説明

Fターム[5H501LL01]の内容

電動機の制御一般 (20,975) | 検出変量、検出手段 (3,871) | 速度検出 (959)

Fターム[5H501LL01]の下位に属するFターム

Fターム[5H501LL01]に分類される特許

41 - 60 / 402


【課題】操舵トルクに対して電流指令値が零に設定される不感帯が適正に設定できない場合でも、モータ電流零の状態を検出してモータ電流検出値のオフセット誤差を補正する電動パワーステアリング装置の制御装置を提供する。
【解決手段】電流指令値I、操舵トルクT、及び操舵速度Vを読み込み、操舵トルクTと電流指令値のコラム軸換算トルクTec(Tec=I×Kt ×G)との和P(P=T+Tec)を演算(P11、12)、値Pがコラム軸換算摩擦トルクTfc未満(P<Tfc)か否かを判定し、(P<Tfc)の場合はモータ電流零と見なせる状態が検出されたものと判定、その時点で検出されたモータ電流検出値iをオフセット補正値としてオフセット誤差の補正演算を行う(P13、15)。値Pがコラム軸換算摩擦トルクTfc未満(P<Tfc)でない場合はオフセット誤差の補正演算を中止する(P16)。 (もっと読む)


【課題】システム同定モデル誤差を推定することができる電動機の脈動抑制装置を提供する。
【解決手段】インバータのベクトル制御により駆動される電動機(実プラントPn)の軸トルクTnに、トルクリプル補償電流指令値から軸トルク検出値までの周波数伝達関数の逆関数を乗算して外乱トルクを推定する周期外乱オブザーバPDOと、トルクリプル抑制制御開始直前の初期状態時の軸トルクTnとトルクリプル抑制制御開始後に十分トルクリプルが打ち消された最終状態時に、前記PDOにより推定された外乱推定値dI^nを外乱とみなしシステム同定モデルP^nから推定した軸トルク推定値T^nとを比較してシステム同定モデル誤差ΔPnを求める誤差推定器100と、前記誤差ΔPnを格納するメモリー110とを備え、メモリー110内の誤差ΔPnによってPDOのシステム同定モデルP^nを補正する。 (もっと読む)


【課題】回転電機の応答遅れが伝達トルク振動の周波数に対して無視できない領域においても、十分な制振効果が得られる制御装置が求められる。
【解決手段】伝達トルク振動を打ち消すトルクを回転電機に出力させる制御装置であって、回転速度振動を抽出する回転振動抽出部と、トルク振動周波数を算出する振動周波数算出部と、位相遅れ回転速度振動を算出する位相遅れ回転振動算出部と、回転速度振動及び位相遅れ回転速度振動を固定座標系で表す固定座標系設定部と、回転速度振動及び位相遅れ回転速度振動を回転座標変換する回転座標変換部と、フィードバック値を算出する回転座標系フィードバック制御部と、フィードバック値を固定座標変換する固定座標変換部と、打消トルク振動の指令値を生成する打消トルク制御部と、を備える。 (もっと読む)


【課題】 車両の走行時と、車両の非走行時のいずれの場合でも、モータコイルの異常を検出することができ、モータ異常への対処を早期に図ることができるモータの診断装置および診断方法を提供する。
【解決手段】 車両の電源が投入されている非走行時に、モータコイルのコイル温度とモータコイルのコイル抵抗または絶縁抵抗とを検出し、コイル温度が閾値を超えるか、または、コイル抵抗もしくは絶縁抵抗が閾値を超えたときモータコイルの異常と検出する始動時異常検出手段98を設けた。さらに車両の走行時に、コイル温度とモータ回転数とモータ印加電圧とモータ電流とを検出し、コイル温度が閾値を超えるか、または、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるときモータコイルの異常と検出する走行時異常検出手段99を設けた。 (もっと読む)


【課題】動作中に振動特性が変化する制御対象に対する振動抑制制御の精度を向上できるモータ制御装置を得ること。
【解決手段】モータ1a及び振動可能要素1bを有する制御対象1の動作を制御して、制御対象の動作を動作目標値に追従するようにモデルトルクτaを生成するフィードフォワード制御部111と、モデルトルクに応じてトルク指令τMを発生させる発生部とを備え、フィードフォワード制御部は、制御対象の振動関連情報に応じて、振動特性を表す振動パラメータθを生成する生成部と、振動パラメータに応じて、動特性を模擬した数式モデル121を変更し、モデルトルクから変更された数式モデルにより、制御対象の動作状態を含むモデル変数を演算する第1の演算部と、モデル変数が一定の追従特性で動作目標値に追従するように、振動パラメータに応じて特性を変化させた演算によりモデルトルクを演算する第2の演算部とを有する。 (もっと読む)


【課題】モータの駆動回路において、消費電力を少なくすることのできるモータ駆動回路を提供する。
【解決手段】このモータ駆動回路は、外部から入力される回転速度信号VSPに基づいてモータの回転速度を制御するモータドライバを備えたモータに適用される。そして、モータを駆動するとき、第1パルス信号P1と第2パルス信号P2とを形成し、第1パルス信号P1および第2パルス信号P2に基づいて電源動作信号SAを形成するとともに、この電源動作信号SAにより電源回路を動作させて、モータドライバに電力を供給する。さらに、第2パルス信号P2に基づいて回転速度信号VSPを形成し、この回転速度信号VSPをモータドライバへ出力する。 (もっと読む)


【課題】ピンチロールの速度制御において、操業中にピンチロールモータの速度制御系の不安定化によるハンチングを抑制することを目的とする。
【解決手段】ピンチロールの速度目標値と張力バランス目標値とを入力信号とし、第1のPI制御器を用いてピンチロールの補正速度目標値を出力する主幹制御部と、該補正速度目標値とピンチロールの速度実績値との第1の差分値を求め、該差分値を入力として第2のPI制御器によりピンチロールモータを駆動する電流指令値を求めるドライブ部とを具備し、主幹制御部は、張力バランス目標値と電流指令値との第2の差分値を求め、該第2の差分値を第1のPI制御器に入力し、その出力をローパスフィルタに入力し、該ローパスフィルタの出力と速度目標値とから補正速度目標値を出力する。 (もっと読む)


【課題】ラジアルギャップ型の電気機械装置を効率よく駆動する。
【解決手段】回転軸230を中心として回転するラジアルギャップ型の電気機械装置10であって、個々の永久磁石200の磁化の方向が回転軸230を中心とする放射または中心方向であり、回転軸230を中心とする円周に沿って並べられた複数の永久磁石200と、複数の永久磁石200と対向すると共に、永久磁石200の外側の第1の円筒面に沿って並べられた第1相用(A相)の複数の第1の電磁コイル100Aと、複数の永久磁石200と対向すると共に、第1の電磁コイル100Aの第1の円筒面よりも外側の第2の円筒面に沿って並べられた第2相用(B相)の複数の第2の電磁コイル100Bと、を備え、第1と第2の電磁コイルは、それぞれの誘起電圧が同じ値になり、かつ、それぞれの巻線抵抗が同じ値となるように構成されていることを特徴とする電気機械装置。 (もっと読む)


【課題】短期間でモータの慣らし運転を終了できるモータの慣らし方法及びモータ駆動装置を提供することを課題とする。
【解決手段】本実施例でのモータの慣らし方法は、モータにより駆動される駆動対象物を駆動するために予め設定された回転速度よりも高速で前記モータを慣らし運転させる。また、前記慣らし運転中での前記モータへの印加電流の値の変化又は前記モータの回転速度の変化に基づいて前記慣らし運転を終了すべき時期を判断する。前記慣らし運転時の回転速度は、前記モータの定格回転速度よりも速い。 (もっと読む)


【課題】位置比例積分制御系は、位置偏差の定常偏差を0にする利点があるが、モータ位置が指令位置を追い越すオーバーシュートがおきやすい欠点がある。
【解決手段】位置指令1とモータ位置2の差から位置偏差3を算出し、これに位置比例ゲイン4を乗じた位置比例出力5を計算する位置比例制御系に、速度制御指令8を速度制御モデル15に通したモデル出力16と、モータ位置2を速度検出器13で微分したモータ速度14の差をとり、一次遅れフィルタ17を通した出力を、再び速度制御指令8に加算する速度誤差補正機能を備える。 (もっと読む)


【課題】電流センサに誤差がある場合、電流センサによる検出値を電流の初期値として用いることでモデル予測制御の制御性が低下すること。
【解決手段】指令電流idr,iqrおよび電気角θは、モデル予測制御部30の入力となる。モデル予測制御部30では、これら入力パラメータに基づき、インバータIVの操作状態を規定する電圧ベクトルViを決定し、操作部26に入力する。操作部26では、入力された電圧ベクトルViに基づき、上記操作信号を生成してインバータIVに出力する。モデル予測制御部30では、操作状態決定部34において、指令電流idr,iqrと予測電流ide,iqeとの乖離が小さいものに対応する電圧ベクトルViを選択する。ここで、予測電流ide,iqeの算出に際して用いる電流の初期値を、前回の予測電流ide,iqeとする。 (もっと読む)


【課題】モータ駆動式の可変バルブタイミング制御システムにおいて、モータ回転状態検出系の異常診断の誤判定を未然に防止する。
【解決手段】エンジンのクランク軸10の回転速度の1/2の回転速度に対してモータ18の回転速度を調整することでクランク軸10に対するカム軸13の回転位相(カム軸位相)を変化させてバルブタイミングを変化させる。モータ18を駆動するEDU23は、モータ回転位置に応じた位置信号とモータ回転方向に応じた方向信号をECU22に出力する。モータ回転速度が小さくなると、位置信号や方向信号のエッジを検出できないためにモータ回転状態検出系の異常診断を誤判定する可能性がある。この対策として、ECU22は、カム軸位相変化速度とエンジン回転速度に基づいてモータ回転速度を推定し、モータ回転速度が0付近の所定範囲内にあるときに異常診断を禁止する。 (もっと読む)


【課題】位置制御ゲインを切り替える際の位置偏差を低減させ、整定時間を短縮する。
【解決手段】モータ制御装置は、モータを用いて対象物を目標位置に移動させる際に用いる加速度指令値を時系列に示す加速度パターンを生成し、生成した加速度パターンに対して、モータの応答特性に応じてモータの駆動速度を減速する期間を延ばす変更をし、変更した加速度パターンから位置指令値を出力する指令生成部と、指令生成部が出力する位置指令値と、対象物の目標位置との位置偏差に対する比例制御を用いてモータを駆動するとともに、対象物が目標位置の近傍に達したときに比例制御における比例制御ゲインを現在値より大きい値に変更する制御部とを具備する。 (もっと読む)


【課題】簡単な構成で、電源リレーに生じた故障を迅速かつ確実に検出可能なモータ制御装置および電動パワーステアリング装置を提供する。
【解決手段】電源リレー30は、バッテリ80とインバータ部20とを接続する電源線3に設けられ、第1FET31および第2FET32からなる。第1FET31と第2FET32とは、互いの寄生ダイオードの極性が逆向きとなるよう直列に接続されている。電源線3のうち第2FET32とインバータ部20との間にコンデンサ40が接続され、第1FET31と第2FET32との間に電圧センサ50が設けられている。マイコン70は、チャージ回路60によりコンデンサ40に電荷をチャージした後、第1FET31および第2FET32をオンまたはオフに制御しつつ電圧センサ50により検出した電圧に基づき電源リレー30の短絡故障または断線故障を検出する。 (もっと読む)


【課題】逆転暴走状態を誤認することなく正確に検出可能なドア駆動制御装置、及び、従来よりも安全性を向上させたドア駆動制御方法を提供する。
【解決手段】ドア1の駆動用のモータ2に電力を供給する電力変換器14を備え、ドア1の速度検出値と速度指令値とを用いたフィードバック制御により電力変換器14を運転し、ドア1の速度を制御するドア駆動制御装置に関する。速度検出値を用いてドアの加速度を演算する加速度演算手段と、この加速度演算手段から出力された加速度検出値と前記速度検出値とから所定時間後のドアの速度を予測し、その予測速度が正または負の第3の設定速度を超えた場合に、予測速度異常信号を出力する異常判定手段と、を備える。 (もっと読む)


【課題】外乱負荷トルクによる速度変動を抑制して安定な運転を実現することのできる交流電動機の速度制御技術を提供する。
【解決手段】速度調整器101と、トルク電流調整器102と、前記トルク電流指令をもとに推定トルク電流を演算するトルク電流換算ゲイン部201と、前記交流電動機の回転速度検出信号をもと推定加速/減速トルク電流を演算する加速/減速電流換算ゲイン部202と、前記推定トルク電流から前記推定加速/減速トルク電流を減算して得られる推定外乱負荷トルク電流にフィルタ処理と外乱負荷トルク電流指令換算ゲインを乗算し推定外乱負荷トルク電流指令を生成する外乱負荷トルクオブザーバゲイン部203と、前記外乱負荷トルクオブザーバゲイン部の出力の変化割合を制限するリミッタ205を備え、前記リミッタにより制限された前記外乱負荷トルクオブザーバゲイン部出力を前記トルク指令に加算する (もっと読む)


【課題】 本発明は、例えばモータに自動車のエンジンの動作を模擬させたシステムにおけるモータの制御等、制御対象物の制御を行なう制御装置に関し、制御系の遅れ時間を高精度に補償した制御を行なう。
【解決手段】 制御対象物の動作速度を第1の角度に変換し、制御系の遅れ時間に相当する時間をその動作速度に応じた第2の角度に変換し、第1の角度と第2の角度とを加算して第3の角度を生成し、その第3の角度を、その制御対象物の制御対象要素を指令値通りに制御するための指令値に変換して、その指令値に基づいて制御対象物を制御する。 (もっと読む)


【課題】 電動機のフィードバック制御部での制御パラメータの自動調整機能を有した好適な電動機制御装置を提供する。
【解決手段】 位置制御部11と速度制御部21とノッチフィルタ部32と電流制御部41とからなる電動機制御装置3において、応答状態測定部71では制御パラメータ調整部72での位置制御部11および速度制御部21の制御パラメータの変更に伴って、電動機6の回転速度などの発振状態を監視し、また、制御パラメータ調整部72では前記制御パラメータを再設定して電動機6を駆動するという作業を前記発振状態が無くなるまで行った後は、このときの前記制御パラメータを保持させる動作を行っている。また、機械振動検知部73は上述の設定動作のたびに電動機6の回転速度などの振動状態を監視し、振動状態を検知した場合には、ノッチフィルタ調整部74において、その振動周波数を検知し、検知した振動成分を減衰させるようにノッチフィルタ部72のノッチ周波数を設定する動作を行うようにしている。 (もっと読む)


【課題】十分な位相余裕が確保されるようにノッチフィルタのノッチ幅を調整する。
【解決手段】適応ノッチフィルタは、ノッチフィルタと、該ノッチフィルタの幅を表すパラメタを調整するパラメタ調整部と、を備える。パラメタ調整部は、パラメタの候補値よりも広い幅を表す値を試行し、検出された振動が試行期間の完了まで基準内に収まっている場合にパラメタを候補値に設定する。検出された振動が基準を超えた場合に試行を中断して前記パラメタを試行前の値に戻してもよい。 (もっと読む)


【課題】モータを低速で起動可能としつつもソフトスタート機能を担保する。
【解決手段】
一方の論理レベルのデューティー比が第1デューティー比の第1パルス信号を生成するパルス生成回路と、モータの回転に応じた回転信号に基づいて、モータが停止している状態から回転を開始する際は第1デューティー比で駆動電流をモータコイルに供給し、モータが回転を開始した後は、モータの目標回転速度に応じて一方の論理レベルの第2デューティー比が高くなる第2パルス信号の第2デューティー比で駆動電流をモータコイルに供給する駆動制御回路と、を備え、パルス生成回路は、第2デューティー比と異なる第1デューティー比の第1パルス信号を生成すること、を特徴とする。 (もっと読む)


41 - 60 / 402