説明

国際特許分類[C30B29/22]の内容

国際特許分類[C30B29/22]の下位に属する分類

国際特許分類[C30B29/22]に分類される特許

61 - 70 / 116


【課題】常温で磁性と強誘電性とを同時に示す超格子およびその製造方法を提供する。
【解決手段】基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなり、各層の前記酸化物薄膜が奇数枚の原子層からなる常温磁性強誘電性超格子とする。 (もっと読む)


【解決課題】従来以上の配向性を有し、かつ高強度のエピタキシャル薄膜形成用の配向基板、及びその製造方法を提供する。
【解決手段】本発明は、金属層と、前記金属層の少なくとも一方の面に接合された銀層とからなるエピタキシャル薄膜形成用のクラッド配向金属基板であって、前記銀層は、結晶軸のずれ角Δφが、Δφ≦9°である{100}〈001〉立方体集合組織を有するエピタキシャル薄膜形成用のクラッド配向金属基板である。この配向金属基板は、含有酸素濃度が30〜200ppmの銀板を、熱間加工・熱処理する配向化処理を行い、金属板と配向化処理した銀板とを表面活性化接合することにより製造できる。 (もっと読む)


【解決手段】
式A1−xMnO(ここでAはLa、Nd又はPrであり、BはCa、Sr、Ba又はPbであり、xは0.2〜0.5の範囲内である)で表されるドープド・ペロブスカイト・マンガナイト単結晶から小片を切り出し、異方性磁気抵抗(AMR)素子をつくる。本発明の素子は、いろいろな磁気センサーに有益に応用される。
【効果】
本発明の素子におけるAMRは、従来の強磁性物質又は合金からつくられる素子(室温で約1−2%)に比べて、非常に大きい(220Kで約90%)。したがって、本発明のAMR素子は、磁気センサーの感度を改善する。 (もっと読む)


【課題】光学分野、電気・電子工業分野において有用な3.30<Eg≦3.54eVのバンドギャップを有するMg含有ZnO系混晶単結晶、その積層体及びそれらの製造方法を提供する。
【解決手段】溶質と溶媒の混合比が、ZnOのみに換算した溶質:溶媒=5〜30mol%:95〜70mol%であり、溶媒であるPbOとBi2O3の混合比がPbO:Bi2O3=0.1〜95mol%:99.9〜5mol%である融液に基板を直接接触させ、液相エピタキシャル成長法により、膜厚が5μm以上のMg含有ZnO系混晶単結晶を基板上に成長させる。このようにして製造したMg含有ZnO系混晶単結晶を基板として用い、この基板上に更にMg含有ZnO系混晶単結晶を成長させることによりMg含有ZnO系混晶単結晶積層体を製造する。 (もっと読む)


【課題】基板上にZnO系薄膜を形成する場合に、平坦な膜を成長させるためのZnO系薄膜を提供する。
【解決手段】 図1(a)では、ZnO系基板1上にZnO系薄膜2が形成されている。また、図1(b)では、ZnO系基板1上に、ZnO系薄膜の積層体であるZnO系積層体10が形成されている。ZnO系積層体10は、ZnO系半導体層3やZnO系半導体層4等の複数のZnO系半導体層が積層された積層体である。ZnO系薄膜2やZnO系積層体10を形成する場合には、成長温度750℃以上で成長させるか、又は、膜表面の粗さが所定の範囲になるように、膜表面のステップ構造が所定の構造となるように形成する。 (もっと読む)


【課題】粒径が30−250nmの範囲にあって、球形を有し、粒径がよく揃ったフェライトナノ粒子を製造するための、新しい製造方法を提供する。
【解決手段】2価鉄イオンと二糖類を含有する水溶液にフェライト微粒子の種結晶を分散させ、この水溶液にNaOHなどのアルカリを添加し、さらにこの水溶液にNaNOなどの酸化剤を添加し、反応させることによって、フェライトナノ粒子を合成する。こうして合成されるフェライトナノ粒子は、粒径が30−250nmの球形を有し、粒径が非常によく揃っており、水中において凝集せず、分散性が良好であり、例えばバイオテクノロシーや医療の分野などの各種の用途の磁性ナノ粒子として適した性質を示す。 (もっと読む)


【課題】原料や種結晶としてリチウムガレートを用いることなく、水熱合成法によってリチウムガレート単結晶を得るリチウムガレート単結晶の製造方法、及びこの方法によって得られるリチウムガレート単結晶を提供する。
【解決手段】水酸化リチウム及び/又は炭酸リチウムを含んだアルカリ溶媒の存在下で、酸化ガリウム多結晶を原料にして、水熱合成法によりリチウムガレート単結晶を得るリチウムガレート単結晶の製造方法、及びこの方法によって得られたリチウムガレート単結晶である。 (もっと読む)


【課題】室温超伝導体を開発するための有力な方策は、これまでとは異なる視点から材料
を見つめ、新たな超伝導化合物を見出し、超伝導化合物の系を拡げていくことである。
【解決手段】化学式[Ca24Al2864]4+・2[xO2−+2yA+2{1−(x+2y)
}e] (Aはケージに包接された、OH、O又はOのいずれか1種以上、0≦
x+2y≦0.5)で示されるマイエナイト型結晶構造を有する化合物であることを特徴
とする化合物超伝導体。化学式が[Ca24Al2864]4+・2[xO2−+2yA] (Aは
ケージに包接された、OH、O又はOのいずれか1種以上、0≦x≦1、y=1
−x) で示されるマイエナイト型結晶構造を有する化合物を磁性イオンが含有されない方
法で調製し、該化合物のケージに包接されたO2−及びAの合計(x+2y)の50原子
%以上を電子で置換することにより作成できる。 (もっと読む)


【課題】 光学用四ほう酸リチウム単結晶の製造方法において、融液から結晶を引き離す際にクラックの発生を防ぐこと。
【解決手段】 チョクラルスキー法によりるつぼ内の融液から光学用四ほう酸リチウム単結晶を引き上げ育成する方法であって、結晶径を一定にした直胴部C2を育成する工程と、直胴部C2よりも結晶径を漸次小さくしたテール部C3を育成する工程と、育成した光学用四ほう酸リチウム単結晶を融液から引き離す工程とを有し、該引き離す工程において、結晶径が直胴部C2の80%以下までテール部C3を育成すると共に、テール部C3の引き上げ方向に対する外周面の形成角度θを5度から75度までの範囲に設定する。 (もっと読む)


本発明は、溶液中で結晶を成長させる方法に関し、その方法は、化合物で過飽和された溶液から大寸法の結晶を高速、高制御、かつ、効率的に生産することに適する。結晶成長は静的条件下で実行される。これを実行するために、その成長は、一定の温度Tcに維持された結晶化チャンバーで実行され、そのチャンバーは、温度Tsの飽和チャンバーと流体連結する。そして、温度Tsは、Tcと同様に一定に保たれるが、Tcとは異なる温度である。温度Tsにおける化合物の溶解度は、温度Tcにおける化合物の溶解度より大きい。結晶化チャンバーと飽和チャンバーとの間における溶液の連続的な循環が確立される。このようにして、結晶化チャンバー内で一定の過飽和速度を維持する。さらに、循環溶液は、凝集体の形成を排除して抑制するための処理が施され、寄生性微結晶の核形成を抑制することが可能である。
(もっと読む)


61 - 70 / 116