説明

Fターム[5H115PG04]の内容

車両の電気的な推進・制動 (204,712) | 車両の種類 (12,614) | 電気自動車(ハイブリッド車を含む) (11,291)

Fターム[5H115PG04]の下位に属するFターム

Fターム[5H115PG04]に分類される特許

21 - 40 / 11,046


【課題】 モータコイルの短絡異常を早期に検知し、車両走行上の問題を回避し得る電気自動車を提供する。
【解決手段】 電気自動車において、車輪2を駆動するモータ6は、3相の各モータコイルの一端が中性点で接続されるスター結線により結線された同期モータであり、モータコイルの短絡異常を検出する短絡異常監視手段95と、この短絡異常監視手段95で短絡異常が検出されると、前記中性点P1から各モータコイルを電気的に切断する異常時切断手段Esを設けた。 (もっと読む)


【課題】 車両の運転を急激に妨げることなく、モータを温度管理し、適切な対処が迅速に行える電気自動車を提供する。
【解決手段】 この電気自動車は、車輪2を駆動するモータ6と、このモータ6を制御する制御装置とを備えている。前記モータ6のモータコイルに、このモータコイルの温度Tcを検出する温度センサSaを設け、この温度センサSaで検出される温度Tcが閾値を超えたとき、この温度Tcを時間tで微分したdTc/dtが0以下になるまでモータ6の電流値を低減するモータ電流低減手段95を設けた。 (もっと読む)


【課題】 車両の運転を急激に妨げることなく、インバータの過熱による特性変化および損傷を防止し、モータ駆動の制御特性の変化や、モータ駆動の不能を防止することができ、適切な対処が迅速に行える電気自動車を提供する。
【解決手段】 この電気自動車は、車輪2を駆動するモータ6と、ECU21と、直流電力をモータ6の駆動に用いる交流電力に変換するインバータ31を含むパワー回路部28およびECU21の制御に従って少なくともパワー回路部28を制御するモータコントロール部29を有するインバータ装置22とを備えている。インバータ31に、このインバータ31の温度Tcを検出する温度センサSaを設け、温度センサSaで検出される温度Tcが閾値を超えたとき、温度Tcを時間tで微分したdTc/dtが0以下になるまでインバータ31に与える電流指令に制限を加えるインバータ制限手段95を設けた。 (もっと読む)


【課題】 モータがトルク制御不能となった場合に、適切な対処が迅速に行える電気自動車を提供する。
【解決手段】 この電気自動車は、車輪2を駆動するモータ6と、ECU21と、インバータ装置22とを備えている。インバータ装置22におけるモータコントロール部29に回転数制御する回転数制御手段37を設け、前記モータコントロール部29によるトルク制御の異常を検出するトルク制御異常検出手段38と、この手段38によりトルク制御の異常の判定出力に応答して前記モータコントロール部29を前記回転数制御手段37による回転数制御に切り替える制御方式切替手段39とを設けた。 (もっと読む)


【課題】高電圧バッテリと電動コンプレッサを搭載する車両において、電動コンプレッサの能力を最大限に引き出すことができるバッテリの充電制御装置を提供する。
【解決手段】出力電圧が12Vよりも高い高電圧バッテリとエアコン用の電動コンプレッサとを搭載する車両におけるバッテリの充電制御装置において、エアコンの電動コンプレッサのインバータ装置にある制御装置にインバータ装置の温度Tivを読み込ませると共に、高電圧バッテリの出力電圧Vhbを読み込ませた後に、インバータ装置の温度Tivが所定の閾値Kより大きく、高電圧バッテリの出力電圧Vhbが所定値R以下かどうかを判定させ、Tiv>KかつVhb≦Rの時に、インバータ装置から高電圧バッテリの電圧上昇要求を出力し、車両に搭載された発電機によって高電圧バッテリを充電してその出力電圧を目標値に保持させるようにしたバッテリの充電制御装置である。 (もっと読む)


【課題】エンジンおよび電動機を搭載したハイブリッド車両において、車両の状態に応じて電磁騒音のレベルを適切に制御するように、ランダムキャリア制御を実行する。
【解決手段】電動機を駆動するための電力変換器の電力用半導体スイッチング素子のオンオフは、パルス幅変調制御によって制御される。パルス幅変調制御に用いられるキャリア信号の周波数は、ランダムキャリア制御によって、所定の中心周波数に対して制御幅Δfを有する周波数範囲内でランダムに変動される。制御幅Δfは、車外に対して積極的に音を出力したい車両状態であるエンジン停止時には相対的に狭く設定される(Δf=f1)。一方、車室内で感知される騒音を抑制したい車両状態であるエンジン起動時には、制御幅Δfは相対的に広く設定される(Δf=f3)。 (もっと読む)


【課題】内燃機関の始動制御中に内燃機関の停止が要求されたときでも内燃機関をよりスムーズに停止させる。
【解決手段】エンジンの始動制御を実行している最中にその停止が要求されたときには(S110)、停止制御開始回転数に基づいてレートリミットTlimを設定すると共にエンジンの現在の回転数Neに基づいて停止時基本トルクTsbを設定し、前回のモータMG1のトルク指令(前回Tm1*)からレートリミットTlimを減じたトルクと停止時基本トルクTsbとのうち大きい方をモータMG1から出力すべきトルク指令Tm1*に設定してモータMG1を制御する(S170〜S230)。これにより、エンジンの回転数Neをスムーズに減少させ、ショックを伴うことなくエンジンを目標停止位置により正確に停止させることができる。 (もっと読む)


【課題】コンデンサにおける回生電力の蓄電機能を向上させる。
【解決手段】ハイブリッド車両の制御装置(100)は、内燃機関(200)、第1電動機(MG1)及び第2電動機(MG2)と、電源手段(12)と、第1及び第2電動機の各々に対応するインバータ(710,720)及びコンデンサ(c1,c2)とを備えたハイブリッド車両を制御するものであり、回生を行うべき状態であるか否かを判定する回生判定手段(110)と、電源手段の蓄電量又は温度が所定の閾値以上であるか否かを判定する電源状態判定手段(120)と、一方の電動機で回生を行うと共に、他方の電動機の回転数をゼロに近づけるように制御する電動機制御手段(130)と、電源手段から他方の電動機に対応するインバータへの電力供給を遮断し、回生電力を他方の電動機に対応するコンデンサに蓄電させる蓄電制御手段(140)とを備える。 (もっと読む)


【課題】HV−MT車について、後進−前進切り換え時において、車両のショックの発生の抑制、並びに車速の応答性の向上を達成すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータ(MG)とを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。通常、モータのトルク(MGトルク)は、アクセル開度に基づいて決定されるMGトルク基準値と、クラッチ戻しストロークに基づいて決定されるMGトルク制限値とのうち小さい方(=MGトルク最終基準値)に調整される。シフト位置が「リバース」であり且つMGトルク最終基準値の減少勾配が所定値を超えたとき、MGトルクの減少勾配が前記所定値に制限される。シフト位置が「1速」であり且つクラッチが完全分断状態にあり且つアクセルペダルの操作が開始されたとき、MGトルクがMGトルク最終基準値より大きくされる。 (もっと読む)


【課題】内燃機関を始動する際の振動の発生を抑制する。
【解決手段】エンジンを始動する際に、クランキングトルクTmbのトルクレートΔTmbが正の閾値A1よりも大きい状態が所定時間以上に亘って継続し且つ制振トルクTmvの位相とトルクレートΔTmbの符号とが共に正で一致しているときや、トルクレートΔTmbが負の閾値B1未満の状態が所定時間以上に亘って継続し且つ制振トルクTmvの位相とトルクレートΔTmbの符号とが共に負で一致しているときには、値0よりも大きく値1よりも小さい補正ゲインGA,GBを乗じて制振トルクTmvを補正し(S140〜S220)、クランキングトルクTmbと制振トルクTmvとの和のトルクをモータMG1から出力すべきトルク指令Tm1*に設定する(S240)。 (もっと読む)


【課題】より簡素な構成によって音声データをアナログ波形に変換することができる車両接近警報装置を提供する。
【解決手段】マイクロコンピュータ31に汎用的に備えられているRAM31cとDMA部31dおよびPWM機能部31eとによってPWM波形が自動的に出力されるようにする。具体的には、PWM出力に用いるデータをRAM31cに保持すると共に、DMA部31dのDMA機能によってPWM生成機能部31eに対してRAM31cに保持されたデータを定期的に自動書込みされるようにすることで、マイクロコンピュータ31にてPWM波形が自動的に出力されるようにする。そして、マイクロコンピュータ31のPWM波形によって駆動回路部を制御し、スピーカへの電流供給量を調整する。 (もっと読む)


【課題】二次電池の連続放電に起因した劣化を抑制しながら、車両に要求される駆動力をより適正に確保する。
【解決手段】本発明のハイブリッド自動車20では、バッテリ50の放電が継続されるほど許容放電電力としての出力制限Woutが放電電力として小さく制限されるように当該出力制限Woutが補正される。そして、出力制限Woutの制限が開始されると、その後に少なくともバッテリ50の放電が停止されるように充放電要求パワーPb*が補正される(ステップS130およびS140)。 (もっと読む)


【課題】要求制動トルクをモータジェネレータによる制動トルクおよび機械式ブレーキによる制動トルクの両方で分担する場合に、エンジンを始動する際の駆動力変動をモータジェネレータによって適切に抑制できるようにする。
【解決手段】エンジン12を始動する際に、予め駆動系制動トルクの分担量上限値が制限され、それに伴ってモータジェネレータMGによる制動トルクの分担が低減される一方、その制動トルクの低下を補完するように油圧ブレーキ62による制動トルクの分担が大きくされる。このため、制動トルク制御とエンジン12の始動制御とが重なった場合でも、要求制動トルクに応じた制動トルクを発生させつつモータジェネレータMGによる制動トルクに余裕を残すことができ、そのモータジェネレータMGによる制動トルクの制御でエンジン12の初爆トルクを適切に吸収して駆動力変動を抑制することができる。 (もっと読む)


【課題】充電用コードの収納性や使い勝手に優れ、且つ部品の重量増を可及的に少なくできる充電用コードの巻き掛け構造を備えた鞍乗型車両を提供する。
【解決手段】車体フレーム10と、電動モータ31と、当該モータに電力を供給するバッテリと、当該バッテリに充電用の電力を供給する充電用コード101と、車体フレーム10の側方を覆うリアカバー45と、を備える電動二輪車1において、リアカバー45により側方が覆われる車体フレーム10の位置に、充電用コード101を巻き掛け可能な複数のフック部が設けられる。 (もっと読む)


【課題】インバータの信頼性低下を抑制し得るハイブリッド自動車用冷却システムを提供する。
【解決手段】サーモスタット24は、ラジエータ経路30と冷却水循環路10とを連通させない状態と、ラジエータ経路30と冷却水循環路10とを連通させる状態とを切り替える。ECU34は、ポンプ26の回転数を制御することにより、冷却水循環路10内を循環する冷却水の単位時間当りの流量を増減させることができる。ECU34は、サーモスタット24が、ラジエータ経路30と冷却水循環路10とを連通させない状態である場合における、冷却水循環路10内を循環する冷却水の単位時間当りの流量を、サーモスタット24が、ラジエータ経路30と冷却水循環路10とを連通させない状態である場合における冷却水の単位時間当たりの流量より多くするように制御する。 (もっと読む)


【課題】第1の電動機が値0を含む所定回転数範囲を脱出する制御としての保護制御が作動したときに生じ得るショックを低減する。
【解決手段】モータ回転数Nm1の絶対値が所定回転数以下の状態となるロック状態に至ったときには、モータを所定回転数Nref2または所定回転数Nref2を負の値にした回転数で回転させるようにエンジンの目標回転数Ne*や目標トルクTe*とモータの目標回転数Nm1*とを設定すると共に(S170〜S200)、モータがロック状態に至ってからの経過時間が長いほど大きくなるカウンタCに応じた値kcをモータの回転数フィードバック制御における積分項のゲインk2として用いる(S220)。これにより、ロック状態からの脱出を滑らかに行なうことができ、ロック状態からの脱出の際に生じ得るショックを抑制することができる。 (もっと読む)


【課題】HV−MT車用の手動変速機であってコンパクトなものを提供すること。
【解決手段】 この変速機は、内燃機関から動力が入力される入力軸Aiと、電動機から動力が入力される出力軸Aoとを備える。この変速機は、動力伝達系統がAi−Ao間で確立されない(ニュートラルとは異なる)EV走行用の変速段(EV)と、動力伝達系統がAi−Ao間で確立されるHV走行用の複数の変速段(2速〜5速)とを有する。変速段の選択・確立を行うための複数のスリーブS1〜S3のうちの1つ(特定スリーブS1)が、「EV」と「2速」の確立のために割り当てられる。シフトレバーSLをN位置から「2速のシフト完了位置」に移動する場合、特定スリーブS1が「中立位置」から「2速位置」に移動して「2速」が確立される。一方、シフトレバーSLをN位置から「EVのシフト完了位置」に移動する場合、特定スリーブS1が「中立位置」から移動しない。 (もっと読む)


【課題】無段変速モードを実現可能なハイブリッド車両において燃費を向上させる。
【解決手段】ハイブリッド車両の制御装置(100)は、無段変速モードを実現可能なハイブリッド車両(1)の制御装置であって、内燃機関(200)の回転数及びトルクに基づいて最適熱効率を算出する最適熱効率算出手段(110)と、内燃機関の回転数及び要求パワに基づいて推定熱効率を算出する推定熱効率算出手段(120)と、最適熱効率及び推定熱効率の熱効率差を算出する熱効率差算出手段(130)と、熱効率差が所定の閾値以上であるか否かを判定する判定手段(140)と、熱効率差が所定の閾値以上である場合には、内燃機関の回転数を最適燃費線上の回転数になるよう制御し、熱効率差が所定の閾値以上でない場合には、内燃機関の回転数を保持するように制御する回転数制御手段(150)とを備える。 (もっと読む)


【課題】走行中の内燃機関の始動を走行状態に応じてより適したものとする。
【解決手段】走行中にエンジンを始動する際には、車速Vが高いほど大きくなる傾向にモータリングトルクの最大トルクTm1maxを設定し(S210)、設定した最大トルクTm1maxを用いてモータによってエンジンをモータリングする(S220〜S290)。これにより、高車速で走行している最中にエンジンを始動する際に、バッテリの性能をより発揮させてエンジンをより迅速にモータリングして始動することができると共に、エンジンの回転数が共振回転数帯で滞留する時間をより短くして共振による振動などをより抑制することができる。 (もっと読む)


【課題】代行返却者に対してエネルギー的な利点を与えつつ、借り手の返却にかかる手間を低減させることができる代行返却案内装置、代行返却案内方法、及び代行返却案内システムを提供する。
【解決手段】バッテリ18を着脱可能に装着する装着部19を有して装着部19に装着されたバッテリ18の電力によって走行可能な車両15に対して、返却地点に返却される必要がある返却バッテリ26の代行返却を案内するナビゲーション装置12であって、制御部34は、車両15の現在地情報と、目的地情報と、代行返却希望情報とを取得し、現在地から目的地まで装着部19に装着されている自車バッテリ25を利用して走行する場合よりも、現在地から受取地点及び返却地点を経由して目的地まで自車バッテリ25及び返却バッテリ26を利用して走行した方が、目的地到着時の自車バッテリ25の残量が多い場合に、代行返却案内情報を表示部32に表示させる。 (もっと読む)


21 - 40 / 11,046