説明

Fターム[5H115TO12]の内容

車両の電気的な推進・制動 (204,712) | その他の検出 (15,876) | 電気的変量検出 (4,425) | 電流 (1,610)

Fターム[5H115TO12]に分類される特許

101 - 120 / 1,610


【課題】昇圧コンバータにおける共振の発生を確実に回避可能な電動車両およびその制御方法を提供する。
【解決手段】制御装置40は、電圧センサ52の異常時や所定の省燃費走行条件の成立時等に、昇圧コンバータ10のスイッチング素子Q1を常時オン状態とする上アームオン走行を実行する。上アームオン走行時は、平滑コンデンサCおよび昇圧コンバータ10のリアクトルLによりLC回路が形成される。制御装置40は、上アームオン走行の実行条件成立時にモータジェネレータM1の回転数が予め定められた範囲(LC回路の共振発生領域)にあるとき、昇圧コンバータ10のゲート遮断を実行し、走行モードをモータドライブ走行モードとする。 (もっと読む)


【課題】使用バッテリが変更となった場合でも、負荷や補機類の流用を可能として、開発コストの削減や開発リードタイムの短縮を可能にした車両用電源装置を得る。
【解決手段】モータ1との間でインバータ2を介して電力授受を行い、且つ負荷としての空調制御装置5および補機用電力変換装置6に電力供給するために電力を蓄える電源装置3と、電源装置3から空調制御装置5および補機用電力変換装置6に電力供給するために、通流率制御により昇圧比を設定する電力変換装置4とを備える。補機用電力変換装置6は、補機類に電力供給する補機用電源装置7に電力供給するために、通流率制御により昇圧比を設定して電源装置の電力を変換する。空調制御装置5と補機用電力変換装置6との入力電圧仕様を同一として、電力変換装置4は、各入力電圧仕様に応じた電圧を出力するように電圧制御する。 (もっと読む)


【課題】車両内の電池からの電力供給が絶たれた場合にも、外部電源からの制御部への電力供給により、駆動用電池8を充電可能とする。
【解決手段】車両充電システム1は、商用電源等の外部電源12から電力を供給する接続ケーブル2と、駆動用電池8と、補機電池9と、駆動電池充電装置3とを有している。駆動電池充電装置3において、電源回路7は、外部電源12と、駆動用電池8と、補機電池9とに接続されており、それらの中の少なくとも1つから制御部4に電力を供給する。電力が供給された制御部4は、動作可能となる。これにより、制御部4の制御下で、充電部10が、駆動用電池8および補機電池9を外部電源12から充電する。 (もっと読む)


【課題】電流がゼロとなる状態を実現する可能性を高めて電流センサの補正を行なうことができる車両の電源装置を提供する。
【解決手段】車両の電源装置は、充電器42と、DC−DCコンバータ6と、電流センサ11の出力に基づいて、メインバッテリMBの充電状態を監視する制御装置30とを備える。制御装置30は、リレーSMRBが接続状態であるプラグイン充電中において、充電電流IBがゼロとなるように充電器42を制御し、かつDC−DCコンバータ6に対して出力遮断信号を与えるとともに補機バッテリSBの電圧以下の値を出力指令値として設定した状態で、電流センサ11の出力値の補正を行なう。 (もっと読む)


【課題】キャリア周波数拡散制御によるモータ騒音の低減と、インバータ冷却器の冷却水温度の良好な推定精度とを両立させることが可能な回転電機制御システムを提供することである。
【解決手段】制御システム10は、第1モータジェネレータ11および第2モータジェネレータ12と、第1インバータ13および第2インバータ14と、インバータ冷却器15と、PWM制御モードでキャリア周波数拡散制御を実行するモータジェネレータ駆動制御装置20と、冷却水温度推定装置30と、を備え、冷却水温度推定装置30は、キャリア周波数に基づいて冷却水温度を推定する温度上昇推定部31および冷却水温度推定部32と、冷却水温度の推定更新周期をキャリア周波数拡散制御の拡散周期の整数倍に設定する推定更新周期設定部33と、を有する。 (もっと読む)


【課題】 制動時における回生電力の回収効率の向上と車輪のロック状態の早期の回復とを両立させる車両の制動力制御装置を提供すること。
【解決手段】 電子制御ユニット26は、各輪11〜14がロックする傾向を有するとき、蓄電装置20を構成するバッテリのバッテリ容量Yが小さければ左右前輪11,12に設けられたインホイールモータ15,16を回生状態により作動させてモータ制動トルクを発生させるとともに左右後輪13,14に設けられたインホイールモータ17,18を力行状態により作動させてモータ駆動トルクを発生させる。一方、ユニット26は、容量Yが大きければ前輪11,12に設けられたモータ15,16を力行状態により作動させてモータ駆動トルクを発生させるとともに後輪13,14に設けられたモータ17,18を回生状態により作動させてモータ制動トルクを発生させる。 (もっと読む)


【課題】出力効率を高め、かつ給電停止直後の回生制動を、給電操作手段の操作で簡易に行うことや、回生制動で得られた電力を、蓄電器や二次電池に効率的に蓄電してエネルギー効率を高めることが可能な直流回生電動機を提供する。
【解決手段】回転子と、固定子と、指令信号を出力する指令信号生成手段と、給電信号を出力する給電信号生成手段と、回転子の磁極を検出する検出手段と、界磁巻線対それぞれに供給される負荷電流の方向を切換える切換手段と、回生信号を出力する回生信号生成手段と、界磁巻線対に誘起される交流電力を蓄電する回生電力制御手段とを備え、指令信号生成手段は、受けた力の大きさが所定の閾値を越えた場合は、該閾値を越える力の大きさに比例してデューティ比が変化する第一指令信号を生成し、受けた力の大きさが該閾値以下の場合は、該閾値を下回る力の大きさに反比例してデューティ比が変化する第二指令信号を生成する。 (もっと読む)


【課題】車両のバッテリーから外部へ直流電力を出力する放電システムにおいて、バッテリーの放電時の安全性の向上を図る。
【解決手段】放電システムは、バッテリーユニット101を搭載した電気自動車100と、バッテリーユニット101を放電させる放電装置200とを備える。電気自動車100は、放電装置200が接続されるコネクタ104とバッテリーユニット101との間を接続する電力線110には、開閉器SW1,SW2とスイッチング素子Q1,Q2とが挿入されている。開閉器SW1,SW2は、放電装置200とバッテリーマネジメントユニット102の許可により電力線110を導通させる。スイッチング素子Q1,Q2は、バッテリーユニット101の放電を行う際に、電力線110を流れる電流を調整する。 (もっと読む)


【課題】充電ステーションにおける充電設備に直接は隣接しない電気自動車に非接触で電力を供給することができる電気自動車を提供する。
【解決手段】電気自動車10は、非接触で電力を受電する車載受電部11と、非接触で電力を給電する車載給電部12と、車載受電部11で受電した電力により充電されるバッテリ15と、車載受電部11で受電した電力をバッテリ15に充電するか又は車載給電部12から給電する車載充電制御部とを含む。 (もっと読む)


【課題】地絡誤検知を検出することができる車両用制御装置を提供する。
【解決手段】パンタグラフ100を介して供給される電力を車両が走行するための駆動電力に変換する電力変換器105と、電力変換器105とパンタグラフ100の間に接続されパンタグラフ100から供給される電力の遮断を可能とする接触器104と、電力変換器105の筐体と前記筐体に取り付けられた接地点108との間に接続され電流を検出する電流検出器107と、電流検出器107に接続される電流検出器動作確認回路109に模擬電流を流す電流検出器異常検出手段1000と、を備え、電流検出器異常検出手段は、電流検出器異常検出手段の結果に基づき、接触器104を開放または投入させる。 (もっと読む)


【課題】内燃機関の始動時において補機の特性変化を適切に抑制することが可能な車両の電源制御装置を提供する。
【解決手段】車両の電源制御装置は、内燃機関と、バッテリの電力を用いて内燃機関を始動させるモータと、電圧によって作動状態が変化する特性を有する補機と、を有する車両に適用され、バッテリよりも低い電源電圧を出力し、補機を駆動する補機バッテリと、バッテリと補機バッテリとに接続され、電圧変換を行う電圧変換器と、内燃機関の始動時において、補機が作動しているか否かに応じて、電圧変換器の電圧目標値に対して設定する下限値を変化させる電圧目標下限値設定手段と、を備える。これにより、内燃機関の始動時における補機の特性変化を適切に抑制することができる。 (もっと読む)


【課題】新規の追加電源を設けることなく、新たな負荷へ電源供給可能な車両用電源装置を提供することを目的とする。
【解決手段】HVバッテリ12のプラス端子をエアコンモータ18の中性点に接続すると共に、エアコンインバータ24に蓄電手段30及び新負荷28を接続し、電流センサ34を設ける。そして、制御装置36が、電流センサ34の検出結果、及び新負荷28の抵抗に基づいて、エアコンインバータ24の中性点を流れる電流をオフセットするように、エアコンインバータ24の各スイッチング素子のオンオフデューティを制御する。 (もっと読む)


【課題】複数の電力変換装置を含むモータ駆動装置において、複雑な制御ロジックを用いることなく損失を低減する。
【解決手段】モータ駆動装置20は、電力変換装置であるコンバータ12およびインバータ14,22と、ECU30とを備え、蓄電装置28からの電力を用いてモータジェネレータMG1,MG2を駆動する。ECU30は、インバータ14,22に供給されるシステム電圧VHにおける各電力変換装置の損失を演算するとともに、得られた損失が最大となる電力変換装置において生じる損失が、当該電力変換装置についての駆動指令値が達成可能な範囲で最小となるように、システム電圧VHの電圧指令値を設定する。 (もっと読む)


【課題】 不完全地絡の状態の地絡を検出することができる電気車制御装置を提供するこ
とである。
【解決手段】 実施形態の電気者制御装置は、車両が走行するための電力を供給する電力
変換器11を有している。また、電力変換器11と接続され、電力変換器11から電力が
供給されるモータ14と、電力変換器11とモータ14の間に接続され、3相の電流値を
検出する電流センサ12および接触器13を有している。電流センサ12と接触器13と
接続される制御部20は、電流センサ12が検出した値を演算し、その演算結果をもとに
モータの内部14で完全地絡または不完全地絡が発生しているかを判定する。完全地絡の
場合には、モータ14の停止後に接触器13を開放する。 (もっと読む)


【課題】移動体を介して運ばれた電力をマイクログリッド間で融通し合うことが可能な電力送給方法、電力送給システム、及び移動体を提供する。
【解決手段】大容量の太陽光発電装置4,4が発電した発電電力の一部又は全部を、第1蓄電装置1が有する第1蓄電池11に蓄電し、発電電力のうち第1蓄電池11への蓄電に使用されない電力、及び/又は第1蓄電池11に蓄電した電力によって、移動体3,・・3に搭載された第3蓄電池を充電する。負荷が存する地域に移動体3,・・3が移動した場合、第3蓄電池から放電された放電電力の一部又は全部を、前記地域内に配された第2蓄電装置が有する第2蓄電池に蓄電するようにしてあり、放電電力のうち、第2蓄電池への蓄電に使用されない電力、及び/又は第2蓄電池に蓄電した電力が、負荷にて消費すべき電力に振り向けられる。 (もっと読む)


【課題】駆動源が停止している停止期間にバッテリから放電される自己放電量を、現在の車両位置における停止期間の気温の予測値に基づいて算出し、算出した自己放電量および必要な出力電力に基づいて、電池の残存容量の使用範囲下限を算出し、この算出値に基づいてバッテリの残存容量を制御する技術において、気温を予測するための記憶容量を節約する。
【解決手段】車両に搭載された制御装置は、車両から離れた位置に設置されるセンタから、現時点における車両の位置を含む地域における気温の情報を有する気象情報マップを繰り返し受信し(ステップ210〜250)、最後に受信した気象情報マップに基づいて、車両の駆動源が停止している停止期間の気温を予測する。 (もっと読む)


【課題】電池容量を高精度に算出できる電池容量算出装置および電池容量算出方法を提供する。
【解決手段】センサ電流値の絶対値が閾値を超えてから閾値以下となるまでの期間を電流積算期間としてセンサ電流を積算し、電流積算充電率を算出する電流積算SOC算出部13と、電流積算期間における電流積算充電率変化量を算出するΔSOC-i算出部15と、電流積算期間の開始時および終了時の開放電圧を推定する開放電圧推定部11と、電流積算期間の開始時および終了時の開放電圧充電率を算出するOCV-SOC変換部12と、電流積算期間の終了時の開放電圧充電率と電流積算期間の開始時の開放電圧充電率との差分である開放電圧充電率変化量を算出するΔSOC-v算出部14と、開放電圧充電率変化量に対する電流積算充電率変化量の比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ容量を算出する劣化推定部16とを備える。 (もっと読む)


【課題】並列接続された複数の蓄電装置を含む負荷駆動装置において、複数の蓄電装置の能力を十分に生かして動力性能を確保するとともに各部品を過電流から適切に保護する。
【解決手段】Wout算出部104は、各蓄電装置の制限値Wout1,Wout2を加算して蓄電部の出力電力制限値Woutを算出する。超過電流FB制御部108は、電流IB1,IB2,IBTの少なくとも1つが予め定められたしきい値を超過すると、超過電流FB制御を実行する。Woutf補正処理部112は、電流IB1,IB2,IBTの少なくとも1つがしきい値に達したタイミングで、モータパワー算出部110に与えられる出力電力制限値Woutをモータパワー指令値Pmに補正する。 (もっと読む)


【課題】充電開始時の急激な電流によるバッテリーや充電器の劣化を防ぐことができる充電制御方法およびその充電制御装置を提供する。
【解決手段】電動車に搭載されたバッテリーを充電する充電器の制御状態を、定電流制御、定電力制御、定電圧制御の順に切り替える充電制御方法であって、定電流制御時における充電器の出力電流値である目標値を設定するステップ(S4)と、充電開始時における出力電流値である初期値を目標値より低く設定するステップ(S4)と、初期値から目標値までの電流増加率を設定するステップ(S4)と、を実行してから、電流増加率に基づいて初期値から目標値に到るまで出力電流値を徐々に増加させる徐変電流制御による充電を行わせるステップ(S6)を実行し、その後、制御状態を定電流制御に切り替えるステップ(S10)を実行することを特徴とする。 (もっと読む)


【課題】モータ制御システムにおいて、矩形波制御方式からPWM制御方式への切替えを適時に行ってモータ過電流の発生を抑制する。
【解決手段】モータ制御システムは、交流モータ14の運転条件に応じてインバータ38の制御方式を矩形波制御、過変調PWM制御、正弦波PWM制御の間で選択的に設定する制御装置100を備える。制御装置100は、モータ電流の電流位相をdq平面上における閾値ラインと比較して矩形波制御方式からPWM制御方式への切り替えを行う制御方式切替部と、矩形波制御方式の実行中に、矩形波制御部におけるトルク偏差ΔTrの比例積分制御で用いられる積分項GiΔTrの値が所定値ΔTr_thrを超えたときにdq平面上における閾値ラインを進角側または低q軸電流側に変更する閾値変更部S24とを含む。 (もっと読む)


101 - 120 / 1,610