説明

車両用動力伝達装置の制御装置

【課題】変速部の入力軸に連結された動力源部を備える車両用動力伝達装置において、動力源部から付与される変速部の入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する。
【解決手段】自動変速部20のコーストダウンシフトに際して、入力軸回転速度NATの回転同期制御を実行するときのAT入力軸トルクTATの変化率が、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが比較的小さな領域では大きな領域と比較して、相対的に抑制されるので、コーストダウンシフトに関与する解放側係合装置の引き摺りトルクに因って自動変速部20の出力軸22に伝達されるAT入力軸トルクTATを起因とする出力軸トルク変動を抑制することが可能となる為、AT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変速部の入力軸に動力伝達可能に連結された動力源部を備える車両用動力伝達装置の制御装置に係り、特に、コーストダウンシフトに際して動力源部からのトルクにより変速部の入力軸回転速度を変速後の同期回転速度に同期させる技術に関するものである。
【背景技術】
【0002】
油圧式摩擦係合装置(以下、係合装置)の係合と解放とにより変速が実行されて複数の変速比が段階的に成立させられる変速部と、その変速部の入力軸に動力伝達可能に連結された動力源部とを備え、コーストダウンシフトに際して動力源部から付与される変速部の入力軸トルクにより変速部の入力軸回転速度を変速後の同期回転速度に同期させる回転同期制御を実行する車両用動力伝達装置の制御装置が良く知られている。例えば、特許文献1に記載された車両用動力伝達装置の制御装置がそれである。
【0003】
上記特許文献1には、コーストダウンシフトに際して、変速部を動力伝達遮断状態とした上ですなわち変速部内の解放側係合装置と係合側係合装置とを共に解放状態とするクラッチフリー状態とした上で、そのクラッチフリー状態の間に変速部の入力軸に連結された電動機の回転速度を変速後の同期回転速度になるように制御し、電動機が同期回転速度に達した後に、変速部の係合油圧を上昇させて変速を完了させる回転同期制御が開示されている。このような回転同期制御では、例えば解放側係合装置が解放された状態で変速部の入力軸回転速度が同期回転速度に向かって確実に変化し、入力軸回転速度が同期回転速度に達した時点で係合側係合装置が完全係合される為、電動機による同期制御によってクラッチフリー状態中に変速部の入力トルクが変化しても出力側ではその影響を受けず、変速ショックが抑制される。また、クラッチツウクラッチ変速のようなトルクの受け渡しを行わない分複雑な制御が必要とされず、変速ショックを抑制しやすい。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−132149号公報
【特許文献2】特開2009−234458号公報
【特許文献3】特開2007−333129号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、コーストダウンシフトに際して、解放側係合装置を解放状態としたつもりでもその解放側係合装置にトルク容量が残っている場合がある。例えば、変速部の係合装置は、その係合装置を構成する複数の摩擦板間に作動油が充填された状態となっており、解放状態とされていてもその摩擦板間の引き摺りにより図18に示すような互いの摩擦板の差回転速度に応じた引き摺りトルクが発生する。これは、例えば係合装置が解放状態とされていても所定のトルク容量を有することと同様の状態となる。その為、コーストダウンシフトに際して、変速部内の解放側係合装置と係合側係合装置とを共に解放状態とするクラッチフリー状態としたとしても、例えば解放側係合装置において生じる引き摺りトルクによって変速部は僅かながら動力伝達可能状態となり、電動機トルクによる同期制御の影響が変速部の出力軸に伝達されてトルク変動が生じて、ドライバビリティが悪化する可能性がある。このような係合装置における摩擦板間の引き摺りに関し、前記特許文献1には、変速部の入力軸回転速度が、飛び変速の間に設定されている中間変速段(例えば第3変速段から第1変速段への跳び変速にあっては第2変速段)の同期回転速度付近に達すると、摩擦板間の引き摺りによって変速部の出力軸トルクが変動し、ドライバビリティーが悪化する可能性があることに対して、変速部の入力軸回転速度が中間変速段の同期回転速度付近になるとその入力軸回転速度の変化速度を緩和させることが提案されている。しかしながら、これは飛び変速が実行されるコーストダウンシフトに際して、飽くまで変速部の変速に関与しない係合装置(すなわち中間変速段の形成に関与する係合装置)における引き摺りに対処するものである。また、別の観点では、例えば解放側係合装置を解放する際の油圧指令値に対する実油圧の変化には応答遅れがあり、実油圧が抜けるまでは残油圧に応じたトルク容量(引き摺りトルク)が生じる。その為、上記と同様に、コーストダウンシフトに際して、電動機トルクによる同期制御の影響が変速部の出力軸に伝達されてトルク変動が生じ、ドライバビリティが悪化する可能性がある。尚、上述したような課題は未公知であり、変速部の変速に関与する解放側係合装置における解放時のトルク容量残りによる(引き摺りトルクによる)変速部の出力軸トルク変動に伴う変速ショックが抑制されるようにコーストダウンシフトを適切に実行することについて未だ提案されていない。
【0006】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、変速部の入力軸に動力伝達可能に連結された動力源部を備える車両用動力伝達装置において、動力源部から付与される変速部の入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる制御装置を提供することにある。
【課題を解決するための手段】
【0007】
前記目的を達成する為の本発明の要旨とするところは、(a) 油圧式摩擦係合装置の係合と解放とにより変速が実行されて複数の変速比が段階的に成立させられる変速部と、その変速部の入力軸に動力伝達可能に連結された動力源部とを備え、コーストダウンシフトに際してその動力源部から付与されるその変速部の入力軸トルクによりその変速部の入力軸回転速度を変速前の同期回転速度から変速後の同期回転速度に向かって変化させる回転同期制御を実行する車両用動力伝達装置の制御装置であって、(b) 前記コーストダウンシフトに際して、前記回転同期制御を実行するときの前記入力軸トルクの変化率を、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の差回転速度が比較的小さな領域では大きな領域と比較して、相対的に抑制することにある。
【発明の効果】
【0008】
このようにすれば、前記コーストダウンシフトに際して、前記回転同期制御を実行するときの前記入力軸トルクの変化率が、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の差回転速度が比較的小さな領域では大きな領域と比較して、相対的に抑制されるので、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の引き摺りトルクに因って変速部の出力軸に伝達される入力軸トルクを起因とする出力軸トルクの変動を抑制することが可能となる為、入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる。
【0009】
ここで、好適には、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の差回転速度が所定値未満の場合は、前記入力軸トルクの変化率を相対的に抑制する一方で、その解放側油圧式摩擦係合装置の差回転速度が所定値以上となったら、前記入力軸トルクの変化率を相対的に増大することにある。このようにすれば、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の引き摺りトルクの大きさが比較的大きくなるような差回転速度が所定値未満の領域やその引き摺りトルクの大きさが比較的小さくなるような差回転速度が所定値以上の領域に各々対応して、前記入力軸トルクを起因とする出力軸トルクの変動を適切に抑制することが可能となる。
【0010】
また、好適には、前記油圧式摩擦係合装置を作動させる為の作動油の温度、車両減速度、及び前記変速部の油圧制御部品やその作動油の経時変化の内の少なくとも1つに応じて、前記入力軸トルクの変化率を変更することにある。このようにすれば、前記作動油の温度、車両減速度、及び前記経時変化の内の少なくとも1つによって、解放側油圧式摩擦係合装置における引き摺りトルクの大きさに基づく出力軸トルクの変動の大きさ或いは出力軸トルクの変動に伴う変速ショックレベル(変速ショックの感じ方)が異なる可能性があることに対して、前記作動油の温度、車両減速度、及び前記経時変化の内の少なくとも1つに応じて、前記入力軸トルクを起因とする出力軸トルクの変動を適切に抑制することが可能となる。
【0011】
また、好適には、前記作動油の温度が低い程、車両減速度が大きい程、或いは前記変速部の油圧制御部品やその作動油の経時変化に応じて、前記入力軸トルクの上昇率を小さくすることにある。このようにすれば、前記作動油の温度、車両減速度、及び前記経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときの入力軸トルクの変化率を適切に変更することができる。
【0012】
また、前記目的を達成する為の他の発明の要旨とするところは、(a) 油圧式摩擦係合装置の係合と解放とにより変速が実行されて複数の変速比が段階的に成立させられる変速部と、その変速部の入力軸に動力伝達可能に連結された動力源部とを備え、コーストダウンシフトに際してその動力源部から付与されるその変速部の入力軸トルクによりその変速部の入力軸回転速度を変速前の同期回転速度から変速後の同期回転速度に向かって変化させる回転同期制御を実行する車両用動力伝達装置の制御装置であって、(b) 前記コーストダウンシフトに際して、前記油圧式摩擦係合装置を作動させる為の作動油の温度、車両減速度、及び前記変速部の油圧制御部品やその作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときの前記入力軸トルクの変化開始時期を変更することにある。このようにすれば、前記コーストダウンシフトに際して、前記油圧式摩擦係合装置を作動させる為の作動油の温度、車両減速度、及び前記変速部の油圧制御部品やその作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときの前記入力軸トルクの変化開始時期が変更されるので、前記作動油の温度、車両減速度、及び前記経時変化の内の少なくとも1つによって、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置におけるトルク容量(引き摺りトルク)の大きさに基づく出力軸トルクの変動の大きさ或いは出力軸トルクの変動に伴う変速ショックレベル(変速ショックの感じ方)が異なる可能性があることに対して、前記作動油の温度、車両減速度、及び前記経時変化の内の少なくとも1つに応じて、その解放側油圧式摩擦係合装置のトルク容量に因って変速部の出力軸に伝達される入力軸トルクを起因とする出力軸トルクの変動を抑制することが可能となる為、入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる。
【0013】
また、好適には、前記作動油の温度が低い程、車両減速度が大きい程、或いは前記変速部の油圧制御部品やその作動油の経時変化に応じて、前記入力軸トルクの変化開始時期を遅延させることにある。このようにすれば、前記作動油の温度、車両減速度、及び前記経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときの入力軸トルクの変化開始時期を適切に変更することができる。
【0014】
また、好適には、前記回転同期制御中は、前記変速部内の動力伝達経路を解放状態としてその変速部が動力伝達遮断状態とされる。このようにすれば、回転同期制御時の変速部の変速進行による影響を抑制することができる。つまり、例えばクラッチツウクラッチ変速のような解放側油圧式摩擦係合装置の解放と係合側油圧式摩擦係合装置の係合とによるトルクの受け渡しを行わない分複雑な制御が必要とされず、ばらつきに強く、又変速ショックを抑制し易い。
【0015】
また、好適には、前記動力源部は、駆動力源として、電動機を備えるか、或いは電動機とエンジンとを備え、前記回転同期制御は、前記電動機の出力トルクを、或いは前記電動機の出力トルクと前記エンジンの出力トルクとの合計トルクを、前記入力軸トルクとして制御することにより実施される。このようにすれば、電動機の出力トルク(電動機トルク)、或いは電動機トルク及びエンジンの出力トルク(エンジントルク)を好適に制御することで、変速部の入力軸の同期制御を実施することができる。
【0016】
また、好適には、前記動力源部は、前記変速部の入力軸に動力伝達可能に連結された電動機を有する差動部と、その差動部に動力伝達可能に連結されたエンジンとを備えている。このようにすれば、電動機トルク、或いは電動機トルク及びエンジントルク(差動部を介したエンジン直達トルク)によって変速部の入力軸の同期制御を実施することができる。
【0017】
また、好適には、前記差動部は、前記エンジンに動力伝達可能に連結された差動機構とその差動機構に動力伝達可能に連結された差動用電動機とを有し、その差動用電動機の運転状態が制御されてその差動機構の差動状態が制御されることにより電気的な無段変速機として作動することにある。このようにすれば、電気的な無段変速機として機能する差動部と、有段の変速部とを備えた実用的な車両用動力伝達装置において、動力源部から付与される変速部の入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる制御装置が提供される。尚、差動部は、その変速比を連続的に変化させて電気的な無段変速機として作動させる他に変速比を段階的に変化させて有段変速機として作動させることも可能である。
【0018】
また、好適には、前記動力源部は、前記変速部の入力軸に動力伝達可能に連結された、エンジンと電動機とを備えている。このようにすれば、電動機トルク、或いは電動機トルク及びエンジントルクによって変速部の入力軸の同期制御を実施することができる。また、例えばエンジン及び電動機と有段の変速部とで構成される実用的な車両用動力伝達装置において、動力源部から付与される変速部の入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる制御装置が提供される。
【0019】
また、好適には、前記動力源部は、前記変速部の入力軸に動力伝達可能に連結された電動機を備えている。このようにすれば、電動機トルクによって変速部の入力軸の同期制御を実施することができる。また、例えば電動機と有段の変速部とで構成される実用的な車両用動力伝達装置において、動力源部から付与される変速部の入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる制御装置が提供される。
【図面の簡単な説明】
【0020】
【図1】本発明の制御装置が適用される車両用動力伝達装置の構成を説明する骨子図である。
【図2】図1の車両用動力伝達装置に備えられた自動変速部の変速作動とそれに用いられる係合装置の作動の組み合わせとの関係を説明する作動図表である。
【図3】図1の車両用動力伝達装置における各ギヤ段の相対回転速度を説明する共線図である。
【図4】図1の車両用動力伝達装置に設けられた電子制御装置の入出力信号を説明する図である。
【図5】油圧制御回路のうちクラッチ及びブレーキの各油圧アクチュエータの作動を制御するリニアソレノイドバルブに関する回路図である。
【図6】シフトレバーを備えた複数種類のシフトポジションを選択する為に操作されるシフト操作装置の一例である。
【図7】図4の電子制御装置による制御機能の要部を説明する機能ブロック線図である。
【図8】図1の車両用動力伝達装置において、自動変速部の変速判断の基となる予め記憶された変速線図の一例と、エンジン走行とモータ走行とを切り換える為の予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。
【図9】エンジンの最適燃費率曲線の一例を示す図である。
【図10】作動油温をパラメータとして自動変速部の係合装置における互いの摩擦板の差回転速度に応じて発生する引き摺りトルクの一例を示す図である。
【図11】作動油温及び車両減速度に応じて予め実験的に求められて設定されたAT入力軸トルクの上昇率マップである。
【図12】電子制御装置の制御作動の要部すなわちAT入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する為の制御作動を説明するフローチャートである。
【図13】図12のフローチャートに示す制御作動を実行した場合の一例を示すタイムチャートである。
【図14】作動油温及び車両減速度に応じて予め実験的に求められて設定されたAT入力軸トルクの変化開始タイミングマップである。
【図15】電子制御装置の制御作動の要部すなわちAT入力軸トルクにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する為の制御作動を説明するフローチャートであって、図12に相当する別の実施例である。
【図16】図15のフローチャートに示す制御作動を実行した場合の一例を示すタイムチャートである。
【図17】本発明が適用される動力源部の別の実施例を説明する概略図である。
【図18】変速部の係合装置における互いの摩擦板の差回転速度に応じて発生する引き摺りトルクの一例を示す従来図である。
【発明を実施するための形態】
【0021】
本発明において、好適には、前記油圧制御部品とは、前記変速部の油圧式摩擦係合装置を構成する摩擦材(摩擦板)、クラッチプレート、ピストン、リターンスプリング等の摩擦板間の引き摺りによって生じる引き摺りトルク(係合装置における引き摺りトルク)に関連する部品が相当する。
【0022】
また、好適には、前記変速部は、機械的に変速比が設定される有段変速機である。例えば、この有段変速機は、複数組の遊星歯車装置の回転要素が係合装置によって選択的に連結されることにより複数のギヤ段(変速段)が択一的に達成される例えば前進4段、前進5段、前進6段、更にはそれ以上の変速段を有する等の種々の遊星歯車式多段変速機により構成される。この遊星歯車式多段変速機における係合装置としては、油圧アクチュエータによって係合させられる多板式、単板式のクラッチやブレーキ、或いはベルト式のブレーキ等の油圧式摩擦係合装置(係合装置)が広く用いられる。この係合装置を作動させる為の作動油を供給するオイルポンプは、例えば走行用駆動力源(エンジン)により駆動されて作動油を吐出するものでも良いが、走行用駆動力源とは別に配設された専用の電動モータなどで駆動されるものでも良い。
【0023】
また、好適には、上記係合装置を含む油圧制御回路は、例えばリニアソレノイドバルブの出力油圧を直接的に係合装置の油圧アクチュエータ(油圧シリンダ)にそれぞれ供給することが応答性の点で望ましいが、そのリニアソレノイドバルブの出力油圧をパイロット油圧として用いることによりシフトコントロールバルブを制御して、そのコントロールバルブから油圧アクチュエータに作動油を供給するように構成することもできる。
【0024】
また、好適には、上記リニアソレノイドバルブは、例えば複数の係合装置の各々に対応して1つずつ設けられるが、同時に係合したり係合、解放制御したりすることがない複数の係合装置が存在する場合には、それ等に共通のリニアソレノイドバルブを設けることもできるなど、種々の態様が可能である。また、必ずしも全ての係合装置の油圧制御をリニアソレノイドバルブで行う必要はなく、一部乃至全ての油圧制御をON−OFFソレノイドバルブのデューティ制御など、リニアソレノイドバルブ以外の調圧手段で行っても良い。尚、この明細書で「油圧を供給する」という場合は、「油圧を作用させ」或いは「その油圧に制御された作動油を供給する」ことを意味する。
【0025】
また、好適には、前記差動機構は、前記エンジンに連結された第1回転要素と前記差動用電動機に連結された第2回転要素と前記走行用電動機に連結された第3回転要素との3つの回転要素を有する装置である。このようにすれば、前記差動機構が簡単に構成される。
【0026】
また、好適には、前記差動機構はシングルピニオン型の遊星歯車装置であり、前記第1回転要素はその遊星歯車装置のキャリヤであり、前記第2回転要素はその遊星歯車装置のサンギヤであり、前記第3回転要素はその遊星歯車装置のリングギヤである。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つのシングルピニオン型遊星歯車装置によって簡単に構成される。
【0027】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
【実施例1】
【0028】
図1は、本発明の制御装置が適用される車両用動力伝達装置10(以下、動力伝達装置10と表す)を説明する骨子図であり、この動力伝達装置10はハイブリッド車両に好適に用いられる。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12と表す)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11と、その差動部11と駆動輪34(図7参照)との間の動力伝達経路で伝達部材18を介して直列に連結されている変速部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この動力伝達装置10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の動力源としての例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン36と一対の駆動輪34との間に設けられて、エンジン36からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32(図7参照)及び一対の車軸等を順次介して一対の駆動輪34へ伝達する。
【0029】
このように、本実施例の動力伝達装置10においてはエンジン36と差動部11とは動力伝達可能に直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。尚、動力伝達装置10はその軸心に対して対称的に構成されている為、図1の骨子図においてはその下側が省略されている。以下の各実施例についても同様である。
【0030】
差動部11は、動力分配機構16と、動力分配機構16に動力伝達可能に連結されて動力分配機構16の差動状態を制御する為の差動用電動機として機能する第1電動機M1と、伝達部材18と一体的に回転するように動力伝達可能に連結されている電動機としての第2電動機M2とを備える電気式差動部である。尚、伝達部材18は差動部11の出力側回転部材であるが自動変速部20の入力側回転部材(すなわち変速部の入力軸)にも相当するものである。
【0031】
第1電動機M1及び第2電動機M2は、電気エネルギから機械的な駆動力を発生させる発動機としての機能及び機械的な駆動力から電気エネルギを発生させる発電機としての機能を有する所謂モータジェネレータである。換言すれば、動力伝達装置10において、電動機Mは主動力源であるエンジン36の代替として、或いはそのエンジン36と共に走行用の駆動力を発生させる動力源(副動力源)として機能し得る。また、他の動力源により発生させられた駆動力から回生により電気エネルギを発生させ、インバータ60(図7参照)を介して他の電動機Mに供給したり、その電気エネルギを蓄電装置62(図7参照)に蓄積する等の作動を行う。
【0032】
第1電動機M1は反力を発生させる為のジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動力源として駆動力を出力する走行用電動機として機能する為のモータ(電動機)機能を少なくとも備える。また、好適には、第1電動機M1及び第2電動機M2は、何れもその発電機としての発電量を連続的に変更可能に構成されたものである。また、第1電動機M1及び第2電動機M2は、動力伝達装置10の筐体であるケース12内に備えられ、動力伝達装置10の作動流体である自動変速部20の作動油により冷却される。
【0033】
動力分配機構16は、エンジン36に動力伝達可能に連結された差動機構であって、例えば「0.416」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24を主体として構成されており、入力軸14に入力されたエンジン36の出力を機械的に分配する機械的機構である。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転及び公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。尚、差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
【0034】
この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン36に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。このように構成された動力分配機構16は、差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動可能状態(差動状態)とされることから、エンジン36の出力が第1電動機M1と伝達部材18とに分配されると共に、分配されたエンジン36の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン36の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。このように動力分配機構16が差動状態とされると、動力分配機構16(差動部11)に動力伝達可能に連結された第1電動機M1及び第2電動機M2の一方又は両方の運転状態(動作点)が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。
【0035】
本実施例においては、自動変速部20の入力軸(伝達部材18)に動力伝達可能に連結された第2電動機M2を有する差動部11と、差動部11に動力伝達可能に連結されたエンジン36とを備え、自動変速部20の入力軸(伝達部材18)に動力伝達可能に連結された動力源部38が構成される。従って、この動力源部38は、駆動力源として第2電動機M2とエンジン36とを備える。これにより、例えば第2電動機M2の出力トルクであるM2トルクTM2のみ、M2トルクTM2とエンジン36の出力トルクであるエンジントルクTとの合計トルク、或いはエンジントルクTのみを自動変速部20の入力軸トルク(AT入力軸トルクTAT)として制御することが可能である。尚、AT入力軸トルクTATとなるエンジントルクTは、例えば差動部11を介して機械的に伝達部材18へ伝達されるエンジン直達トルクである。
【0036】
自動変速部20は、エンジン36から駆動輪34への動力伝達経路の一部を構成しており、シングルピニオン型の第1遊星歯車装置26及びシングルピニオン型の第2遊星歯車装置28を備え、機械的に複数の変速比が段階的に設定される有段式の自動変速機として機能する遊星歯車式の多段変速機である。
【0037】
自動変速部20では、第1サンギヤS1は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1と第2リングギヤR2とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2とが一体的に連結されて出力軸22に連結され、第2サンギヤS2が第1クラッチC1を介して伝達部材18に選択的に連結されている。更に第1キャリヤCA1と第2リングギヤR2とは一方向クラッチF1を介して非回転部材であるケース12に連結されてエンジン36と同方向の回転が許容され逆方向の回転が禁止されている。これにより、第1キャリヤCA1及び第2リングギヤR2は、逆回転不能な回転部材として機能する。
【0038】
以上のように構成された自動変速部20では、解放側係合装置の解放と係合側係合装置の係合とにより変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の係合と解放との作動の組合せにより、第1速ギヤ段乃至第4速ギヤ段及び後進ギヤ段の何れかが成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。
【0039】
このように、自動変速部20内の動力伝達経路は、第1速ギヤ段乃至第4速ギヤ段及び後進ギヤ段の何れかが成立させられることで動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで動力伝達遮断状態とされる。
【0040】
前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置(係合装置)であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本又は2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結する為のものである。
【0041】
以上のように構成された動力伝達装置10において、無段変速機として機能する差動部11と自動変速部20とで無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
【0042】
具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度(以下、自動変速部20の入力回転速度)すなわち伝達部材18の回転速度(以下、伝達部材回転速度N18)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、動力伝達装置10の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、動力伝達装置10において無段変速機が構成される。この動力伝達装置10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される動力伝達装置10全体としてのトータル変速比γTである。例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、動力伝達装置10全体としてのトータル変速比γTが無段階に得られる。
【0043】
また、差動部11の変速比が一定となるように制御され、且つクラッチC及びブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する動力伝達装置10のトータル変速比γTが各ギヤ段毎に得られる。したがって、動力伝達装置10において有段変速機と同等の状態が構成される。
【0044】
図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン36の回転速度Nを示し、横線XG(X3)が伝達部材18の回転速度N18すなわち差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。
【0045】
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。更に、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応する第2サンギヤS2を、第5回転要素RE5(第5要素)に対応する相互に連結された第1リングギヤR1及び第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する相互に連結された第1キャリヤCA1及び第2リングギヤR2を、第7回転要素(第7要素)RE7に対応する第1サンギヤS1をそれぞれ表し、それらの間隔は第1、第2遊星歯車装置26、28のギヤ比ρ1、ρ2に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
【0046】
上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン36に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18及び第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
【0047】
例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される差動部リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度すなわちエンジン回転速度Nが上昇或いは下降させられる。また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転がエンジン回転速度Nと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で差動部リングギヤR0の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて伝達部材18が回転させられる。
【0048】
図4は、本実施例の動力伝達装置10を制御する為の制御装置である電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン36や各電動機Mに関するハイブリッド駆動制御、自動変速部20の変速制御等の各種制御を実行するものである。
【0049】
電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン36の冷却流体の温度であるエンジン水温TEMPを表す信号、シフト操作装置50に設けられたシフトレバー52(図6参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン36の回転速度であるエンジン回転速度Nを表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を表す信号、出力軸回転速度センサ54により検出された車速Vに対応する出力軸22の回転速度である出力軸回転速度NOUT及び車両の進行方向を表す信号、前記係合装置(クラッチC、ブレーキB)を作動させる為の作動油の温度である自動変速部20の作動油温THOILを表す信号、サイドブレーキ操作を表す信号、フットブレーキ装置(ホイールブレーキ装置)の作動中すなわちフットブレーキ操作を示すブレーキオンBONを表すブレーキ操作信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表すアクセル開度信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、レゾルバ等からなるM1回転速度センサ56により検出された第1電動機M1の回転速度であるM1回転速度NM1及びその回転方向を表す信号、レゾルバ等からなるM2回転速度センサ58により検出された第2電動機M2の回転速度であるM2回転速度NM2及びその回転方向を表す信号、各電動機M1,M2との間でインバータ60を介して充放電を行う蓄電装置62の充電容量(充電状態)SOCを表す信号などが、それぞれ供給される。
【0050】
また、上記電子制御装置80からは、エンジン36の出力P(単位は例えば「kW」。以下、「エンジン出力P」と表す。)を制御するエンジン出力制御装置64(図7参照)への制御信号例えばエンジン36の吸気管に備えられた電子スロットル弁のスロットル弁開度θTHを操作するスロットルアクチュエータへの駆動信号や燃料噴射装置によるエンジン36への燃料供給量を制御する燃料供給量信号や点火装置によるエンジン36の点火時期を指令する点火信号、電動エアコンを作動させる為の電動エアコン駆動信号、電動機M1、M2の作動を指令する指令信号、シフトインジケータを作動させる為のシフトポジション(操作位置)表示信号、ギヤ比を表示させる為のギヤ比表示信号、スノーモードであることを表示させる為のスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させる為のABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、自動変速部20の係合装置の油圧アクチュエータを制御する為に油圧制御回路70(図5、図7参照)に含まれる電磁弁(ソレノイドバルブ)等を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧Pを調圧する為の信号、そのライン油圧Pが調圧される為の元圧の油圧源である電動油圧ポンプを作動させる為の駆動指令信号、電動ヒータを駆動する為の信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
【0051】
図5は、油圧制御回路70のうちクラッチC1、C2、C3、及びブレーキB1、B2の各油圧アクチュエータ(油圧シリンダ)AC1、AC2、AC3、AB1、AB2の作動を制御するリニアソレノイドバルブSL1〜SL5に関する回路図である。図5において、各油圧アクチュエータAC1、AC2、AC3、AB1、AB2には、ライン油圧PLがそれぞれリニアソレノイドバルブSL1〜SL5により電子制御装置80からの指令信号に応じた係合圧(係合油圧)PC1、PC2、PC3、PB1、PB2に調圧されてそれぞれ直接的に供給されるようになっている。このライン油圧PLは、図示しない電動オイルポンプやエンジン36により回転駆動される機械式オイルポンプから発生する油圧を元圧として例えばリリーフ型調圧弁(レギュレータバルブ)によって、アクセル開度Acc或いはスロットル弁開度θTHで表されるエンジン負荷等に応じた値に調圧されるようになっている。
【0052】
リニアソレノイドバルブSL1〜SL5は、基本的には何れも同じ構成で、電子制御装置80により独立に励磁、非励磁され、各油圧アクチュエータAC1、AC2、AC3、AB1、AB2の油圧が独立に調圧制御されてクラッチC1〜C3、ブレーキB1、B2の係合圧PC1、PC2、PC3、PB1、PB2が制御される。そして、自動変速部20は、例えば図2の係合作動表に示すように予め定められた係合装置が係合されることによって各変速段が成立させられる。つまり、自動変速部20の変速制御においては、例えば変速に関与するクラッチCやブレーキBの解放と係合とがすなわち解放側係合装置の解放と係合側係合装置の係合とが制御される。
【0053】
図6は、複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択する為に操作されるシフトレバー52を備えている。
【0054】
そのシフトレバー52は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックする為の駐車ポジションである「P(パーキング)」ポジション(レンジ)、後進走行の為の後進走行ポジションである「R(リバース)」ポジション、動力伝達装置10内の動力伝達経路が遮断された中立状態とする為の中立ポジションである「N(ニュートラル)」ポジション、動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジションである「D(ドライブ)」ポジション、又は手動変速走行モード(手動モード)を成立させて上記自動変速制御における高速側の変速段を制限する所謂変速レンジを設定する為の前進手動変速走行ポジションである「M(マニュアル)」ポジションへ手動操作されるように設けられている。
【0055】
図7は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図7において、有段変速制御部すなわち有段変速制御手段82は、自動変速部20の変速を行う変速制御手段として機能するものである。例えば、有段変速制御手段82は、図8に示すような車速Vと自動変速部20の出力トルクTOUT(或いはアクセル開度Acc等)とを変数として予め記憶されたアップシフト線(実線)及びダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速V及びアクセル開度Acc等に対応する自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。
【0056】
このとき、有段変速制御手段82は、例えば図2に示す係合表に従って変速段が達成されるように、自動変速部20の変速に関与する係合装置を係合及び/又は解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することにより例えばクラッチツウクラッチ変速を実行させる指令を油圧制御回路70へ出力する。油圧制御回路70は、その指令に従って、例えば解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路70内のリニアソレノイドバルブを作動させてその変速に関与する係合装置の油圧アクチュエータを作動させる。
【0057】
ハイブリッド制御部すなわちハイブリッド制御手段84は、エンジン出力制御装置64を介してエンジン36の駆動を制御するエンジン駆動制御手段としての機能と、インバータ60を介して第1電動機M1及び第2電動機M2による駆動力源又は発電機としての作動を制御する電動機作動制御手段としての機能を含んでおり、それら制御機能によりエンジン36、第1電動機M1、及び第2電動機M2によるハイブリッド駆動制御等を実行する。
【0058】
具体的には、ハイブリッド制御手段84は、エンジン36を効率のよい作動域で作動させる一方で、エンジン36と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力(要求エンジン出力)PERを算出し、その目標エンジン出力PERが得られるエンジン回転速度Nとエンジン36の出力トルク(エンジントルク)Tとなるようにエンジン36を制御すると共に各電動機Mの出力乃至発電を制御する。
【0059】
以上のように、動力伝達装置10全体としての変速比である総合変速比γTは、有段変速制御手段82によって制御される自動変速部20の変速比γATと、ハイブリッド制御手段84によって制御される差動部11の変速比γ0とによって決定される。すなわち、ハイブリッド制御手段84及び有段変速制御手段82は、シフトポジションPSHに対応するシフトレンジの範囲内において、油圧制御回路70、エンジン出力制御装置64、第1電動機M1、及び第2電動機M2等を介して動力伝達装置10全体としての変速比である総合変速比γTを制御する変速制御手段として機能する。
【0060】
例えば、ハイブリッド制御手段84は、動力性能や燃費向上などの為に自動変速部20の変速段を考慮してエンジン36及び各電動機Mの制御を実行する。このようなハイブリッド制御では、エンジン36を効率のよい作動域で作動させる為に定まるエンジン回転速度Nと車速V及び自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させる為に、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段84は、例えばエンジン回転速度NとエンジントルクTとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて記憶された例えば図9の破線に示すようなエンジン36の動作曲線の一種である最適燃費率曲線(燃費マップ、関係)にエンジン36の動作点(以下、「エンジン動作点」と表す)が沿わされつつエンジン36が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足する為に必要なエンジン出力Pを発生する為のエンジントルクTとエンジン回転速度Nとなるように、動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度N及びエンジントルクTなどで例示されるエンジン36の動作状態を示す状態量を座標軸とした二次元座標においてエンジン36の動作状態を示す動作点である。尚、本実施例では、燃費とは例えば単位燃料消費量当たりの走行距離であったり、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)等である。
【0061】
このとき、ハイブリッド制御手段84は、例えば第1電動機M1により発電された電気エネルギをインバータ60を通して蓄電装置62や第2電動機M2へ供給するので、エンジン36の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン36の動力の一部は電動機Mの発電の為に消費されてそこで電気エネルギに変換され、インバータ60を通してその電気エネルギが他の電動機Mへ供給され、電気エネルギによりその電動機Mから出力される駆動力が伝達部材18へ伝達される。この発電に係る電動機Mによる電気エネルギの発生から駆動に係る電動機Mで消費されるまでに関連する機器により、エンジン36の動力の一部が電気エネルギに変換され、その電気エネルギが機械的エネルギに変換されるまでの電気パスが構成される。
【0062】
ここで、有段変速制御手段82により自動変速部20の変速制御が実行される場合には、その自動変速部20の変速比が段階的に変化させられることに伴ってその変速前後で動力伝達装置10のトータル変速比γTが段階的に変化させられる。このような制御では、トータル変速比γTを段階的に変化させることにより、すなわち変速比が連続的ではなく飛び飛びの値をとることにより、連続的なトータル変速比γTの変化に比較して速やかに駆動トルクを変化させることが可能となる。その反面、変速ショックが発生したり、最適燃費率曲線に沿うようにエンジン回転速度Nを制御できず燃費が悪化する可能性がある。そこで、ハイブリッド制御手段84は、例えばそのトータル変速比γTの段階的変化が抑制されるように、自動変速部20の変速に同期してその自動変速部20の変速比の変化方向とは反対方向の変速比の変化となるように差動部11の変速を実行する。換言すれば、自動変速部20の変速前後で動力伝達装置10のトータル変速比γTが連続的に変化するように自動変速部20の変速制御に同期して差動部11の変速制御を実行する。例えば、自動変速部20の変速前後で過渡的に動力伝達装置10のトータル変速比γTが変化しないような所定のトータル変速比γTを形成する為に自動変速部20の変速制御に同期して、その自動変速部20の変速比の段階的な変化に相当する変化分だけその変化方向とは反対方向に変速比を段階的に変化させるように差動部11の変速制御を実行する。
【0063】
また、ハイブリッド制御手段84は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によってM1回転速度NM1及び/又はM2回転速度NM2を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段84は、エンジン回転速度Nを略一定に維持したり任意の回転速度に制御しつつM1回転速度NM1及び/又はM2回転速度NM2を任意の回転速度に回転制御することができる。
【0064】
例えば、図3の共線図からもわかるようにハイブリッド制御手段84は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪34)に拘束されるM2回転速度NM2を略一定に維持しつつM1回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段84は自動変速部20の変速中にエンジン回転速度Nを略一定に維持する場合には、エンジン回転速度Nを略一定に維持しつつ自動変速部20の変速に伴うM2回転速度NM2の変化とは反対方向にM1回転速度NM1を変化させる。
【0065】
また、ハイブリッド制御手段84は、スロットル制御の為にスロットルアクチュエータにより電子スロットル弁を開閉制御させる他、燃料噴射制御の為に燃料噴射装置による燃料噴射量や噴射時期を制御させ、点火時期制御の為にイグナイタ等の点火装置による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置64に出力して、必要なエンジン出力Pを発生するようにエンジン36の出力制御を実行する。すなわち、エンジン36の駆動を制御するエンジン駆動制御手段として機能する。
【0066】
例えば、ハイブリッド制御手段84は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータを駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、エンジン出力制御装置64は、ハイブリッド制御手段84による指令に従って、スロットル制御の為にスロットルアクチュエータにより電子スロットル弁を開閉制御する他、燃料噴射制御の為に燃料噴射装置による燃料噴射を制御し、点火時期制御の為にイグナイタ等の点火装置による点火時期を制御するなどしてエンジントルク制御を実行する。
【0067】
また、ハイブリッド制御手段84は、エンジン36の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によって、例えばエンジン36を用いず第2電動機M2を走行用の駆動力源とするモータ走行(EVモード走行)をさせることができる。例えば、前記図8の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン36と電動機例えば第2電動機M2とで切り換える為の、言い換えればエンジン36を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換える為の、エンジン走行領域とモータ走行領域との境界線である。この図8に示すエンジン走行とモータ走行とを切り換える為の境界線(実線A)を有する予め記憶された関係は、車速Vと自動変速部20の出力トルクTOUTとを変数とする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図8中の実線及び一点鎖線に示す変速線図(変速マップ)と共に予め記憶されている。
【0068】
そして、ハイブリッド制御手段84は、例えば図8の駆動力源切換線図から実際の車速V及び自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、モータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段84によるモータ走行は、図8から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT(比較的低アクセル開度Acc)域すなわち低エンジントルクT域、或いは車速Vの比較的低車速時すなわち低負荷域で実行される。また、ハイブリッド制御手段84は、このモータ走行時には、停止しているエンジン36の引き摺りを抑制して燃費を向上させる為に、M1回転速度NM1を負の回転速度で制御して例えば第1電動機M1を無負荷状態とすることにより空転させて、差動部11の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度Nを零乃至略零に維持する。
【0069】
また、ハイブリッド制御手段84は、エンジン36を走行用の駆動力源とするエンジン走行を行うエンジン走行領域であっても、前述した電気パスによる第1電動機M1からの電気エネルギ及び/又は蓄電装置62からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪34にトルクを付与することにより、エンジン36の動力を補助する為の所謂トルクアシストが可能である。よって、本実施例のエンジン走行にはエンジン36を走行用の駆動力源とする場合と、エンジン36及び第2電動機M2の両方を走行用の駆動力源とする場合とがある。そして、本実施例のモータ走行とはエンジン36を停止して第2電動機M2を走行用の駆動力源とする走行である。
【0070】
また、ハイブリッド制御手段84は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、差動部11がトルクの伝達を不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段84は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
【0071】
また、ハイブリッド制御手段84は、アクセルオフの惰性走行時(コースト走行時)やフットブレーキによる制動時などには、燃費を向上(燃料消費率を低減)させる為にエンジン36を非駆動状態にして、駆動輪34から伝達される車両の運動エネルギを差動部11で電気エネルギに変換する回生制御を実行する。具体的には、駆動輪34からエンジン36側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ60を介して蓄電装置62へ充電する回生制御を実行する。すなわち、ハイブリッド制御手段84は上記回生制御を実行する回生制御手段として機能する。この回生制御は、例えば蓄電装置62の充電容量SOCやブレーキペダル操作量に応じた制動力を得る為の油圧ブレーキによる制動力の制動力配分等に基づいて決定された回生量となるように制御される。
【0072】
ここで、アクセルペダルを踏み込まないコースト走行中に車速Vの減速に伴ってダウンシフト線を横切ると有段変速制御手段82により自動変速部20のダウンシフト(所謂コーストダウンシフト、コーストダウン変速)が実行される。このコーストダウンシフトに際して、同期制御部すなわち同期制御手段86は、例えば自動変速部20内の動力伝達経路を解放状態として自動変速部20を動力伝達遮断状態と略等しい状態(すなわちコーストダウンシフトに関与する係合装置のトルク容量を所定容量以下に維持した状態)で、動力源部38から出力可能なトルク(M2トルクTM2及びエンジントルクT(エンジン直達トルク)の少なくとも一方のトルク)に基づいて動力源部38から付与されるAT入力軸トルクTATによって、自動変速部20の入力軸回転速度NAT(すなわち伝達部材回転速度N18)をダウンシフト前の同期回転速度からダウンシフト後の同期回転速度に向かって変化させる回転同期制御すなわちダウンシフト後の同期回転速度に同期させる回転同期制御を実行する。
【0073】
具体的には、同期制御手段86は、コーストダウンシフトに関与する解放側係合装置と係合側係合装置とを共に解放状態とするクラッチフリーによりこのコーストダウンシフトを実行するクラッチフリー実行指令を有段変速制御手段82へ出力する。有段変速制御手段82は、コーストダウンシフトに際して、上記クラッチフリー実行指令に従って、例えば解放側係合装置の解放油圧指令値をダウンシフト開始時点で零にし且つダウンシフト過渡期間中は係合側係合装置の係合油圧指令値を低圧待機圧とする指令を油圧制御回路70へ出力する。加えて、同期制御手段86は、伝達部材回転速度N18をコーストダウンシフト後の同期回転速度に向かって上昇させる回転同期実行指令をハイブリッド制御手段84へ出力する。ハイブリッド制御手段84は、コーストダウンシフトに際して、上記回転同期実行指令に従って、例えば現在の伝達部材回転速度N18(=M2回転速度NM2)と目標回転速度(コーストダウンシフト後の同期回転速度=出力軸回転速度NOUT×ダウンシフト後の変速段における自動変速部20の変速比γAT)との偏差から、比例項、微分項、または積分項からなる所定の制御式によって得られるAT入力軸トルクTATの制御量を算出し、その制御量が得られるように、AT入力軸トルクTATを制御する。ハイブリッド制御手段84は、例えばM2トルクTM2のみによってAT入力軸トルクTATを制御する。しかしながら、蓄電装置56の充電容量SOCから算出した第2電動機M2の出力可能パワーが回転同期制御を実施するに必要な所定パワーを越えない場合には、ハイブリッド制御手段84は、例えばM2トルクTM2のみに替えて、M2トルクTM2とエンジン直達トルクとの合計トルク、或いはエンジン直達トルクのみによってAT入力軸トルクTATを制御する。そして、有段変速制御手段82は、伝達部材回転速度N18がダウンシフト後の同期回転速度に到達すると、自動変速部20の係合側係合装置の係合油圧指令値を急激に上昇させる指令を油圧制御回路70へ出力して係合側係合装置を係合することにより、コーストダウンシフトを完了させる。
【0074】
尚、上記所定の制御式は、例えば自動変速部20の入力軸回転速度NAT(伝達部材回転速度N18、M2回転速度NM2)がダウンシフト前の同期回転速度からダウンシフト後の同期回転速度へ向かって、所定の回転変化(傾き)にて上昇する為の予め実験的に求められて設定されたフィードバック制御式である。また、上記所定の回転変化は、例えば変速ショックの抑制と変速時間の短縮とが両立するように予め実験的に求められて設定された傾きである。この所定の回転変化は、例えばコーストダウンシフト時のコースト走行状態がフットブレーキオフであるかやブレーキオンであるかや走行路の勾配等によって異なる車両減速度Gに基づいて変化させても良い。このような場合には、例えば上記所定の制御式における各ゲインの数値が変更される。
【0075】
このように、自動変速部20のコーストダウンシフト過程では、自動変速部20内の動力伝達経路を解放状態としてAT入力軸トルクTATにより入力軸回転速度NAT(伝達部材回転速度N18、M2回転速度NM2)をダウンシフト後の回転速度に同期させる変速時同期制御が行われる。これにより、例えば自動変速部20のコーストダウンシフトの進行による影響(例えば解放側係合装置の解放と係合側係合装置の係合とに伴う回転速度変化)が可及的に抑制される為、変速ショックが抑制される。つまり、例えばクラッチフリー状態であることから、回転同期制御時にAT入力軸トルクTATが変化しても、自動変速部20の出力側(例えば出力軸トルクTOUT)ではその影響が抑制され、変速ショックが抑制される。また、例えばクラッチツウクラッチ変速のような解放側係合装置の解放と係合側係合装置の係合とによるトルクの受け渡しを行わない分複雑な制御が必要とされず、ばらつきに強く、又変速ショックを抑制し易い。
【0076】
ところで、自動変速部20のコーストダウンシフトに際して、解放側係合装置を解放状態としたつもりでもその解放側係合装置にトルク容量が残っている場合がある。例えば、自動変速部20の係合装置は、その係合装置を構成する図示しない複数の摩擦板間に作動油が充填された状態となっており、解放状態とされていても係合装置の互いの摩擦板が相対回転させられると、互いの摩擦板間に充填されている作動油温THOILに応じた作動油の粘度によってその摩擦板間に引き摺りが発生する。従って、図10に示すような互いの摩擦板の差回転速度ΔNc(=係合装置における一端側の回転速度−他端側の回転速度)に応じた引き摺りトルクが発生する。図10において、引き摺りトルクは、作動油温THOILに応じて変化するものであり、破線で示すように作動油温THOILが高温になる程低下する一方、一点鎖線で示すように低温になる程増加する。また、引き摺りトルクは、係合装置における互いの摩擦板に差回転速度ΔNcが生じ初めてその差回転速度ΔNcが所定値ΔNc’未満となる低回転領域では、差回転速度ΔNcが所定値ΔNc’以上となる高回転領域に比較して、比較的大きな引き摺りトルクが発生する。
【0077】
このような引き摺りトルクが発生した状態は、例えば係合装置が解放状態とされていても所定のトルク容量を有することと同様の状態となるので、例えばコーストダウンシフトに際してクラッチフリー状態としても、自動変速部20は僅かながらでも動力伝達可能状態と略等しい状態となる可能性がある。特に、コーストダウンシフトの変速初期では、変速終期に比較して、大きなAT入力軸トルクTATによって入力軸回転速度NATをダウンシフト後の同期回転速度に上昇させることから、ダウンシフトに関与する解放側係合装置における互いの摩擦板に差回転速度ΔNcが生じ初めて比較的大きな引き摺りトルクが発生することと相俟って、回転同期制御時のAT入力軸トルクTATが出力軸22に伝達されることによる出力軸トルクTOUTの変動(出力軸トルク変動)が比較的大きくなり易く、出力軸トルク変動に伴う変速ショックによりドライバビリティが悪化する可能性がある。
【0078】
そこで、本実施例では、自動変速部20のコーストダウンシフトに際して、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが比較的小さな領域では大きな領域と比較して、前記回転同期制御を実行するときのAT入力軸トルクTATの変化率(上昇率)を相対的に抑制する。具体的には、例えば図10に示すように差回転速度ΔNcが所定値ΔNc’未満の比較的小さな領域である低回転領域では、差回転速度ΔNcが所定値ΔNc’以上の比較的大きな領域である高回転領域と比較して、大きな引き摺りトルクが発生する為、この低回転領域では比較的出力軸トルク変動が大きくなる。そこで、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満の場合には、AT入力軸トルクTATの変化率(上昇率)を相対的に抑制する一方で、解放側係合装置の差回転速度ΔNcが所定値ΔNc’以上となったら、AT入力軸トルクTATの変化率を相対的に増大する。この所定値ΔNc’は、例えばAT入力軸トルクTATの変化率(上昇率)を相対的に抑制する必要があるような比較的大きな引き摺りトルクが発生する差回転速度ΔNcの低回転領域であることを判定する為の予め実験的に求められて設定された判定値である。
【0079】
より具体的には、図7に戻り、走行状態判定部すなわち走行状態判定手段88は、例えばシフトレバー52のシフトポジションPSHに基づいて、現在前進自動変速走行ポジションである「D」ポジション(レンジ)を選択中であるか否かを判定する。また、走行状態判定手段88は、例えば回転同期制御を実施するコーストダウンシフト中であるか否かを判定する。具体的には、走行状態判定手段88は、アクセル開度Accに基づいてアクセルオフの減速走行中すなわち惰性走行(コースト走行)中であるか否かを判定し、コースト走行中であると判定した場合には有段変速制御手段82によりダウンシフトが判断されてそのダウンシフトが実行されているか否かを判定する。また、走行状態判定手段88は、例えばコーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満であるか否かを判定する。
【0080】
ハイブリッド制御手段84は、例えば走行状態判定手段88による解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満であるか否かの判定結果に基づいて、AT入力軸トルクTATを制御するときのそのAT入力軸トルクTATの変化率を変更する。例えば、ハイブリッド制御手段84は、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化率を変更する。つまり、前記回転同期制御の為にAT入力軸トルクTATを上昇するが、その上昇率を作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて変更する。
【0081】
具体的には、ハイブリッド制御手段84は、走行状態判定手段88により解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満であると判定された場合には、前記所定の制御式から算出されるAT入力軸トルクTATの制御量を通常の制御量とし、その制御量におけるAT入力軸トルクTATの上昇率を上限として、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じてその上昇率を低減する。例えば、図10に示すように作動油温THOILが低い程引き摺りトルクが増加して出力軸トルク変動が大きくなるので、ハイブリッド制御手段84は、例えば作動油温THOILが低い程、AT入力軸トルクTATの上昇率をより小さくする。また、車両減速度Gが大きい程出力軸トルク変動に伴う変速ショックレベル(変速ショックの感じ方)が大きくなる(すなわち変速ショックを感じ易くなる)ので、ハイブリッド制御手段84は、例えば車両減速度Gが大きい程、AT入力軸トルクTATの上昇率をより小さくする。図11は、出力軸トルク変動を抑制する為に、作動油温THOIL及び車両減速度Gに応じて予め実験的に求められて設定されたAT入力軸トルクTATの上昇率マップである。この図11の上昇率マップにおいては、例えば上記通常の制御量におけるAT入力軸トルクTATの上昇率を上限とする範囲内で、作動油温THOIL及び車両減速度Gに応じてその上昇率を低減するように、AT入力軸トルクTATの上昇率が設定されている。つまり、図11の上昇率マップにおける低・中・高は、通常の制御量におけるAT入力軸トルクTATの上昇率を上限とする範囲内での相対的な上昇率の高低であって、例えば上昇率「高」は通常の制御量における上昇率よりも高くするというものではない。ハイブリッド制御手段84は、例えば図11に示すような上昇率マップから作動油温THOIL及び車両減速度Gに基づいてAT入力軸トルクTATの上昇率を設定し、その上昇率となるようにAT入力軸トルクTATを制御する。
【0082】
また、自動変速部20の油圧制御部品や作動油の経時変化により引き摺りトルクが変化する可能性がある。この油圧制御部品は、例えば係合装置(クラッチC、ブレーキB)であり、具体的にはその係合装置の摩擦板、クラッチプレート、ピストン、リターンスプリング等の引き摺りトルクに関係する部品が該当する。例えば、摩擦板が長時間使用されると、摩耗されるに伴って摩擦板表面の摩擦係数が変化する為、引き摺りトルクが変化する。また、例えば作動油が長時間使用されると、作動油の粘度が変化するに伴って引き摺りトルクが変化する。一般的には、摩擦板が摩耗する程、引き摺りトルクが低下する。また、作動油は長時間使用されると粘度が低下する為、引き摺りトルクが低下する。従って、経時変化で引き摺りトルクが低下するなら、それに応じてAT入力軸トルクTATの上昇率を変化させれば良い。例えば、ハイブリッド制御手段84は、自動変速部20の油圧制御部品や作動油の経時変化により引き摺りトルクが低下する程、AT入力軸トルクTATの上昇率を大きくする。換言すれば、ハイブリッド制御手段84は、例えば自動変速部20の油圧制御部品や作動油の経時変化による引き摺りトルクの低下が生じない程、AT入力軸トルクTATの上昇率を小さくする。
【0083】
具体的には、ハイブリッド制御手段84は、車両の走行時間や走行距離等と上記経時変化による引き摺りトルクの変化との予め実験的に求められて設定された関係から、実際の走行時間や走行距離等に基づいて引き摺りトルクの変化を算出し、その算出結果に基づいて、作動油温THOIL及び車両減速度Gに応じた上昇率を加味しつつAT入力軸トルクTATの上昇率を設定し、その上昇率となるようにAT入力軸トルクTATを制御する。或いは、ハイブリッド制御手段84は、例えば作動油温THOIL及び車両減速度Gに基づいて設定したAT入力軸トルクTATの上昇率によってAT入力軸トルクTATを制御した際に、実際の出力軸トルク変動(例えば車両加速度G)が制御結果として想定される予め実験的に求められて設定された出力軸トルク変動の上限値(例えば車両加速度Gの上限値)を超えた場合には、出力軸トルク変動が小さくなるように学習制御によりAT入力軸トルクTATの上昇率を小さくすることで、上記経時変化をAT入力軸トルクTATの上昇率に反映するようにしても良い。
【0084】
一方、ハイブリッド制御手段84は、走行状態判定手段88により解放側係合装置の差回転速度ΔNcが所定値ΔNc’以上であると判定された場合には、前記所定の制御式から算出されるAT入力軸トルクTATの通常の制御量に基づいて、通常通り、その制御量が得られるように、AT入力軸トルクTATを制御する。つまり、解放側係合装置の差回転速度ΔNcが所定値ΔNc’以上である場合には、変速ショックが問題となり難い為、通常通りの制御量となるように、上記AT入力軸トルクTATの上昇率を増大する。このように、ハイブリッド制御手段84は、例えば走行状態判定手段88により解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満と判定されている間は、AT入力軸トルクTATの上昇率を抑制する対策制御を実行する一方で、走行状態判定手段88により解放側係合装置の差回転速度ΔNcが所定値ΔNc’以上と判定された場合には、上記対策制御を実行せず、前記所定の制御式から算出されるAT入力軸トルクTATの通常の制御量が得られるようにAT入力軸トルクTATを制御する。
【0085】
また、別の観点では、前述したように、出力軸トルク変動に伴う変速ショックレベル(変速ショックの感じ方)は、例えば車両の前後加速度Gとして検出される車両減速度Gが大きくなる程大きくなり(すなわち変速ショックを感じ易くなり)、車両減速度Gが小さくなる程小さくなる(変速ショックを感じ難くなる)と考えられる。従って、車両減速度Gが元々変速ショックを感じ難くなる所定減速度G’以下ではAT入力軸トルクTATの上昇率を抑制する対策制御を実行しなくても良いという考え方もある。そこで、走行状態判定手段88は、例えば車両減速度Gが所定減速度G’を超えているか否かを判定する。この所定減速度G’は、例えば変速ショックレベルが大きくなる為に上記対策制御を実行する必要があることを判断する為の予め実験的に求められて設定された対策制御実行判定値である。そして、ハイブリッド制御手段84は、走行状態判定手段88により車両減速度Gが所定減速度G’を超えていると判定された場合には、AT入力軸トルクTATの上昇率を抑制する対策制御を実行する。一方、ハイブリッド制御手段84は、走行状態判定手段88により車両減速度Gが所定減速度G’を超えていないと判定された場合には、前記所定の制御式から算出されるAT入力軸トルクTATの通常の制御量に基づいて、通常通り、その制御量が得られるように、AT入力軸トルクTATを制御する。つまり、車両減速度Gが小さい場合には、変速ショックが問題とならない為、通常通り、コーストダウンシフトを実行し、AT入力軸トルクTATの上昇率を抑制する対策制御を実行しない。
【0086】
図12は、電子制御装置80の制御作動の要部すなわちAT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。また、図13は、図12のフローチャートに示す制御作動を実行した場合のタイムチャートである。
【0087】
図12において、先ず、走行状態判定手段88に対応するステップ(以下、ステップを省略する)SA10において、例えばシフトレバー52のシフトポジションPSHに基づいて現在「D」ポジション(レンジ)を選択中であるか否かが判定される。このSA10の判断が肯定される場合は同じく走行状態判定手段88に対応するSA20において、例えば回転同期制御を実施するコーストダウンシフト(例えば2→1コーストダウンシフト)の変速中であるか否かが判定される。このSA20の判断が肯定される場合は同じく走行状態判定手段88に対応するSA30において、例えば車両減速度Gが所定減速度G’を超えているか否かが判定される。このSA30の判断が肯定される場合はハイブリッド制御手段84に対応するSA40において、例えば自動変速部20のコーストダウンシフトに際して入力軸回転速度NATの回転同期制御を実行するときのAT入力軸トルクTATの上昇率を抑制する対策制御が実行される(図13のt1時点)。具体的には、前記所定の制御式から算出されるAT入力軸トルクTATの制御量を通常の制御量とし、その制御量におけるAT入力軸トルクTATの上昇率を上限として、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じてその上昇率が低減される。例えば、図11に示すような上昇率マップから作動油温THOIL及び車両減速度Gに基づいてAT入力軸トルクTATの上昇率が設定され、その上昇率となるようにAT入力軸トルクTATが制御される。また、上記経時変化をAT入力軸トルクTATの上昇率に反映するように、前記学習制御によりAT入力軸トルクTATの上昇率が変更される。尚、このSA40では、例えば解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満と判定されている場合に上記対策制御が実行される一方で(図13のt1時点乃至t2時点)、解放側係合装置の差回転速度ΔNcが所定値ΔNc’以上と判定された場合には上記対策制御が中止され、前記所定の制御式から算出されるAT入力軸トルクTATの通常の制御量が得られるようにAT入力軸トルクTATが制御される(図13のt2時点乃至t4時点)。一方で、上記SA30の判断が否定される場合はハイブリッド制御手段84に対応するSA50において、例えば前記所定の制御式から算出されるAT入力軸トルクTATの通常の制御量に基づいて、通常通り、その制御量が得られるように、AT入力軸トルクTATが制御される。つまり、車両減速度Gが小さい場合には、変速ショックが問題とならない為、上記対策制御が実行されず、通常通りコーストダウンシフトの変速制御が実行される。上記SA10の判断及び上記SA20の判断の何れか一方が否定される場合はSA60において、例えば上記SA40或いは上記SA50にて実行される制御以外のその他の制御が実行される。
【0088】
図13において、通常の制御量が得られるようにAT入力軸トルクTATが制御される従来の場合(破線)よりもAT入力軸トルクTATの変化率(上昇率)を低減する本実施例の対策制御が実行された場合(実線)には、その対策制御を実行しない場合と比較して、出力軸トルク変動が小さくされる。特に、この図13の実施例では、比較的大きな引き摺りトルクが発生する差回転速度ΔNcが所定値ΔNc’未満となる低回転領域において、その対策制御が実行されている。また、AT入力軸トルクTATの変化率(上昇率)が低減されることに伴って、自動変速部20の入力軸回転速度NATの立ち上がりが従来(破線)と比較して緩やかなもの(実線)とされる。
【0089】
上述のように、本実施例によれば、自動変速部20のコーストダウンシフトに際して、入力軸回転速度NATをコーストダウンシフト前の同期回転速度からコーストダウンシフト後の同期回転速度に向かって変化させる前記回転同期制御を実行するときのAT入力軸トルクTATの変化率が、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが比較的小さな領域では大きな領域と比較して、相対的に抑制されるので、コーストダウンシフトに関与する解放側係合装置の引き摺りトルクに因って自動変速部20の出力軸22に伝達されるAT入力軸トルクTATを起因とする出力軸トルク変動を抑制することが可能となる為、AT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる。
【0090】
また、本実施例によれば、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが所定値ΔNc’未満の場合には、AT入力軸トルクTATの変化率(上昇率)を相対的に抑制する一方で、解放側係合装置の差回転速度ΔNcが所定値ΔNc’以上となったら、AT入力軸トルクTATの変化率を相対的に増大するので、解放側係合装置の引き摺りトルクの大きさが比較的大きくなるような差回転速度ΔNcが所定値ΔNc’未満の領域やその引き摺りトルクの大きさが比較的小さくなるような差回転速度ΔNcが所定値ΔNc’以上の領域に各々対応して、AT入力軸トルクTATを起因とする出力軸トルク変動を適切に抑制することが可能となる。
【0091】
また、本実施例によれば、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化率を変更するので、作動油温THOIL、車両減速度G、及び上記経時変化の内の少なくとも1つによって、解放側係合装置における引き摺りトルクの大きさに基づく出力軸トルク変動の大きさ或いは出力軸トルク変動に伴う変速ショックレベル(変速ショックの感じ方)が異なる可能性があることに対して、作動油温THOIL、車両減速度G、及び上記経時変化の内の少なくとも1つに応じて、AT入力軸トルクTATを起因とする出力軸トルク変動を適切に抑制することが可能となる。
【0092】
また、本実施例によれば、作動油温THOILが低い程、車両減速度Gが大きい程、或いは自動変速部20の油圧制御部品や作動油の経時変化に応じて、AT入力軸トルクTATの上昇率を小さくするので、作動油温THOIL、車両減速度G、及び上記経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化率を適切に変更することができる。
【0093】
また、本実施例によれば、前記回転同期制御中は自動変速部20が動力伝達遮断状態とされるので、回転同期制御時の自動変速部20の変速進行による影響を抑制することができる。つまり、例えばクラッチツウクラッチ変速のような解放側係合装置の解放と係合側係合装置の係合とによるトルクの受け渡しを行わない分複雑な制御が必要とされず、ばらつきに強く、又変速ショックを抑制し易い。
【0094】
また、本実施例によれば、動力源部38は駆動力源として第2電動機M2とエンジン36とを備え、前記回転同期制御は、M2トルクTM2のみ、M2トルクTM2とエンジン直達トルクとの合計トルク、或いはエンジン直達トルクのみを、AT入力軸トルクTATとして制御することにより実施されるので、M2トルクTM2のみ、上記合計トルク、或いはエンジン直達トルクのみを好適に制御することで、自動変速部20の入力軸(伝達部材18)の同期制御を実施することができる。
【0095】
また、本実施例によれば、電気的な無段変速機として機能する差動部11と、有段の自動変速部20とを備えた実用的な車両用動力伝達装置10において、動力源部38から付与されるAT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる電子制御装置80が提供される。
【0096】
次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
【実施例2】
【0097】
前述の実施例では、コーストダウンシフトに関与する解放側係合装置の差回転速度ΔNcが比較的小さな領域では大きな領域と比較して、入力軸回転速度NATの前記回転同期制御を実行するときのAT入力軸トルクTATの変化率を相対的に抑制することで、AT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制した。本実施例では、前述の実施例に替えて、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化開始時期(変化開始タイミング)を変更することで、AT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する。つまり、前記回転同期制御の為にAT入力軸トルクTATを上昇するが、その上昇開始タイミングを作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて変更する。尚、本実施例では、車両減速度Gが所定減速度G’を超えているか否かの概念を、車両減速度Gに応じてAT入力軸トルクTATの変化開始タイミングを変更するという概念に含めるものとする。
【0098】
具体的には、ハイブリッド制御手段84は、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、前記所定の制御式から算出されるAT入力軸トルクTATの制御量が得られるようにAT入力軸トルクTATを制御するときのAT入力軸トルクTATの上昇開始タイミングを変更する。例えば、作動油温THOILが低い程、解放側係合装置を解放する際の油圧指令値に対する実油圧の応答性が遅くなり引き摺りトルクの低下が遅くなって出力軸トルク変動が大きくなり易いので、実油圧が確実に抜けてからAT入力軸トルクTATの上昇を開始する為に、ハイブリッド制御手段84は、例えば作動油温THOILが低い程、AT入力軸トルクTATの上昇開始タイミングを変速開始時点からより遅らせる。また、前述したように車両減速度Gが大きい程出力軸トルク変動に伴う変速ショックレベル(変速ショックの感じ方)が大きくなるので、車両減速度Gが大きい程実油圧がより低下した状態でAT入力軸トルクTATの上昇を開始する為に、ハイブリッド制御手段84は、例えば車両減速度Gが大きい程、AT入力軸トルクTATの上昇開始タイミングを変速開始時点からより遅らせる。図14は、出力軸トルク変動を抑制する為に、作動油温THOIL及び車両減速度Gに応じて予め実験的に求められて設定されたAT入力軸トルクTATの変化開始タイミングマップである。この図14の変化開始タイミングマップにおいては、例えば上記通常の制御量におけるAT入力軸トルクTATの上昇開始タイミングを、作動油温THOIL及び車両減速度Gに応じて変速開始時点から遅延するように、AT入力軸トルクTATの上昇開始タイミングが設定されている。つまり、図14の変化開始タイミングマップにおける遅・中・早は、変速開始時点からの相対的な遅延の程度であって、例えば変化開始タイミング「早」は変速開始時点よりも早くするというものではない。ハイブリッド制御手段84は、例えば図14に示すような変化開始タイミングマップから作動油温THOIL及び車両減速度Gに基づいてAT入力軸トルクTATの上昇開始タイミングを設定し、変速開始後にその上昇開始タイミングにてAT入力軸トルクTATを制御開始する。
【0099】
また、自動変速部20の油圧制御部品や作動油の経時変化により解放側係合装置を解放する際の油圧指令値に対する実油圧の応答性が変化して残トルク容量(引き摺りトルク)が変化する可能性がある。従って、経時変化で実油圧の応答性が遅くなるなら、それに応じてAT入力軸トルクTATの上昇開始タイミングを変化させれば良い。例えば、ハイブリッド制御手段84は、自動変速部20の油圧制御部品や作動油の経時変化により実油圧の応答性が遅くなる程、AT入力軸トルクTATの上昇開始タイミングを遅くする。
【0100】
具体的には、ハイブリッド制御手段84は、車両の走行時間や走行距離等と上記経時変化による実油圧の応答性の変化との予め実験的に求められて設定された関係から、実際の走行時間や走行距離等に基づいて実油圧の応答性の変化を算出し、その算出結果に基づいて、作動油温THOIL及び車両減速度Gに応じた上昇開始タイミングを加味しつつAT入力軸トルクTATの上昇開始タイミングを設定し、その上昇開始タイミングにてAT入力軸トルクTATを制御する。或いは、ハイブリッド制御手段84は、例えば作動油温THOIL及び車両減速度Gに基づいて設定したAT入力軸トルクTATの上昇開始タイミングによってAT入力軸トルクTATを制御した際に、実際の出力軸トルク変動(例えば車両加速度G)が制御結果として想定される予め実験的に求められて設定された出力軸トルク変動の上限値(例えば車両加速度Gの上限値)を超えた場合には、出力軸トルク変動が小さくなるように学習制御によりAT入力軸トルクTATの上昇開始タイミングを遅らせることで、上記経時変化をAT入力軸トルクTATの上昇開始タイミングに反映するようにしても良い。
【0101】
図15は、電子制御装置80の制御作動の要部すなわちAT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図15のフローチャートは、図12のフローチャートに相当する別の実施例である。また、図16は、図15のフローチャートに示す制御作動を実行した場合のタイムチャートである。
【0102】
図15において、先ず、走行状態判定手段88に対応するSB10において、例えばシフトレバー52のシフトポジションPSHに基づいて現在「D」ポジション(レンジ)を選択中であるか否かが判定される。このSB10の判断が肯定される場合は同じく走行状態判定手段88に対応するSB20において、例えば回転同期制御を実施するコーストダウンシフト(例えば2→1コーストダウンシフト)の変速中であるか否かが判定される。このSB20の判断が肯定される場合はハイブリッド制御手段84に対応するSB30において、例えば自動変速部20のコーストダウンシフトに際して入力軸回転速度NATの回転同期制御を実行するときのAT入力軸トルクTATの変化開始タイミング(上昇開始タイミング)を遅延する対策制御が実行される(図16のt1時点以降)。具体的には、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の複数の車両状態の内の少なくとも1つに応じて、前記所定の制御式から算出されるAT入力軸トルクTATの制御量が得られるようにAT入力軸トルクTATを制御するときのAT入力軸トルクTATの上昇開始タイミングが変速開始時点から遅延させられる。例えば、図14に示すような変化開始タイミングマップから作動油温THOIL及び車両減速度Gに基づいてAT入力軸トルクTATの上昇開始タイミングが設定され、変速開始後にその上昇開始タイミングにてAT入力軸トルクTATが制御開始される(図16のt2時点)。また、上記経時変化をAT入力軸トルクTATの上昇開始タイミングに反映するように、前記学習制御によりAT入力軸トルクTATの上昇開始タイミングが変更される。また、例えばAT入力軸トルクTATの上昇開始後は、前記所定の制御式から算出されるAT入力軸トルクTATの制御量が得られるようにAT入力軸トルクTATが制御される(図16のt2時点乃至t4時点)。上記SB10の判断及び上記SB20の判断の何れか一方が否定される場合はSB40において、例えば上記SB30にて実行される制御以外のその他の制御が実行される。
【0103】
図16において、通常の制御量が得られるようにAT入力軸トルクTATが変速開始時点から制御される場合(破線)よりもAT入力軸トルクTATの変化開始タイミング(上昇開始タイミング)を遅延する本実施例の対策制御が実行された場合(実線)には、その対策制御を実行しない場合と比較して、出力軸トルク変動が小さくされる。また、AT入力軸トルクTATの変化開始タイミングが遅延されることに伴って、自動変速部20の入力軸回転速度NATの立ち上がりが従来(破線)と比較して緩やかなもの(実線)とされる。
【0104】
上述のように、本実施例によれば、前記コーストダウンシフトに際して、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化開始時期を変更するので、作動油温THOIL、車両減速度G、及び上記経時変化の内の少なくとも1つによって、前記コーストダウンシフトに関与する解放側係合装置におけるトルク容量(引き摺りトルク)の大きさに基づく出力軸トルク変動の大きさ或いは出力軸トルク変動に伴う変速ショックレベル(変速ショックの感じ方)が異なる可能性があることに対して、作動油温THOIL、車両減速度G、及び上記経時変化の内の少なくとも1つに応じて、コーストダウンシフトに関与する解放側係合装置のトルク容量に因って自動変速部20の出力軸22に伝達されるAT入力軸トルクTATを起因とする出力軸トルク変動を抑制することが可能となる為、前述の実施例と同様に、AT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる。
【0105】
また、本実施例によれば、作動油温THOILが低い程、車両減速度Gが大きい程、或いは自動変速部20の油圧制御部品や作動油の経時変化に応じて、AT入力軸トルクTATの上昇開始時期を遅延させるので、作動油温THOIL、車両減速度G、及び上記経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化開始時期を適切に変更することができる。
【実施例3】
【0106】
前述の実施例1,2では、動力源部38は、差動部11とエンジン36とを備えて構成され、駆動力源として第2電動機M2とエンジン36とを備えるものであったが、これに替えて、他の動力源部を採用することもできる。つまり、この動力源部としては、前記コーストダウンシフト時の回転同期制御を実行する際にAT入力軸トルクTATとして制御するトルクを出力可能なものであれば良い。例えば、少なくとも、複数の変速比が段階的に成立させられる変速部と、その変速部の入力側回転部材に動力伝達可能に連結された電動機とを備える車両であれば良い。
【0107】
図17は、本発明が適用される動力源部の別の実施例を説明する概略図である。図17(a)において、車両100は、例えば動力源部102と、その動力源部102と駆動輪34との間の動力伝達経路で入力軸104を介して直列に連結されている自動変速部20と、この自動変速部20に連結されている出力軸22とを直列に備えるハイブリッド車両である。また、図17(a)の実施例においては、動力源部102は、駆動力源として、自動変速部20の入力軸104に動力伝達可能に連結された、エンジン36と電動機Mとを備えている。これにより、例えば電動機Mの出力トルクであるMトルクTのみ、MトルクTとエンジントルクTとの合計トルク、或いはエンジントルクTのみをAT入力軸トルクTATとして制御することが可能である。従って、コーストダウンシフトに際して、同期制御手段86は、例えば自動変速部20内の動力伝達経路を解放状態として、動力源部102から出力可能なトルク(MトルクT及びエンジントルクTの少なくとも一方のトルク)に基づいて動力源部102から付与されるAT入力軸トルクTATによって、自動変速部20の入力軸回転速度NATをダウンシフト後の同期回転速度に同期させる回転同期制御を実行する。
【0108】
また、図17(b)において、車両110は、例えば動力源部112と、その動力源部112と駆動輪34との間の動力伝達経路で入力軸114を介して直列に連結されている自動変速部20と、この自動変速部20に連結されている出力軸22とを直列に備える電気自動車である。また、図17(b)の実施例においては、動力源部112は、駆動力源として自動変速部20の入力軸114に動力伝達可能に連結された電動機Mを備えている。これにより、例えばMトルクTのみをAT入力軸トルクTATとして制御することが可能である。従って、コーストダウンシフトに際して、同期制御手段86は、例えば自動変速部20内の動力伝達経路を解放状態として、動力源部112から出力可能なトルク(MトルクTのみ)に基づいて動力源部112から付与されるAT入力軸トルクTATによって、自動変速部20の入力軸回転速度NATをダウンシフト後の同期回転速度に同期させる回転同期制御を実行する。
【0109】
上述のように、本実施例によれば、動力源部38が動力源部102或いは動力源部112に替わっただけであるので、前述の実施例と同様の効果が得られる。
【0110】
また、本実施例によれば、動力源部102は、駆動力源として、自動変速部20の入力軸104に動力伝達可能に連結された、電動機Mとエンジン36とを備え、前記回転同期制御は、MトルクTのみ、MトルクTとエンジントルクTとの合計トルク、或いはエンジントルクTのみを、AT入力軸トルクTATとして制御することにより実施されるので、MトルクT、上記合計トルク、或いはエンジントルクTのみを好適に制御することで、自動変速部20の入力軸104の同期制御を実施することができる。或いは、動力源部112は、駆動力源として自動変速部20の入力軸114に動力伝達可能に連結された電動機Mを備え、前記回転同期制御は、MトルクTのみをAT入力軸トルクTATとして制御することにより実施されるので、MトルクTのみを好適に制御することで、自動変速部20の入力軸114の同期制御を実施することができる。
【0111】
また、本実施例によれば、エンジン36及び電動機Mと有段の自動変速部20とで構成される実用的な車両100において、動力源部102から付与されるAT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる電子制御装置80が提供される。或いは、電動機Mと有段の自動変速部20とで構成される実用的な車両110において、動力源部112から付与されるAT入力軸トルクTATにより実行される回転同期制御を伴うコーストダウンシフト時の変速ショックを抑制することができる電子制御装置80が提供される。
【0112】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明は実施例相互を組み合わせて実施可能であると共にその他の態様においても適用される。
【0113】
例えば、前述の実施例において、各実施例が独立して実施されているが、上記各実施例は必ずしも独立して実施する必要はなく、適宜組み合わせて実施しても構わない。
【0114】
また、前述の実施例では、コーストダウンシフトとして第2速ギヤ段から第1速ギヤ段への2→1コーストダウンシフトを例示したが、これに限らず、例えば3→2コーストダウンシフトや第3速ギヤ段から第1速ギヤ段への跳びコーストダウンシフト等であっても構わない。要は、回転同期制御が実施されるコーストダウンシフトであれば本発明を適宜適用することができる。
【0115】
また、前述の実施例1では、車両減速度Gが所定減速度G’を超えていないと判定された場合には、前記所定の制御式から算出されるAT入力軸トルクTATの通常の制御量に基づいて、通常通り、その制御量が得られるように、AT入力軸トルクTATを制御した(例えば図12のSA50)が、この通常通りのAT入力軸トルクTATの制御においても、作動油温THOILや自動変速部20の油圧制御部品や作動油の経時変化に応じてAT入力軸トルクTATの上昇率を低減しても良い。
【0116】
また、前述の実施例1では、車両減速度Gが所定減速度G’を超えているか否かの判定結果に基づいてAT入力軸トルクTATの変化率を変更したが、必ずしも車両減速度Gが所定減速度G’を超えているか否かを判断する必要はない。例えば、前述の実施例1では、前述の実施例2と同様に、車両減速度Gが所定減速度G’を超えているか否かの概念を、車両減速度Gに応じてAT入力軸トルクTATの変化率を変更するという概念に含め、例えば図11のAT入力軸トルクの上昇率マップに反映させておいても良い。このような場合、図12のフローチャートにおいては、例えば図15のフローチャートと同様に、車両減速度Gが所定減速度G’を超えているか否かを判断するステップSA30が備えられず、SA40及びSA50のステップに替えて、例えば作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の複数の車両状態の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの変化率を変更するというステップが備えられる。
【0117】
また、前述の実施例1の図12のフローチャート(SA40)や図13のタイムチャートでは、特に大きな引き摺りトルクが発生するような差回転速度ΔNcが所定値ΔNc’未満となる低回転領域において、AT入力軸トルクTATの変化率(上昇率)を抑制したが、この低回転領域のみでAT入力軸トルクTATの変化率を抑制する(前記対策制御を実行する)だけでなく、これ以外の領域でも、例えば作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、AT入力軸トルクTATの変化率を変更しても良い。
【0118】
また、前述の実施例2では、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときのAT入力軸トルクTATの上昇開始タイミングを変更したが、これに加えて、更に、作動油温THOIL、車両減速度G、及び自動変速部20の油圧制御部品や作動油の経時変化の内の少なくとも1つに応じて、AT入力軸トルクTATの変化率を変更しても良い。
【0119】
また、前述の実施例では、図11のAT入力軸トルクの上昇率マップや図14のAT入力軸トルクの変化開始タイミングマップから、作動油温THOIL及び車両減速度Gに基づいて、AT入力軸トルクTATの変化率を変更したり、AT入力軸トルクTATの上昇開始タイミングを変更したが、これに限らず、例えば学習制御等によってAT入力軸トルクTATの変化率や上昇開始タイミングを適宜変更するものであっても良い。
【0120】
また、前述の実施例の車両100における動力源部102では、エンジン36の後段側に直列に電動機Mを備えていたが、エンジン36の前段側に直列に電動機Mを備える構成であっても良い。また、エンジン36と電動機Mとの間に動力伝達経路を断接可能な係合装置を備える構成であっても良い。
【0121】
また、前述の実施例の車両100、110では、動力源部102,112と自動変速部20とは直結されていたが、動力伝達経路を断接可能な係合装置を介して連結される構成であっても良い。また、自動変速部20は、前段部にトルクコンバータやフルードカップリング等の流体伝動装置を備える構成であっても良い。このような場合、流体伝動装置の入出力間を直結可能なロックアップクラッチを係合(スリップ状態乃至完全係合状態)しているときに、本発明は適用され得る。
【0122】
また、前述の実施例では、第1電動機M1の運転状態が制御されることにより、差動部11(動力分配機構16)はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、例えば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであってもよい。
【0123】
また、前述の実施例の動力伝達装置10において、エンジン36と差動部11とは直結されているが、エンジン36が差動部11にクラッチ等の係合要素を介して連結されていてもよい。
【0124】
また、前述の実施例の動力伝達装置10において、第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
【0125】
また、前述の実施例では、エンジン36から駆動輪34への動力伝達経路において、差動部11の次に自動変速部20が連結されているが、自動変速部20の次に差動部11が連結されている順番でもよい。要するに、自動変速部20は、エンジン36から駆動輪34への動力伝達経路の一部を構成するように設けられて入力側回転部材に動力伝達可能に電動機及びエンジン36が連結されておればよい。
【0126】
また、前述の実施例の図1によれば、差動部11と自動変速部20は直列に連結されているが、動力伝達装置10全体として電気的に差動状態を変更し得る電気式差動機能とその電気式差動機能による変速とは異なる原理で変速する機能とが備わっていれば、差動部11と自動変速部20とが機械的に独立していなくても本発明は適用される。
【0127】
また、前述の実施例において、動力分配機構16はシングルプラネタリであるが、ダブルプラネタリであってもよい。
【0128】
また、前述の実施例の差動機構として動力分配機構16は、例えばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1及び伝達部材18(第2電動機M2)に作動的に連結された差動歯車装置であってもよい。
【0129】
また、前述の実施例においては、差動部遊星歯車装置24を構成する第1回転要素RE1にはエンジン36が動力伝達可能に連結され、第2回転要素RE2には第1電動機M1が動力伝達可能に連結され、第3回転要素RE3には駆動輪34への動力伝達経路が連結されているが、例えば、2以上の遊星歯車装置がそれを構成する一部の回転要素で相互に連結された構成において、その遊星歯車装置の回転要素にそれぞれエンジン、電動機、駆動輪が動力伝達可能に連結されており、その遊星歯車装置の回転要素に連結されたクラッチ又はブレーキの制御により有段変速と無段変速とに切換可能な構成にも本発明は適用される。
【0130】
また、前述の実施例においては、第2電動機M2は伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。
【0131】
また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン36に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン36、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちの何れと連結されていても差し支えない。
【0132】
また、前述の実施例において、エンジン36は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
【0133】
また、前述の実施例では、第1電動機M1及び第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
【0134】
また、前述の実施例において、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、例えば伝達部材18としてカウンタギヤ対、スプロケット及びチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
【0135】
また、前述の実施例の動力分配機構16は1組の差動部遊星歯車装置24から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。
【0136】
また、前述の実施例の第2電動機M2はエンジン36から駆動輪34までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする動力伝達装置10の構成であってもよい。
【0137】
また、前述の実施例において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とはそれぞれ別個に動力伝達装置10に備えられていてもよい。
【0138】
また、前述の実施例において、差動部11は、動力分配機構16に設けられて差動作用を制限することにより少なくとも前進2段の有段変速機としても作動させられる差動制限装置を備えたものであってもよい。
【0139】
また、前述の実施例のシフト操作装置50は、複数種類のシフトポジションPSHを選択する為に操作されるシフトレバー52を備えていたが、そのシフトレバー52に替えて、例えば押しボタン式のスイッチやスライド式スイッチ等の複数種類のシフトポジションPSHを選択可能なスイッチ、或いは手動操作に因らず運転者の音声に反応して複数種類のシフトポジションPSHを切り換えられる装置や足の操作により複数種類のシフトポジションPSHが切り換えられる装置等であっても良い。また、シフトレバー52が「M」ポジションに操作されることにより、変速レンジが設定されるものであったが、ギヤ段が設定されることすなわち各変速レンジの最高速ギヤ段がギヤ段として設定されても良い。この場合、自動変速部20ではギヤ段が切り換えられて変速が実行される。例えば、シフトレバー52が「M」ポジションにおけるアップシフト位置「+」又はダウンシフト位置「−」へ手動操作されると、自動変速部20では第1速ギヤ段乃至第4速ギヤ段の何れかがシフトレバー52の操作に応じて設定される。
【0140】
また、前述した複数の実施例はそれぞれ、例えば優先順位を設けるなどして、相互に組み合わせて実施することができる。
【0141】
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【符号の説明】
【0142】
10:車両用動力伝達装置
11:差動部
16:動力分配機構(差動機構)
18:伝達部材(変速部の入力軸)
20:自動変速部(変速部)
36:エンジン
38,102,112:動力源部
80:電子制御装置(制御装置)
104,114:入力軸(変速部の入力軸)
B:ブレーキ(油圧式摩擦係合装置、油圧制御部品)
C:クラッチ(油圧式摩擦係合装置、油圧制御部品)
M:電動機
M1:第1電動機(差動用電動機)
M2:第2電動機(電動機)

【特許請求の範囲】
【請求項1】
油圧式摩擦係合装置の係合と解放とにより変速が実行されて複数の変速比が段階的に成立させられる変速部と、該変速部の入力軸に動力伝達可能に連結された動力源部とを備え、コーストダウンシフトに際して該動力源部から付与される該変速部の入力軸トルクにより該変速部の入力軸回転速度を変速前の同期回転速度から変速後の同期回転速度に向かって変化させる回転同期制御を実行する車両用動力伝達装置の制御装置であって、
前記コーストダウンシフトに際して、前記回転同期制御を実行するときの前記入力軸トルクの変化率を、前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の差回転速度が比較的小さな領域では大きな領域と比較して、相対的に抑制することを特徴とする車両用動力伝達装置の制御装置。
【請求項2】
前記コーストダウンシフトに関与する解放側油圧式摩擦係合装置の差回転速度が所定値未満の場合は、前記入力軸トルクの変化率を相対的に抑制する一方で、該解放側油圧式摩擦係合装置の差回転速度が所定値以上となったら、前記入力軸トルクの変化率を相対的に増大することを特徴とする請求項1に記載の車両用動力伝達装置の制御装置。
【請求項3】
前記油圧式摩擦係合装置を作動させる為の作動油の温度、車両減速度、及び前記変速部の油圧制御部品や該作動油の経時変化の内の少なくとも1つに応じて、前記入力軸トルクの変化率を変更することを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。
【請求項4】
前記作動油の温度が低い程、車両減速度が大きい程、或いは前記変速部の油圧制御部品や該作動油の経時変化に応じて、前記入力軸トルクの上昇率を小さくすることを特徴とする請求項3に記載の車両用動力伝達装置の制御装置。
【請求項5】
油圧式摩擦係合装置の係合と解放とにより変速が実行されて複数の変速比が段階的に成立させられる変速部と、該変速部の入力軸に動力伝達可能に連結された動力源部とを備え、コーストダウンシフトに際して該動力源部から付与される該変速部の入力軸トルクにより該変速部の入力軸回転速度を変速前の同期回転速度から変速後の同期回転速度に向かって変化させる回転同期制御を実行する車両用動力伝達装置の制御装置であって、
前記コーストダウンシフトに際して、前記油圧式摩擦係合装置を作動させる為の作動油の温度、車両減速度、及び前記変速部の油圧制御部品や該作動油の経時変化の内の少なくとも1つに応じて、前記回転同期制御を実行するときの前記入力軸トルクの変化開始時期を変更することを特徴とする車両用動力伝達装置の制御装置。
【請求項6】
前記作動油の温度が低い程、車両減速度が大きい程、或いは前記変速部の油圧制御部品や該作動油の経時変化に応じて、前記入力軸トルクの変化開始時期を遅延させることを特徴とする請求項5に記載の車両用動力伝達装置の制御装置。
【請求項7】
前記回転同期制御中は、前記変速部内の動力伝達経路を解放状態として該変速部が動力伝達遮断状態とされることを特徴とする請求項1乃至6の何れか1項に記載の車両用動力伝達装置の制御装置。
【請求項8】
前記動力源部は、駆動力源として、電動機を備えるか、或いは電動機とエンジンとを備え、
前記回転同期制御は、前記電動機の出力トルクを、或いは前記電動機の出力トルクと前記エンジンの出力トルクとの合計トルクを、前記入力軸トルクとして制御することにより実施されることを特徴とする請求項1乃至7の何れか1項に記載の車両用動力伝達装置の制御装置。
【請求項9】
前記動力源部は、前記変速部の入力軸に動力伝達可能に連結された電動機を有する差動部と、該差動部に動力伝達可能に連結されたエンジンとを備えていることを特徴とする請求項1乃至8の何れか1項に記載の車両用動力伝達装置の制御装置。
【請求項10】
前記差動部は、前記エンジンに動力伝達可能に連結された差動機構と該差動機構に動力伝達可能に連結された差動用電動機とを有し、該差動用電動機の運転状態が制御されて該差動機構の差動状態が制御されることにより電気的な無段変速機として作動することを特徴とする請求項9に記載の車両用動力伝達装置の制御装置。
【請求項11】
前記動力源部は、前記変速部の入力軸に動力伝達可能に連結された、エンジンと電動機とを備えていることを特徴とする請求項1乃至8の何れか1項に記載の車両用動力伝達装置の制御装置。
【請求項12】
前記動力源部は、前記変速部の入力軸に動力伝達可能に連結された電動機を備えていることを特徴とする請求項1乃至8の何れか1項に記載の車両用動力伝達装置の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2012−46003(P2012−46003A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−188345(P2010−188345)
【出願日】平成22年8月25日(2010.8.25)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】