説明

Fターム[5J055GX05]の内容

電子的スイッチ (55,123) | 回路の表現形式 (6,945) | アナログ波形図 (525)

Fターム[5J055GX05]に分類される特許

201 - 220 / 525


【課題】入力電源が複数ある場合において、複数の入力電源に対応した初期化信号出力回路において、回路規模の増大や消費電力の増大等を抑えること。
【解決手段】VDDAとVDDDとを含む複数の入力電源に基づいて、PORを出力するパワーオンリセット回路1であって、VDDAに基づいてPORの出力判断の基準となるCPinmを出力する基準電圧発生回路101と、VDDDの供給に応じてVDDAの電圧に応じたCPinpを出力する比較用電圧発生回路103と、CPinm及びCPinpの供給状態に応じてPORを生成する電圧比較器102と、VDDA及びVDDDの供給状態に応じてPORの出力を制御するパワーオンリセット制御回路104とを有することを特徴とする。 (もっと読む)


【課題】磁気結合手段を備えた直列接続用ゲート駆動回路で、磁気結合手段の磁気リセットを行う回路は、従来制御回路が必要で複雑であった。
【解決手段】IGBTのゲート端子とゲート駆動用順バイアス用電源の正極との間、及びゲート駆動用逆バイアス用電源の負極との間にダイオードを接続する。 (もっと読む)


【課題】負荷電流が大なる場合でも損失電力を小とし、システム全体を小型化し、その上電力効率も上げ得る負荷駆動回路を提供する。
【解決手段】信号源(4)と、信号源(4)よりの入力信号と負荷電流検出部(R3)よりの検出信号とを受けて差演算を行い、その出力をOPアンプ(1)の非反転入力端子に入力する演算回路(8)と、前記入力信号を受け、その極性に応じて、正又は負のコントロール信号を出力する可変/固定電圧選択回路(5)と、この可変/固定電圧選択回路からの正のコントロール信号を受けて所定の正電源電圧をNPN型トランジスタ(Q1)に供給する第1の電源供給部(6)と、可変/固定電圧選択回路からの負のコントロール信号を受けて所定の負電源電圧をPNP型トランジスタ(Q2)に供給する第2の電源供給部(7)と、を備える。 (もっと読む)


【課題】伝送路にノイズが入った場合でも正常に通信ができる通信装置を提供する。
【解決手段】帰還増幅回路(2)と、帰還増幅回路(2)から供給される内部信号に応答して出力ノード(N1)に外部出力信号を供給する出力回路(3)と、帰還増幅回路(2)に対する帰還信号の供給を禁止する帰還遮断回路(4)とを具備する出力バッファ回路(1)を構成する。ここで、帰還増幅回路(2)は、入力端(N2)に入力される送信信号(TXD)と外部出力信号を帰還した帰還信号とに基づいて、内部信号の波形を制御する。そして、帰還遮断回路(4)は、出力ノード(N1)のノイズに基づいて生成される帰還遮断命令に応答して、帰還増幅回路(2)への帰還信号の供給を禁止する。 (もっと読む)


【課題】電源電圧が変動したときに不完全な短いパルスのリセット信号が出力されることを防止するリセット信号生成回路を提供する。
【解決手段】ノードBはパワーオンリセット時にはハイレベル、動作時にはローレベルである。動作時に電源(Vcc)が変動してノードCが一瞬でもハイレベルになるとスイッチ素子MN50がオンし、ノードBをローレベルに引き下げ、安定したローレベルのリセット信号RST1を出力する。ノードBがローレベルになるとスイッチ素子MN51は遅延してオフになり、容量104と105は充電回路112により徐々に充電される。ノードBの電位がインバータ回路106のスレッシュホールドレベルを超えるとリセット信号RST1はハイレベルに戻りリセットが解除され、スイッチ素子MN50はオフ、スイッチ素子MN51はオン状態に戻る。 (もっと読む)


【課題】使い勝手の良い単一チャネル型のバッファ回路を提案する。
【解決手段】単一チャネルの薄膜トランジスタで形成されるバッファ回路を、(a)第1及び第2の薄膜トランジスタの直列接続で構成される第1の出力段と、(b)一方の主電極が第1の薄膜トランジスタの制御配線(第1の制御配線)に接続され、他方の主電極が第2の薄膜トランジスタの電源に接続され、制御電極が第2の制御配線に接続される第7の薄膜トランジスタと、(c)一方の主電極が第2の薄膜トランジスタの制御配線(第2の制御配線)に接続され、他方の主電極が第2の薄膜トランジスタの電源に接続され、制御電極が第1の制御配線に接続される第8の薄膜トランジスタと、(d)第1の出力段と並列に接続される第2の出力段の出力端が制御電極に接続され、一方の主電極が第1の制御配線に接続される第11の薄膜トランジスタで構成される。 (もっと読む)


【課題】 電力変換装置の各アームを構成する半導体素子に対して設けられるフリーホイーリングダイオードのサージ電圧を抑制し、半導体素子のターンオン損失を低減する。
【解決手段】従来のゲート駆動装置に対し、抵抗R,コンデンサCからなる遅延回路、抵抗Rg(on)1およびトランジスタTR10を接続することにより、フリーホイーリングダイオード逆回復時の低電流域では、半導体素子IGBTを抵抗Rg(on)により、また高電流域では抵抗Rg(on)と抵抗Rg(on)1との並列抵抗により、それぞれターンオンさせることで掲記課題の解決を図る。 (もっと読む)


【課題】ESD保護回路を共通化してチップ面積を低減し且つESD保護回路が故障しても保護される複数の被保護回路が同時に動作不能となることを回避する。
【解決手段】点火回路4とダイアグ回路5の各ノードを同一極性のダイオード10〜12を通して共通ノード31に接続し、共通ノード31とESD保護回路6との間に切り離し回路23を備える。ESD保護回路6が短絡故障していないときには、ダイオード41は非導通、分圧電圧Vb>基準電圧Vrとなり、FET35がオフ、FET34がオン可能となる。ESD保護回路6が短絡故障すると、ダイオード41は導通、分圧電圧Vb<基準電圧Vrとなり、FET35がオン、FET34がオフとなり、共通ノード31とESD保護回路6とを電気的に切り離す。 (もっと読む)


【課題】接地電圧と電源電圧の電位差を規定値に保ち、誤動作を防止することができるバッファ回路及びその制御方法を提供する。
【解決手段】出力制御信号に応じて入力信号に対応する信号を出力する場合、第1スイッチング素子により出力スイッチング素子を導通状態に駆動し、第2および第3スイッチング素子により出力スイッチング素子を非導通状態に駆動する。一方、出力制御信号に応じてハイインピーダンス状態を出力する場合、第3スイッチング素子は非導通に制御されるので、出力スイッチング素子は、第2スイッチング素子のみにより非導通状態に駆動される。 (もっと読む)


【課題】周波数出力端子の保護と、信号波形の帯域を十分に確保することができる周波数出力装置を提供する。
【解決手段】周波数信号を出力する周波数出力装置2の出力端子にバリスタ素子Zs1を設ける。これにより、例えばバリスタ電圧を超える電圧が出力端子に印加された場合に、そのバリスタ電圧を超える電圧分を接地側に流して、周波数出力装置2に高電圧のサージ電圧が入力されるのを防ぎ、周波数出力装置2を保護する。また、放電時における放電量を少なくして電圧の変化を滑らかにし、電圧の立ち下がり時におけるピーク電流を下げて、ラジオノイズ等の電磁誘導ノイズの影響を低減し、必要な周波数信号の帯域を確保する。 (もっと読む)


【課題】負荷短絡状態を検出することで、負荷短絡に起因する焼損を回避する。
【解決手段】半導体集積回路20は、負荷24に接続され、かつ負荷24を介して電源Vccを受ける端子T3と、電源Vssを受ける端子T4と、電源Vccを用いて、電源Vregを生成するレギュレータ30と、電源Vregが供給されるセンサ21からの検知信号に基づいて、電源Vccを降下電圧Vdes以下に設定するシャント回路32と、シャント回路32によるシャント動作時に、負荷24が短絡したか否かを判定し、かつ負荷24が短絡したと判定した場合に負荷24が短絡したことを示す出力信号STPを出力する保護回路33とを含む。 (もっと読む)


【課題】センサノードチップでの消費電力を効果的に削減して、センサチップノードの小型化を実現する。
【解決手段】外部振動に応じて容量値が互いに差動的に変化する2つの可変容量素子CP,CSからなるセンサ素子部11と、順方向で直列接続した3つ以上のダイオードD1〜D3とその後端部に接続した固定容量素子CSとからなるセンサ回路部12とを設け、センサ素子部11で得られた互いに差動的に変化する検知信号BP,BNで、各ダイオードD1〜D3を交互に導通制御して固定容量素子CSを徐々に充電することにより、外部振動に応じた電圧を示すセンサ出力信号SOを得る。 (もっと読む)


【課題】使い勝手の良い単一チャネル型のバッファ回路を提案する。
【解決手段】絶縁基板上に単一チャネルの薄膜トランジスタで形成されるバッファ回路を、(a)第1及び第2の薄膜トランジスタが直列に接続された回路構成を有し、第1及び第2の薄膜トランジスタの接続中点を出力端とする出力段と、(b)一方の主電極が第1の薄膜トランジスタの制御配線に接続され、他方の主電極が第2の薄膜トランジスタの電源に接続され、制御電極が第2の制御配線に接続される第7の薄膜トランジスタと、(c)一方の主電極が第2の薄膜トランジスタの制御配線に接続され、他方の主電極が第2の薄膜トランジスタの電源に接続され、制御電極が第1の制御配線に接続される第8の薄膜トランジスタとで構成される。 (もっと読む)


【解決手段】一つまたはそれ以上の分周器ユニットの位相を同期させる方法装置は、参照信号を供給するためにマスター分周器ユニットをパワーオンすることを備える。スレーブ分周器ユニットの位相は、スレーブ分周器ユニットにパワーオンパルスを供給することと、デジタル制御発振器を用いて、参照信号にスレーブ分周器ユニットの位相を同期させることと、及びパワーオンパルスの立ち上がりエッジの後の第1の所定の遅延期間の後、スレーブ分周器ユニットをパワーオンすることにより、マスター分周器ユニットからの参照信号に同期される。スレーブ分周器ユニットをマスター分周器ユニットからの参照信号に同期させることで、任意の数のスレーブ分周器ユニットがパワーオンされ、互いに同相とされ得る。 (もっと読む)


【課題】半導体スイッチング素子を過電圧から保護するため、電圧クランプ回路を用いるが、一定電圧にクランプする方式では、スイッチング損失が大きく、装置が大型で、高価になる課題がある。
【解決手段】IGBTのゲートとコレクタ間に、複数の定電圧ダイオードと逆素子ダイオードの直列回路を接続し、さらに何れかの定電圧ダイオードと並列にコンデンサを接続し、ターンオフ時のクランプ電圧を電流が大きい時には低く、電流が小さくなるにつれて徐々に高くし、最終的には素子耐圧の許容値以下に電圧クランプする。 (もっと読む)


【課題】遅延を有する論理回路から検出した信号を直接利用して、その論理回路の電源電圧の制御を行うような機構が求められている。
【解決手段】本発明は、本発明は、論理回路と、前記論理回路の遅延の変化に応じた周波数の検出信号を出力する遅延特性検出回路と、前記検出信号に応じて抵抗値が変化する抵抗素子と、前記抵抗素子の抵抗値の変化に応じて参照電圧を出力する参照電圧生成回路と、前記参照電圧を前記論理回路及び遅延特性検出回路に出力する電圧供給回路とを有する半導体集積回路装置である。 (もっと読む)


【課題】三角波状に変化する発振電圧の振幅に依存しない周波数でモータを間欠駆動する。
【解決手段】モータ駆動回路は、三角波状に変化する発振電圧の振幅を制御するための振幅制御電圧に応じた電流量の充放電電流でキャパシタを充放電し、キャパシタの充電電圧を発振電圧として出力する三角波生成回路と、モータの回転速度を制御するための速度制御電圧と、三角波生成回路から出力される発振電圧との比較結果に基づいて、速度制御電圧のレベルに応じたデューティー比のパルス信号を生成するパルス信号生成回路と、パルス信号に基づいてモータコイルを間欠駆動する駆動回路とを備える。 (もっと読む)


【課題】配線ショートの発生時とコネクタの接触不良とを区別して回路を保護することが可能な電力供給装置を提供する。
【解決手段】本発明の電力供給装置では、半導体素子T1のドレインの電圧V1が、コンパレータCMP1の同相入力最低電圧を下回る前に半導体素子T1を遮断するので、負荷回路を確実に保護することができる。また、第1判定電圧をL_V1とし、第2判定電圧をV3としたとき、電圧V1が「V1<L_V1」となった場合に、リトライ動作を実行し、「V1<L_V1」となる回数がN1回に達した場合、または、「L_V1<V1<V3」となる回数がN2回に達した場合に、半導体素子T1の遮断状態を保持して負荷回路を保護する。更に、コネクタ11の接触不良に起因して電圧V1が急激に低下した場合には、電圧V1の最低値が安定した値とならず、半導体素子T1の遮断状態は保持されない。 (もっと読む)


本発明は、複数のスイッチング素子(T1,T2,T3)の出力側が所定の少なくとも1つの共通の負荷(R_L)に割当てられ、前記各スイッチング素子の出力側(OUT1,OUT2,OUT3)から有効信号(I_L1,I_L2,I_L3)が切換位置に応じて得られるようにそれぞれ構成されている回路装置の作動方法及び装置に関している。この場合1つまたは複数の検出ステップにおいて少なくとも1つの共通の負荷の駆動制御のスイッチオンされるスイッチング素子の少なくとも1つの選択が、前記各スイッチング素子に割当てられる有効信号(I_L1,I_L2,I_L3)の典型的なセンサ信号が予め設定された値範囲(I_L_TH1,I_H_TH1)に存するように変更され、各センサ信号がその値範囲になるスイッチング素子の少なくとも1つの選択が求められて記憶される。
(もっと読む)


【課題】電源電圧の低電圧側の電圧と高電圧側の電圧との間の中間電圧での駆動を、トランジスタのゲート酸化膜に高耐圧素子構造を適用することなく実現できるようにする。
【解決手段】第1,第2出力バッファ回路20,30Aを用いた駆動回路10において、当該駆動回路10を構成するトランジスタのゲート酸化膜にその耐圧ΔVlimを超える電圧を印加することなく、第1出力バッファ回路20の作用によって耐圧ΔVlimを超えた電圧振幅VL−VHで駆動する。これに加えて、第2出力バッファ回路30Aにおいて、出力端子35側のトランジスタMp32,Mn32を、バイアス電圧の定常印加でなく、耐圧範囲内の電圧(VL〜VD,VS〜VH)で駆動するとともに、ノードN31,N32側のトランジスタMp31,Mn31を、耐圧範囲内の電圧でなく、範囲外の電圧VL〜VHで駆動することで、中間電圧VMでの駆動を実現する。 (もっと読む)


201 - 220 / 525