電池1は、燃料極5の内表面から、燃料極5と固体電解質層7の界面までのガス透過率が、1×10-4ml/cm2secPa以上な構成とする。これにより、反応場となる固体電解質層7近傍までガスが効率よく供給することができる。さらに、燃料極5は、25℃において3000S/cm以上の電気伝導率を有することとする。これにより料極4の電気抵抗が小さく、発電ロスを小さくできる。 (もっと読む)


【課題】アノード側電極に供給された燃料ガスの濃度損失を回避することが可能であるとともに十分な強度を示すアノード支持型の電解質・電極接合体を、容易に得る。
【解決手段】
電解質・電極接合体は、厚みが150〜250μm、気孔率が8〜25%の範囲内であるアノード側電極を具備する。この電解質・電極接合体は、例えば、シート状成形体としてのアノード側電極、固体電解質を積層して焼成処理を施し、さらにカソード側電極を焼き付けることで得られる。必要に応じて、アノード側電極と固体電解質との間、固体電解質とカソード側電極との間に、それぞれ、平坦化層、中間層を介装するようにしてもよい。このようにして構成された電解質・電極接合体を含む燃料電池は、特に、高電流密度での放電時に優れた定格電位及び出力密度を示す。 (もっと読む)


【課題】700℃以下の中低温域においても発電効率40%以上を実現する電気化学セル及びその発電方法を提供する。
【解決手段】上記電気化学セルが燃料ガスと界面を有する燃料極、緻密なイオン伝導体(電解質)、空気(酸素)と界面を有する空気極がその順番に積層されている構造を有し、燃料極と空気極は接触することなく電解質によって分離され、燃料ガスとの界面である燃料極表面全面あるいは一部に電気化学反応を促進する多孔質構造の機能層が積層されている構造を有する電気化学セル。
【効果】気体水素燃料を利用する電気化学発電システムにおいて、気体水素燃料ガスの燃料極内部拡散による抵抗を大幅に低減し、700℃以下の中低温域においても発電効率40%以上を単セルレベルで実現することを可能とする、環境・エネルギー問題の解決に資する高効率な電気化学反応システムを提供できる。 (もっと読む)


【課題】燃料電池電解質膜および電極の性能と耐久性を高めるイオノマー組成物を提供する。
【解決手段】第一イオノマー及び添加物を含む第一層12を含んでなる燃料電池であって、該添加物はCe、Mn、V、Pt、Ru、Zr、Ni、Cr、W、Co、Mo、又はSnの少なくとも1の酸化物を含む金属酸化物を含み、該添加物は該イオノマーの少なくとも0.1wt%にて存在する製品が一態様として開示される。金属酸化物の1又は全てが本質的にナノ粒子からなる場合には、性能と耐久性が向上する。 (もっと読む)


【課題】優れた気孔性を持ち、強度に優れるとともに支持体層の厚さを減らすことができる金属酸化物−イットリア安定化ジルコニア複合体を含む固体酸化物燃料電池を提供する。
【解決手段】金属酸化物−3モル%イットリア安定化ジルコニア複合体25重量%〜75重量%、及び金属酸化物−8モル%イットリア安定化ジルコニア複合体75重量%〜25重量%でなる金属酸化物−イットリア安定化ジルコニア複合体を燃料極層または燃料極層の支持体層として採用した固体酸化物燃料電池。 (もっと読む)


41 - 60 / 969