説明

Fターム[5H115TO05]の内容

車両の電気的な推進・制動 (204,712) | その他の検出 (15,876) | 温度、熱検出 (1,677)

Fターム[5H115TO05]に分類される特許

161 - 180 / 1,677


【課題】想定外の温度低下があったときにも適切なタイミングで低温掃気を実施する。
【解決手段】燃料電池1のアノード極およびカソード極に連なるガス流路に掃気ガスを流すことで流路および燃料電池1内の水を排出する掃気手段と、アノード出口温度を検出するアノード出口温度センサ62を備え、制御装置50は、燃料電池1の停止中、燃料電池1が停止してから確認インターバルが経過する毎に、アノード出口温度と掃気実施温度閾値とを比較しアノード出口温度が掃気実施温度閾値よりも小さいときに掃気手段による掃気が必要と判定する掃気要否判定を行い、該判定時のアノード出口温度を用いて算出した単位時間当たりの温度低下割合が所定値よりも大きい場合には、今回判定から次回判定までの確認インターバルを、今回判定時のアノード出口温度に応じて時間がより短く設定された短縮確認インターバルに変更する。 (もっと読む)


【課題】電池容量を高精度に算出できる電池容量算出装置および電池容量算出方法を提供する。
【解決手段】センサ電流値の絶対値が閾値を超えてから閾値以下となるまでの期間を電流積算期間としてセンサ電流を積算し、電流積算充電率を算出する電流積算SOC算出部13と、電流積算期間における電流積算充電率変化量を算出するΔSOC-i算出部15と、電流積算期間の開始時および終了時の開放電圧を推定する開放電圧推定部11と、電流積算期間の開始時および終了時の開放電圧充電率を算出するOCV-SOC変換部12と、電流積算期間の終了時の開放電圧充電率と電流積算期間の開始時の開放電圧充電率との差分である開放電圧充電率変化量を算出するΔSOC-v算出部14と、開放電圧充電率変化量に対する電流積算充電率変化量の比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ容量を算出する劣化推定部16とを備える。 (もっと読む)


【課題】燃料電池の電圧が高電圧となる時に、ラジカル抑制物質が溶出可能となる量の液水を燃料電池内で確保する。
【解決手段】燃料電池システムが備える燃料電池は、電解質膜と、一対の電極と、多孔質なガス拡散層と、少なくとも一方の電極内、および/または、少なくとも一方のガス拡散層における電極との境界を含む領域内に配置されたラジカル抑制物質と、を備える。燃料電池システムは、さらに、水収支導出部と、運転状態制御部と、膜湿潤状態検出部と、を備える。運転状態制御部は、燃料電池を停止同等状態にすべきと判断したときに、水収支が負の値であれば、一方の電極又は一方のガス拡散層に接する電極の含水量が増加するように燃料電池の運転状態を変更し、電解質膜における湿潤状態が基準湿潤状態に達した後に、燃料電池を停止同等状態にするための制御を行なう。 (もっと読む)


【課題】昇降圧コンバータを備えたハイブリッド自動車において、昇降圧コンバータのスイッチング素子の過熱を良好に抑制しながら、内燃機関の始動要求がなされたときに当該内燃機関をより確実に始動する。
【解決手段】昇降圧コンバータ55の上アームトランジスタT31の温度Tuが所定温度以上であってバッテリ50の入力制限Winに制限が課されているときに、モータMG1によりエンジン22をクランキングしたときの発電電力Pm1のモータMG2で消費される消費電力Pm2に対する余剰分である余剰電力Pexが入力制限Winの範囲内でない場合、エンジン22の始動要求がなされたときに、余剰電力Pexのうちの少なくとも入力制限Winを超える分の電力が駆動力の出力に用いられることなくモータMG1およびMG2の少なくとも何れか一方で消費されるようにインバータ41,42を制御する。 (もっと読む)


【課題】小型化および性能の向上を図ることができる車載用電力変換装置の提供。
【解決手段】冷却装置20は、放熱ベース14の放熱面が冷却風の流れにほぼ沿うように配置された車載用電力変換装置10の冷却に用いられる。冷媒6が収納された沸騰容器1の底面は、車載用電力変換装置10の放熱面に熱的に接触している。沸騰容器1から冷媒を流出する蒸気パイプ4aは、沸騰容器1の上面であって冷却風の流れの風下側に設けられる。熱交換器21に設けられた複数の伝熱管3は、沸騰容器1の上面に対向するとともに、該上面に沿って冷却風の風下側から風上側に延在するように配置され、蒸気パイプ4aの冷媒を冷却風の風上側へと導く。また、伝熱管3の外周面には、冷却風を熱交換器21の沸騰容器1に対向しない側から沸騰容器1に対向する側へ通過させる複数の放熱フィン2が設けられている。 (もっと読む)


【課題】水素ガスの断熱膨張による水素系部品の低温化を防止するとともに、燃料電池スタックの冷却性能を向上させる。
【解決手段】水素タンク4の水素ガスを減圧して燃料電池スタック2に供給する水素ガス供給装置3と、燃料電池スタック2に空気を供給する空気供給ダクト8と、燃料電池スタック2から余剰空気を排出する空気排出ダクト9とを備える燃料電池システム1において、水素ガス供給装置3を空気供給ダクト8および空気排出ダクト9と連通する熱交換チャンバ17内に配置し、水素ガス供給装置3の温度が所定温度より低い場合には燃料電池スタック2から排出される空気を熱交換チャンバ17に導入して水素ガス供給装置3を加熱する一方、燃料電池スタック2から排出される空気が所定温度より高い場合には熱交換チャンバ17に導入されるとともに水素ガス供給装置3によって冷却された空気を燃料電池スタック2に供給する。 (もっと読む)


【課題】ハイブリッド車両において、アイドル運転時と負荷運転時とで異なる手法でスロットル開度をフィードバック制御する場合においてもエンジン出力を正確に制御する。
【解決手段】ECUは、アイドル運転時はISC制御によってスロットル開度をフィードバック制御し、負荷運転時はPe−F/B制御によってスロットル開度をフィードバック制御する。Pe−F/B制御中は、ISC制御時のフィードバック量eqiおよびPe−F/B制御時のフィードバック量efbが用いられる。ECUは、eqiが更新された場合、VVT進角フェイルが発生したという条件を含む第1〜第7の条件のいずれもが成立していないときはefbからeqiの変化分に相当する量を相殺する相殺補正を行ない、第1〜第7の条件の少なくともいずれか1つの条件が成立しているときは相殺補正を行なわない。 (もっと読む)


【課題】車載充電器等の経時変化および充電中のバッテリー等の状態変化に起因する劣化や充電時間の増加を抑えることができる充電制御装置を提供する。
【解決手段】出力電流、出力電力および出力電圧の少なくともいずれか一つの目標値を設定する目標値設定部13aと、目標値に従って充電が行われるように車載充電器2を制御する充電器制御手段11と、バッテリーの特性値の時間変化を予測した予測値を設定する予測値設定部13bと、予測値と車載充電器2、バッテリーユニット3、車両制御ユニット4等で測定したバッテリー特性値の実測値との偏差を算出する偏差算出部13cと、偏差が小さくなるように目標値を補正するための補正値を設定する補正値設定部13dと、補正値を記録する記録手段12と、を備え、充電前に記録手段12に記録されている補正値を反映させた目標値を設定する。 (もっと読む)


【課題】ハイブリッド車両において、歯打ち音に起因するドライバビリティの低下を抑制する。
【解決手段】ハイブリッド車両の制御装置(100)は、内燃機関(200)及び電動機(MG1,MG2)を含む動力要素と、蓄電手段(12)と、駆動軸と、動力伝達機構(300)とを備えたハイブリッド車両(1)を制御する。ハイブリッド車両の制御装置は、内燃機関及び電動機のトルクを夫々決定するトルク決定手段(110)と、電動機のトルクを発生領域とならないように調整する調整手段(120)と、電動機に対する蓄電手段による充電及び放電を所定間隔で相互に切替えて、電動機のトルクの正負を変化させる切替手段(130)と、内燃機関及び電動機の少なくとも一方のトルクを、内燃機関のイナーシャトルクに応じて補正する補正手段(140)とを備える。 (もっと読む)


【課題】差動機構を高回転化から保護しつつエンジントルク低下を補うことが可能な車両用動力伝達装置用制御装置を提供する。
【解決手段】許容回転速度設定手段96は、所定の加速操作量OPAC及びエンジン回転速度Neのときにエンジン14から出力されるエンジントルクTeが、エンジン14の出力トルク特性を示す予め設定された関係から上記所定の加速操作量OPAC及びエンジン回転速度Neに基づいて定まる基準エンジントルクTesよりも低いと判断された場合には、そうでない場合と比較して、差動機構である第1遊星歯車装置20の許容入力回転速度N1inを高く設定する。従って、許容入力回転速度N1inの制限によって第1遊星歯車装置20を高回転化から保護することが可能であると共に、許容入力回転速度N1inの変更に応じてエンジン回転速度Neを引き上げてエンジントルクTeを上昇させエンジントルク低下を補うことが可能となる。 (もっと読む)


【課題】航続距離演算装置に関し、航続距離の演算値の信頼性及び妥当性を向上させる。
【解決手段】車両に搭載された走行用バッテリに蓄えられた電力の残量を演算する残量演算手段3aと、前記走行用バッテリにおける消費電力及び前記車両の走行距離に基づき、前記走行用バッテリの単位容量あたりの走行距離を電費として演算する第一演算手段1cとを備える。
また、残量演算手段3aで演算された前記残量に基づき、第一演算手段1cで演算された前記電費の変動を抑制した抑制電費を演算する第二演算手段1dと、残量演算手段3aで演算された前記電力の残量及び第二演算手段1dで演算された前記抑制電費に基づき、前記車両が前記残量の電力で走行する距離の推定値である航続距離を演算する第三演算手段1gとを備える。 (もっと読む)


【課題】トラクション制御介入時、バッテリへの過充電を防止しつつ、バッテリへの充放電量許容範囲内でトラクション制御を高応答に実現すること。
【解決手段】ハイブリッド車両の発電制御装置は、エンジン3と、発電機5と、バッテリ8と、駆動モータ11と、トラクション制御手段(図4)と、トラクション制御対応発電制御手段(図2)と、を備える。トラクション制御手段は、駆動輪13,13がスリップする車輪スリップ発生時、駆動モータ11へのトルク指令値を減少させるトラクション制御を行う。トラクション制御対応発電制御手段は、トラクション制御の介入により、バッテリ8への充放電量が予め定められた充放電量許容範囲を超えるとき、発電電力を低下させる機能を有する(図7)。 (もっと読む)


【課題】充電コネクタのメンテナンス時期およびサブバッテリのメンテナンス時期を容易にメータ表示装置上で確認できるようにするとともに、表示部を小型化する。
【解決手段】メインバッテリと、メインバッテリから電力供給されて車両の駆動力を発生するモータと、モータの出力制御回路と、外部からの電力をメインバッテリに供給するための充電コネクタとを有する車両のメータ表示装置である。表示部49は、少なくとも車速表示部491および前記充電コネクタの状態に関する情報を表示する充電コネクタ状態表示部492を含む。充電コネクタ状態表示部492が、充電コネクタのメンテナンスに関する情報を表示するとともに、車速表示部491に隣接して配置される。車速表示部491の周囲には、メインバッテリ残量表示部494やサブバッテリ残量表示部493が配置される。 (もっと読む)


【課題】 安全を担保するとともに、低消費電力化する二次電池装置および車両を提供する。
【解決手段】 複数の二次電池セルBTのデータを検出する検出回路201と、検出回路201により検出された検出データと閾値とが入力され、検出データが異常か否かを示す信号を出力するハートビート信号回路205と、検出データを出力する通信回路206と、を備えた組電池監視回路21、22、23と、第1回路と第2回路との間で通信を行なう第1絶縁通信回路604と、第1絶縁通信回路604への電源供給を切り替える電源制御スイッチSWと、ハートビート信号を受信して絶縁通信を行なう第2絶縁通信回路605と、通信回路206からの検出データの通信を行なうときのみ第1絶縁通信回路604へ電源電圧を供給するように電源制御スイッチSWを制御するように構成された制御回路602と、を備えた電池管理装置60と、を備える。 (もっと読む)


【課題】所望の発電電力を設定できるハイブリッド車の発電制御装置を提供する。
【解決手段】エンジンとモータとを動力源とするハイブリッド車において、エンジンにより発電機を駆動し、発電機により発電した電気をバッテリに充電する際、エンジン及び発電機によるバッテリへの充電の開始後、パドルシフトの「+」レバーが押されたとき、発電電力を加算する設定を行い(S23→S24)、パドルシフトの「−」レバーが押されたとき、発電電力を減算する設定を行い(S23→S25→S26)、いずれも押されない場合、前回の発電電力を保持する設定を行い(S23→S25→S27)、設定した発電電力でバッテリへの充電を行う。 (もっと読む)


【課題】変速部の入力軸に連結された動力源部を備える車両用動力伝達装置において、動力源部から付与される変速部の入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する。
【解決手段】自動変速部20のコーストダウンシフトに際して、入力軸回転速度NATの回転同期制御を実行するときのAT入力軸トルクTATの変化率が、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが比較的小さな領域では大きな領域と比較して、相対的に抑制されるので、コーストダウンシフトに関与する解放側係合装置の引き摺りトルクに因って自動変速部20の出力軸22に伝達されるAT入力軸トルクTATを起因とする出力軸トルク変動を抑制することが可能となる為、AT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる。 (もっと読む)


【課題】電池の目標寿命を満たしながら、かつ電池の容量を増やすことなく、可能な限り大量の充放電を行えるようにする。
【解決手段】各モジュールに電池の通電状態と遮断状態を制御する遮断部を設け、放電時に該遮断部を順次作動させることにより所定の休止期間放電を休止させるとともに、他のモジュールからの放電量を増加させ、一部のモジュールの放電休止に伴う放電量の減少を補完する。 (もっと読む)


【課題】電気負荷と並列接続した各単位モジュールの制御装置とに接続する統合制御装置を設けた蓄電システムにおいて、複数の蓄電装置の管理を容易とし、蓄電装置の並列数を容易に増減できる拡張性の高いシステムとし、複数の蓄電装置の管理制御を構築する。
【解決手段】統合制御装置11は、各単位モジュール2A、2Bの制御装置4A、4Bから各蓄電装置3A、3Bのステータス情報を取得し、この取得したステータス情報を相互比較するとともに、このステータス情報の最悪値に基づいて電気負荷6の駆動制御を行う。 (もっと読む)


【課題】内燃機関の始動条件が異なる複数の走行モードを備える車両において、排気の悪化を精度よく検出する。
【解決手段】ECUは、CDモード中である場合(S30にてYES)、排気悪化条件を「失火回数Nが所定回数N1よりも大きい」という条件に設定する。一方、ECUは、CSモード中である場合(S30にてNO)、排気悪化条件を「失火回数Nが所定回数N2よりも大きい」という条件に設定する。所定回数N2は、所定回数N1よりも多い値に設定される。ECUは、各走行モードにおいて排気悪化条件が成立した場合(S31にてYESまたはS32にてYES)、失火カウンタCを1だけ増加させ(S33)、失火カウンタCが所定値C0以上である場合(S34にてYES)、排気が悪化していると判定する。 (もっと読む)


【課題】限られた状況に対応するための高い冷却性能を電動機に備えなくても、電動機の温度が上限温度を超えることを抑制して適切に電動機を保護する制御を行うことができるハイブリッド車両用制御装置を実現する。
【解決手段】電動機Mの状態が予め定められたゼロトルク制御実行条件を満たす場合に電動機Mの出力トルクをゼロにするゼロトルク制御を行うゼロトルク制御部13と、電動機Mの状態が、当該電動機Mの温度が所定の上限温度に達する可能性がある特定昇温状態であることを判定する昇温判定部15と、電動機Mのゼロトルク制御が実行されており、且つ昇温判定部15により特定昇温状態であることが判定されたことを条件として、発電機Gに発電を行わせて蓄電装置B1を充電し、電源電圧を上昇させる電圧上昇制御を行う電圧上昇制御部17と、を備える。 (もっと読む)


161 - 180 / 1,677