説明

Fターム[5H018EE12]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 無機化合物 (2,351) | 金属酸化物 (1,566)

Fターム[5H018EE12]の下位に属するFターム

Fターム[5H018EE12]に分類される特許

61 - 80 / 969


【課題】実用的であり、電池性能が高く、耐久性に優れ、かつ電極触媒の劣化が少ない固体高分子型燃料電池を提供すること。
【解決手段】電解質膜の両面に電極が接合された膜電極接合体と、前記電解質膜及び前記電極のいずれか1以上に添加された、Feを実質的に含まない難溶性無機アニオン交換体とを備えた固体高分子型燃料電池。この場合、前記難溶性無機アニオン交換体は、希土類元素、遷移金属元素、及びアルカリ土類金属元素からなる群から選ばれるいずれか1以上の元素を含む水酸化物、水和水酸化物、含水酸化物、オキシ水酸化物、又は、オキシ酸化物が好ましい。 (もっと読む)


【課題】優れた気孔性を持ち、強度に優れるとともに支持体層の厚さを減らすことができる金属酸化物−イットリア安定化ジルコニア複合体を含む固体酸化物燃料電池を提供する。
【解決手段】金属酸化物−3モル%イットリア安定化ジルコニア複合体25重量%〜75重量%、及び金属酸化物−8モル%イットリア安定化ジルコニア複合体75重量%〜25重量%でなる金属酸化物−イットリア安定化ジルコニア複合体を燃料極層または燃料極層の支持体層として採用した固体酸化物燃料電池。 (もっと読む)


【課題】アノードがカソードおよび電解質膜よりも厚いアノード支持型の固体酸化物形燃料電池を容易に製造できる固体酸化物形燃料電池の製造方法を提供することを課題とする。
【解決手段】アノード6の形成にあたり、低融点有機物で形成された結合材とアノード用粉末材料とを混合した混合物と、貫通開口40をもつ成形マスク4とを準備する工程と、混合物に含まれる低融点有機物の融点以上に混合物を加熱させて低融点有機物を液相化させて混合物を流動物100とし、更に、電解質膜2の表面に設置した成形マスク4の貫通開口40に流動物100を流入させて固化させることにより電解質膜2の表面にグリーン状態のアノード6を成形する。次に、少なくともグリーン状態のアノード6を焼成温度領域において焼成させることにより、アノード6を電解質膜2の表面に形成させる。 (もっと読む)


【課題】ジルコニア粒子及びニッケルの分布性、組成制御性に優れ、しかも三相界面が多く、電子伝導性に優れた複合セラミックス材料及びその製造方法並びに固体酸化物形燃料電池を提供する。
【解決手段】本発明の複合セラミックス材料は、イットリア安定化ジルコニアからなるジルコニア粒子が結合して三次元の網目状骨格構造とされ、この網目状骨格構造の表面に酸化ニッケルが結合している。 (もっと読む)


【課題】複数種の酸化物粒子の分布性、組成制御性に優れ、しかも三相界面が多く、酸素イオン発生性にも優れた複合セラミックス材料及びその製造方法並びに固体酸化物形燃料電池を提供する。
【解決手段】本発明の複合セラミックス材料は、イットリア安定化ジルコニアからなるジルコニア粒子が結合して三次元の網目状骨格構造とされ、この網目状骨格構造の表面に、A1−x1−y3−δ(式中、AはLa、Sm及びFeの群から選択される1種または2種以上の元素、BはSr及びNiの群から選択される1種または2種の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素(但し、Aとは異なる)であり、0.2≦x≦0.9、0≦y≦1、0≦δ≦1であり、0<δの時一定の酸素欠陥を含有)にて表される酸化物が結合している。 (もっと読む)


【課題】高い酸素還元性能を有する酸素還元触媒を提供する。
【解決手段】酸素欠陥が導入された遷移金属酸化物と、該遷移金属酸化物上に設けられた電子伝導性物質を含む層と、を含む酸素還元触媒。また、前記遷移金属酸化物の酸素原子の一部が窒素原子で置換されている酸素還元触媒。 (もっと読む)


【課題】アノード支持基板と電解質層とを有するアノード支持型ハーフセルであって、その周縁部の反り上がりを低減されており、セルスタックとして多層積層した場合でも割れや破損を生じ難く、周縁部のシール性に優れ、且つ、スクリーン印刷によりカソード層を安定して形成できるアノード支持型ハーフセルを提供することを目的とする。
【解決手段】本発明のアノード支持型ハーフセルは、アノード支持基板と、前記アノード支持基板に積層された電解質層とを有するアノード支持型ハーフセルであって、電解質層が上面となるように載置し、レーザー光学式三次元形状測定装置を使用し、電解質層表面にレーザー光を照射してその反射光を三次元解析することにより求められる電解質層周縁端部の高さ(h1)と、周縁端部からハーフセルの中心方向に3mmの位置における電解質層の高さ(h2)との差(Δh)が100μm以下であることを特徴とする。 (もっと読む)


【課題】高分子電解質と、触媒物質と、黒鉛化率の異なる少なくとも2種類の炭素粒子とを備える電極触媒層であって、触媒物質に酸化物系非白金触媒を用いて高い発電特性を示す電極触媒層を提供する。
【解決手段】触媒物質と、触媒物質よりも比表面積が大きく、黒鉛化処理を行った第1の炭素粒子と、第1の高分子電解質とを第1の溶媒に分散させた第1の触媒インクを調整し、第1の触媒インクを乾燥させ、第1の高分子電解質で包埋した複合粒子を形成し、第1の高分子電解質で包埋した複合粒子と、黒鉛化処理を行っていない第2の炭素粒子と、第2の高分子電解質とを第2の溶媒に分散させた第2の触媒インクを調整し、基材上に、第2の触媒インクを塗布して電極触媒層を形成することを特徴とする燃料電池用電極触媒層の製造方法により課題を解決できる。 (もっと読む)


【課題】電極からの触媒の溶出による燃料電池の劣化を抑制する技術を提供する。
【解決手段】燃料電池用の膜電極接合体10は、プロトン伝導性を有する高分子膜である電解質膜1と、触媒が担持されたアノード2およびカソード3とを備える。また膜電極接合体10には、カソード3と電解質膜1との間に、触媒がイオン化した触媒イオンが電解質膜へと溶出することを抑制する触媒溶出抑制層5が設けられている。触媒溶出抑制層5は、イオン交換基としてスルホン酸基を担持しており、そのスルホン酸基が、プロトンの移動を許容しつつ触媒イオンの移動を制限するイオンの移動経路を形成する。 (もっと読む)


【課題】触媒物質として、特に、酸化物系非白金触媒を用いて、高い発電特性を示す燃料電池用の電極触媒層の製造方法を提供する。
【解決手段】電極触媒層2または3は、高分子電解質および触媒物質と炭素粒子を備え、触媒物質の比表面積は、炭素粒子よりも小さく、下記(1)から(4)の工程により製造される。(1)第一の高分子電解質で包埋した触媒物質を形成する工程、(2)第二の高分子電解質で包埋した炭素粒子を形成する工程、(3)第一の高分子電解質で包埋した触媒物質と、第二の高分子電解質で包埋した炭素粒子と、第三の高分子電解質とを、溶媒に分散させた触媒インクを作製する工程、(4)ガス拡散層、転写シート、高分子電解質膜から選択される基材上に、触媒インクを塗布して電極触媒層を形成する工程。 (もっと読む)


【課題】組成が複雑になることを極力抑えつつ、含有している複数の種類の固体粒子を安定的に分散させることのできるインクを提供する。
【解決手段】第1の固体粒子と、第1の固体粒子とは母材の主成分が異なる第2の固体粒子と、を少なくとも含有したインクにおいて、第1及び第2の固体粒子の互いのゼータ電位を、同極性又は0±5mVにする。このインクは、第1及び第2の固体粒子同士の表面の物性、つまりインク中での各固体粒子の界面の性質を揃えるようにしているので、第1、第2の固体粒子それぞれに吸着させやすい分散剤の共通化を図ることができ、これにより、複数の種類の固体粒子を1種類の分散剤で安定的に分散させることが可能となる。 (もっと読む)


【課題】薄い触媒層で高い触媒活性を有する電極触媒層およびその製造方法を提供する。
【解決手段】固体高分子型燃料電池の電極触媒層であって、触媒担体と、前記触媒担体上に配置された膜厚10μm以下のくもの巣状構造の触媒を有する。前記くもの巣状構造の触媒は分岐した糸状組織と空孔から構成されており、前記空孔の孔径が30nmから600nmである。触媒層にこのような特徴的な構造を持たせることによって触媒活性ひいては触媒利用率を向上することができる。さらに、触媒層の膜厚を薄くできるため触媒層中の物質輸送性を向上させることができる。 (もっと読む)


【課題】燃料極層と固体電解質層との密着性を高くし、これにより電池運転時に燃料極層と固体電解質層とが剥離するのを防止する。
【解決手段】固体酸化物形燃料電池は、正極となる空気極層12と、負極となる燃料極層13と、空気極層12と燃料極層13との間に介装された固体電解質層14とを備える。燃料極層13はセリア系酸化物を含み、固体電解質層14はランタンガレート系酸化物を主成分とする。また固体電解質層14のランタンガレート系酸化物の結晶粒界にセリア系酸化物が析出するように構成される。 (もっと読む)


【課題】電極に固定化したニコチンアミドアデニンジヌクレオチドおよび/またはその誘導体の溶出を防止することができ、溶出による性能劣化を防止することができる燃料電池およびその製造方法を提供する。
【解決手段】正極と負極とがプロトン伝導体を介して対向した構造を有し、酵素を用いて燃料から電子を取り出すように構成されるバイオ燃料電池において、負極を、大きさが2nm以上100nm以下の細孔を表面に有する炭素および/または無機化合物を有し、この炭素および/または無機化合物にニコチンアミドアデニンジヌクレオチドおよび/またはその誘導体が固定化されている電極により構成する。炭素として炭素粒子、炭素シートまたは炭素ファイバーを用いる。炭素粒子としては、バイオカーボン、ケッチェンブラック、活性炭などを用いる。この炭素に酵素反応に必要な酵素を、必要に応じてピレン誘導体などを介して固定化させてもよい。 (もっと読む)


【課題】 高活性の電極の製造を可能とする、燃料電池の製造方法を提供する。
【解決手段】 燃料電池(100)の製造方法は、有機金属化合物を含む液状の電極前駆体(40a)を固体酸化物型の電解質層(30)上に塗布する塗布工程と、電極前駆体(40a)に紫外領域のエネルギー光を照射する照射工程と、を含む。電解質層(30)は、金属支持体(10)に支持された電極(20)上に形成されていてもよい。電解質層(30)を酸素イオン導電性の電解質とし、電極前駆体(40a)をカソードの前駆体としてもよい。 (もっと読む)


【課題】空気極に添加された触媒の活性点を増やして触媒機能を充分に発揮させ、空気電池の高エネルギー密度化の実現を可能とする空気極及び空気電池を提供する。
【解決手段】空気極と、負極と、前記空気極及び前記負極の間に介在する電解質とを備える空気電池を構成する空気極であって、磁石を含有することを特徴とする空気電池用空気極、該空気極を備える空気電池、並びに、空気極と、負極と、前記空気極及び前記負極の間に介在する電解質とを備える空気電池を構成する空気極の製造方法であって、少なくとも磁石材料を含む空気極材料を成形した空気極成形体に対して、磁化処理を施すことを特徴とする空気電池用空気極の製造方法。 (もっと読む)


【課題】炭化水素系電解質やパーフルオロ系電解質の過酸化水素耐性を向上させることが可能であり、しかもPtの溶出に起因する電池性能の低下を抑制することが可能な新規な添加剤を含む電解質、及び、これを用いた燃料電池を提供すること。
【解決手段】固体高分子電解質と、Biオキシ化合物とを含む電解質、及び、このような電解質を電解質膜及び/又は触媒層内電解質用いた固体高分子型燃料電池。Biオキシ化合物は、Biイオン及び/又はオキシビスマスイオンを含む水溶液と、固体高分子電解質とを接触させ、固体高分子電解質の酸基のプロトンの全部又は一部をBiイオン又はオキシビスマスイオンでイオン交換し、次いで前記固体高分子電解質と、水又は塩基性水溶液とを接触させ、Biイオン又はオキシビスマスイオンをBiオキシ化合物として沈殿させることにより得られるものが好ましい。 (もっと読む)


【課題】 耐久性に優れるSOFCを提供する。
【解決手段】安定化ジルコニア材料からなる固体電解質層の一方の面に酸素極層、他方の面に燃料極層を設けてなる固体酸化物形燃料電池において、前記燃料極層は、外部から飛来したSiが前記固体電解質層に到達することを抑制するための、Si捕集機能を有することを特徴とする、固体酸化物形燃料電池。 (もっと読む)


【課題】高い起電力及び十分な電流密度を得ることができる層状金属酸化物を含む電極を備える燃料電池を提供すること。
【解決手段】電極触媒と、第1の層状金属酸化物と、を含み、電極触媒100重量部に対して、第1の層状酸化物が50〜150重量部である、アノード電極と、カーボン材料と、第2の層状金属酸化物と、を含み、カーボン材料100重量部に対して、第2の層状酸化物が150〜250重量部である、カソード電極と、アノード電極とカソード電極との間に配置され、第3の層状金属酸化物を含む固体電解質層と、を備え、第1及び第3の層状金属酸化物は水蒸気処理が施されたものである、燃料電池。 (もっと読む)


【課題】固体酸化物型燃料電池用燃料極材料として好適な均一組成の(NiO−GDC)複合粉末(複合微粒子)及びその製造方法を提供する。
【解決手段】Ce元素とGd元素と酸素元素とからなる複合酸化物と、Ni元素と酸素元素とからなる酸化物とを含む複合粉末からなる固体酸化物型燃料電池用燃料極材料複合粉末において、粉末の走査型電子顕微鏡像の複数の位置において、当該SEMに付随したEDXにより測定した特性X線のピーク面積比より算出したNi元素の含有量(wa(wt%))と、Ce元素とGd元素の和の含有量(wb(wt%))とを、式(1)の関係を満足するように決定し、それぞれの位置における含有量から算出したNi元素の平均含有量及びCe元素とGd元素の和の平均含有量とを比較した場合に、その平均含有量の大きい元素の変動係数(α)が15%以下である燃料極材料粉末を与える。wa+wb=100(1) (もっと読む)


61 - 80 / 969