説明

カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料

【課題】カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料を提供する。
【解決手段】本発明の炭素繊維複合材料50の製造方法は、第1の工程と、第2の工程と、を含む。第1の工程は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバー40を得る。第2の工程は、第2のカーボンナノファイバー40を、エラストマー30に混合し、剪断力で該エラストマー30中に均一に分散して炭素繊維複合材料50を得る。第1の工程で得られた第2のカーボンナノファイバー40のX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料に関する。
【背景技術】
【0002】
一般に、カーボンナノファイバーはマトリックスに分散させにくいフィラーであった。本発明者等が先に提案した炭素繊維複合材料の製造方法によれば、これまで困難とされていたカーボンナノファイバーの分散性を改善し、エラストマーにカーボンナノファイバーを均一に分散させることができた(例えば、特許文献1参照)。このような炭素繊維複合材料の製造方法によれば、エラストマーとカーボンナノファイバーを混練し、剪断力によって凝集性の強いカーボンナノファイバーの分散性を向上させている。より具体的には、エラストマーとカーボンナノファイバーとを混合すると、粘性を有するエラストマーがカーボンナノファイバーの相互に侵入し、かつ、エラストマーの特定の部分が化学的相互作用によってカーボンナノファイバーの活性の高い部分と結合し、この状態で、分子長が適度に長く、分子運動性の高い(弾性を有する)エラストマーとカーボンナノファイバーとの混合物に強い剪断力が作用すると、エラストマーの変形に伴ってカーボンナノファイバーも移動し、さらに剪断後の弾性によるエラストマーの復元力によって、凝集していたカーボンナノファイバーが分離されて、エラストマー中に分散していた。このように、マトリックスへのカーボンナノファイバーの分散性を向上させることで、高価なカーボンナノファイバーを効率よく複合材料のフィラーとして用いることができるようになった。
【0003】
カーボンナノファイバーは、炭化水素などのガスを金属系触媒の存在下で気相熱分解させる気相成長法によって製造されるものが工業的に量産化されている。このような量産化されているカーボンナノファイバーの中には、例えば、1000℃程度の加熱炉内で気相成長法によって製造され、さらに高温で熱処理して、黒鉛化が行なわれているものもあった(例えば、特許文献2参照)。しかしながら、このように黒鉛化されたカーボンナノファイバーの表面は、欠陥が少なく好ましい物性を有しているが、マトリックス材料例えばエラストマーとの濡れ性に劣る傾向があった。
【特許文献1】特開2005−97525号公報
【特許文献2】特開2006−198393号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明の目的は、カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料を提供することにある。
【課題を解決するための手段】
【0005】
本発明にかかるカーボンナノファイバーは、
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して得られた、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である。
【0006】
本発明にかかるカーボンナノファイバーによれば、表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性が改善することができる。このように濡れ性が改善されたカーボンナノファイバーを用いることによって、例えば複合材料の剛性や柔軟性を改善することができる。
【0007】
本発明にかかるカーボンナノファイバーにおいて、
ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22であることができる。
【0008】
本発明にかかるカーボンナノファイバーにおいて、
窒素吸着比表面積が34m/g〜58m/gであることができる。
【0009】
本発明にかかるカーボンナノファイバーにおいて、
平均直径が4nm〜230nmであることができる。
【0010】
本発明にかかるカーボンナノファイバーの製造方法は、
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量は、0.5atm%〜2.6atm%である。
【0011】
本発明にかかるカーボンナノファイバーの製造方法によれば、カーボンナノファイバーの表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性を改善することができる。
【0012】
本発明にかかるカーボンナノファイバーの製造方法は、
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合は、20%〜120%である。
【0013】
本発明にかかるカーボンナノファイバーの製造方法によれば、カーボンナノファイバーの表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性を改善することができる。
【0014】
本発明にかかるカーボンナノファイバーの製造方法において、
前記工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃〜800℃で熱処理することができる。
【0015】
本発明にかかるカーボンナノファイバーの製造方法において、
前記工程は、前記第1のカーボンナノファイバーの質量を2%〜20%減量して前記第2のカーボンナノファイバーを得ることができる。
【0016】
本発明にかかるカーボンナノファイバーの製造方法において、
前記工程で得られた前記第2のカーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%であることができる。
【0017】
本発明にかかるカーボンナノファイバーの製造方法において、
前記工程で得られた前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22であることができる。
【0018】
本発明にかかるカーボンナノファイバーの製造方法において、
前記工程で得られた前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g〜58m/gであることができる。
【0019】
本発明にかかるカーボンナノファイバーの製造方法において、
前記工程で得られた前記第2のカーボンナノファイバーは、平均直径が4nm〜230nmであることができる。
【0020】
本発明にかかる炭素繊維複合材料の製造方法は、
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、
前記第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る第2の工程と、
を含み、
前記第1の工程で得られた前記第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である。
【0021】
本発明にかかる炭素繊維複合材料の製造方法によれば、第2のカーボンナノファイバーの表面が適度に酸化されていることによって、マトリックスであるエラストマーとの表面反応性が向上し、カーボンナノファイバーとエラストマーとの濡れ性が改善される。このようにエラストマーとの濡れ性が改善された第2のカーボンナノファイバーを用いることによって、剛性や柔軟性が改善された炭素繊維複合材料を製造することができる。特に、このようにして製造された炭素繊維複合材料は、高温における剛性が改善される。
【0022】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%〜2.6atm%になるように酸化処理することができる。
【0023】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%〜120%になるように酸化処理することができる。
【0024】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第1の工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃〜800℃で熱処理することができる。
【0025】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第1の工程は、前記第1のカーボンナノファイバーの質量を2%〜20%減量して前記第2のカーボンナノファイバーを得ることができる。
【0026】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22であることができる。
【0027】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g〜58m/gであることができる。
【0028】
本発明にかかる炭素繊維複合材料の製造方法において、
前記第1のカーボンナノファイバーは、平均直径が4nm〜250nmであることができる。
【0029】
本発明にかかる炭素繊維複合材料は、前記炭素繊維複合材料の製造方法で製造される。
【0030】
本発明にかかる炭素繊維複合材料は、
エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%であるカーボンナノファイバーを含む。
【0031】
本発明にかかる炭素繊維複合材料によれば、カーボンナノファイバーの表面が適度に酸化されていることによって、マトリックスであるエラストマーとの表面反応性が向上し、カーボンナノファイバーとエラストマーとの濡れ性が改善されている。このようにエラストマーとの濡れ性が改善されたカーボンナノファイバーを含む炭素繊維複合材料は、剛性や柔軟性が改善される。特に、本発明にかかる炭素繊維複合材料は、高温における剛性が改善される。
【0032】
本発明にかかる炭素繊維複合材料において、
前記カーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22であることができる。
【0033】
本発明にかかる炭素繊維複合材料において、
前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g〜58m/gであることができる。
【発明を実施するための最良の形態】
【0034】
以下、本発明の実施の形態について詳細に説明する。
【0035】
本発明の一実施形態にかかる第1のカーボンナノファイバーは、気相成長法によって製造されたカーボンナノファイバーを酸化処理して得られた、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である。
【0036】
本発明の一実施形態にかかるカーボンナノファイバーの製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量は、0.5atm%〜2.6atm%である。
【0037】
本発明の一実施形態にかかるカーボンナノファイバーの製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合は、20%〜120%である。
【0038】
本発明の一実施形態にかかる炭素繊維複合材料の製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、前記第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る第2の工程と、を含み、前記第1の工程で得られた前記第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%であることを特徴とする。
【0039】
本発明の一実施形態にかかる炭素繊維複合材料は、前記炭素繊維複合材料の製造方法で製造されることを特徴とする。
【0040】
本発明の一実施形態にかかる炭素繊維複合材料は、エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%であるカーボンナノファイバーを含むことを特徴とする。
【0041】
(I)第1のカーボンナノファイバー
まず、炭素繊維複合材料の製造方法に用いられる第1のカーボンナノファイバーについて説明する。
【0042】
第1のカーボンナノファイバーの製造方法は、気相成長法によって製造される。気相成長法は、炭化水素等のガスを金属系触媒の存在下で気相熱分解させて第1のカーボンナノファイバーを製造する方法である。より詳細に気相成長法を説明すると、例えば、ベンゼン、トルエン等の有機化合物を原料とし、フェロセン、ニッケルセン等の有機遷移金属化合物を金属系触媒として用い、これらをキャリアーガスとともに高温例えば400℃〜1000℃の反応温度に設定された反応炉に導入し、第1のカーボンナノファイバーを基板上に生成させる方法、浮遊状態で第1のカーボンナノファイバーを生成させる方法、あるいは第1のカーボンナノファイバーを反応炉壁に成長させる方法等を用いることができる。また、あらかじめアルミナ、炭素等の耐火性支持体に担持された金属含有粒子を炭素含有化合物と高温で接触させて、平均直径が70nm以下の第1のカーボンナノファイバーを得ることもできる。気相成長法で製造された第1のカーボンナノファイバーの平均直径は、平均直径が4nm〜250nmであることが好ましい。第1のカーボンナノファイバーは、表面が酸化処理されていないという意味で未処理のカーボンナノファイバーであり、表面を酸化処理して分散性を向上することが好ましい。
【0043】
このように気相成長法で製造された第1のカーボンナノファイバーを酸化処理する前に不活性ガス雰囲気中において2000℃〜3200℃で熱処理することができる。この熱処理温度は、2500℃〜3200℃がさらに好ましく、特に2800℃〜3200℃が好ましい。熱処理温度が、2000℃以上であると、気相成長の際に第1のカーボンナノファイバーの表面に沈積したアモルファス状の堆積物や残留している触媒金属などの不純物が除去されるので好ましい。また、第1のカーボンナノファイバーの熱処理温度が、2500℃以上であると、第1のカーボンナノファイバーの骨格が黒鉛化(結晶化)し、第1のカーボンナノファイバーの欠陥が減少し強度が向上するため好ましい。なお、第1のカーボンナノファイバーの熱処理温度が、3200℃以下であれば、黒鉛が昇華することによる黒鉛骨格の破壊が発生しにくいため好ましい。このように黒鉛化した第1のカーボンナノファイバーは、酸化処理されていないので未処理のカーボンナノファイバーであって、黒鉛化によって優れた強度、熱伝導性、電気伝導性などを有している。
【0044】
第1のカーボンナノファイバーは、例えば、いわゆるカーボンナノチューブなどが例示できる。カーボンナノチューブは、炭素六角網面のグラファイトの1枚面を1層もしくは多層に巻いた構造を有する。また、部分的にカーボンナノチューブの構造を有する炭素材料も使用することができる。なお、カーボンナノチューブという名称の他にグラファイトフィブリルナノチューブ、気相成長炭素繊維といった名称で称されることもある。
【0045】
(II)第2のカーボンナノファイバー
炭素繊維複合材料の製造方法の第1の工程で得られた第2のカーボンナノファイバーについて説明する。
【0046】
第2のカーボンナノファイバーは、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化されることで得られる。酸化処理については、炭素繊維複合材料の製造方法の欄で後述する。第2のカーボンナノファイバーは、その表面のX線光電子分光法(XPS)で測定した酸素濃度が2.6atm%〜4.6atm%であり、好ましくは3.0atm%〜4.0atm%であり、さらに好ましくは3.1atm%〜3.7atm%である。このように、第2のカーボンナノファイバーの表面が適度に酸化していることで、第2のカーボンナノファイバーとエラストマーとの表面反応性が向上し、エラストマー中における第2のカーボンナノファイバーをより均一に分散することができる。第2のカーボンナノファイバーは、第1のカーボンナノファイバーの質量を2%〜20%減量した質量を有することができる。第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)好ましくは0.12〜0.22である。第2のカーボンナノファイバーは、窒素吸着比表面積が好ましくは34m/g〜58m/gである。第2のカーボンナノファイバーは、平均直径が4nm〜230nmであることが好ましく、20nm〜200nmが好適で、特には60nm〜150nmが好適である。第2のカーボンナノファイバーは、直径が4nm以上ではマトリックス樹脂に対する分散性が向上し、逆に230nm以下ではマトリックス樹脂の表面の平坦性が損なわれにくく好ましい。第2のカーボンナノファイバーの平均直径が60nm以上では分散性及び表面の平坦性に優れており、150nm以下では少量の添加量でもカーボンナノファイバーの本数が増加することになるため例えば炭素繊維複合材料の性能を向上させることができ、したがって高価な第1のカーボンナノファイバーを節約することができる。また、第2のカーボンナノファイバーのアスペクト比は50〜200が好ましい。
【0047】
第2のカーボンナノファイバーによれば、表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性が改善することができる。このように濡れ性が改善されたカーボンナノファイバーを用いることによって、例えば複合材料の剛性や柔軟性を改善することができる。特に、黒鉛化された第1のカーボンナノファイバーの場合、比較的反応性の低い表面を適度に酸化させることによって、第2のカーボンナノファイバーとマトリックス材料との濡れ性を改善することができるため、分散性を向上させることができ、例えば従来より少量の第2のカーボンナノファイバーの添加でも同等の物性を得ることができる。
【0048】
(III)エラストマー
次に、炭素繊維複合材料の製造方法に用いられるエラストマーについて説明する。
エラストマーは、分子量が好ましくは5000〜500万、さらに好ましくは2万〜300万である。エラストマーの分子量がこの範囲であると、エラストマー分子が互いに絡み合い、相互につながっているので、エラストマーは、第2のカーボンナノファイバーを分散させるために良好な弾性を有している。エラストマーは、粘性を有しているので凝集した第2のカーボンナノファイバーの相互に侵入しやすく、さらに弾性を有することによって第2のカーボンナノファイバー同士を分離することができるため好ましい。
【0049】
エラストマーは、パルス法NMRを用いてハーンエコー法によって、30℃、観測核がHで測定した、未架橋体におけるネットワーク成分のスピン−スピン緩和時間(T2n/30℃)が好ましくは100〜3000μ秒、より好ましくは200〜1000μ秒である。上記範囲のスピン−スピン緩和時間(T2n/30℃)を有することにより、エラストマーは、柔軟で充分に高い分子運動性を有することができ、すなわち第2のカーボンナノファイバーを分散させるために適度な弾性を有することになる。また、エラストマーは粘性を有しているので、エラストマーと第2のカーボンナノファイバーとを混合したときに、エラストマーは高い分子運動により第2のカーボンナノファイバーの相互の隙間に容易に侵入することができる。
【0050】
また、エラストマーは、パルス法NMRを用いてハーンエコー法によって30℃、観測核がHで測定した、架橋体における、ネットワーク成分のスピン−スピン緩和時間(T2n)が100〜2000μ秒であることが好ましい。その理由は、上述した未架橋体と同様である。すなわち、上記の条件を有する未架橋体を架橋化すると、得られる架橋体のT2nはおおよそ上記範囲に含まれる。
【0051】
パルス法NMRを用いたハーンエコー法によって得られるスピン−スピン緩和時間は、物質の分子運動性を表す尺度である。具体的には、パルス法NMRを用いたハーンエコー法によりエラストマーのスピン−スピン緩和時間を測定すると、緩和時間の短い第1のスピン−スピン緩和時間(T2n)を有する第1の成分と、緩和時間のより長い第2のスピン−スピン緩和時間(T2nn)を有する第2の成分とが検出される。第1の成分は高分子のネットワーク成分(骨格分子)に相当し、第2の成分は高分子の非ネットワーク成分(末端鎖などの枝葉の成分)に相当する。そして、第1のスピン−スピン緩和時間が短いほど分子運動性が低く、エラストマーは固いといえる。また、第1のスピン−スピン緩和時間が長いほど分子運動性が高く、エラストマーは柔らかいといえる。
【0052】
パルス法NMRにおける測定法としては、ハーンエコー法でなくてもソリッドエコー法、CPMG法(カー・パーセル・メイブーム・ギル法)あるいは90゜パルス法でも適用できる。ただし、本発明にかかるエラストマーは中程度のスピン−スピン緩和時間(T2)を有するので、ハーンエコー法が最も適している。一般的に、ソリッドエコー法および90゜パルス法は、短いT2の測定に適し、ハーンエコー法は、中程度のT2の測定に適し、CPMG法は、長いT2の測定に適している。
【0053】
エラストマーは、主鎖、側鎖および末端鎖の少なくともひとつに、第2のカーボンナノファイバーの末端のラジカルに対して親和性を有する不飽和結合または基を有するか、もしくは、このようなラジカルまたは基を生成しやすい性質を有する。かかる不飽和結合または基としては、例えば、二重結合、三重結合、カルボニル基、カルボキシル基、水酸基、アミノ基、ニトリル基、ケトン基、アミド基、エポキシ基、エステル基、ビニル基、ハロゲン基、ウレタン基、ビューレット基、アロファネート基および尿素基などの官能基から選択される少なくともひとつであることができる。
【0054】
本実施の形態では、エラストマーの主鎖、側鎖および末端鎖の少なくともひとつに、第2のカーボンナノファイバーのラジカルと親和性(反応性または極性)が高い不飽和結合や基を有することにより、エラストマーと第2のカーボンナノファイバーとを結合することができる。このことにより、第2のカーボンナノファイバーの凝集力にうち勝ってその分散を容易にすることができる。そして、エラストマーと、第2のカーボンナノファイバーと、を混練する際に、エラストマーの分子鎖が切断されて生成したフリーラジカルは、第2のカーボンナノファイバーの欠陥を攻撃し、第2のカーボンナノファイバーの表面にラジカルを生成すると推測できる。
【0055】
エラストマーとしては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレン−ブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPR,EPDM)、ブチルゴム(IIR)、クロロブチルゴム(CIIR)、アクリルゴム(ACM)、シリコーンゴム(Q)、フッ素ゴム(FKM)、ブタジエンゴム(BR)、エポキシ化ブタジエンゴム(EBR)、エピクロルヒドリンゴム(CO,CEO)、ウレタンゴム(U)、ポリスルフィドゴム(T)などのエラストマー類;オレフィン系(TPO)、ポリ塩化ビニル系(TPVC)、ポリエステル系(TPEE)、ポリウレタン系(TPU)、ポリアミド系(TPEA)、スチレン系(SBS)、などの熱可塑性エラストマー;およびこれらの混合物を用いることができる。特に、エラストマーの混練の際にフリーラジカルを生成しやすい極性の高いエラストマー、例えば、天然ゴム(NR)、ニトリルゴム(NBR)などが好ましい。また、極性の低いエラストマー、例えばエチレンプロピレンゴム(EPDM)であっても、混練の温度を比較的高温(例えばEPDMの場合、50℃〜150℃)とすることで、フリーラジカルを生成するので本発明に用いることができる。
【0056】
本実施の形態のエラストマーは、ゴム系エラストマーあるいは熱可塑性エラストマーのいずれであってもよい。また、ゴム系エラストマーの場合、エラストマーは架橋体あるいは未架橋体のいずれであってもよいが、未架橋体を用いることが好ましい。
【0057】
(IV)炭素繊維複合材料の製造方法
炭素繊維複合材料の製造方法は、第1の工程と、第2の工程と、を有する。
【0058】
第1の工程
まず、炭素繊維複合材料の製造方法における第1の工程について説明する。第1の工程は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る。第1の工程は、X線光電子分光法(XPS)で測定した、第1のカーボンナノファイバーの表面の酸素濃度に対する第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%〜2.6atm%になるように酸化処理を行うことができる。このような第1のカーボンナノファイバーの表面酸素濃度に対する第2のカーボンナノファイバーの表面酸素濃度の増加量は、0.9atm%〜1.9atm%であることがより好ましく、さらに1.0atm%〜1.6atm%であることが好ましい。また、第1の工程は、X線光電子分光法(XPS)で測定した、第1のカーボンナノファイバーの表面の酸素濃度に対する第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%〜120%になるように酸化処理を行うことができる。このような第1のカーボンナノファイバーの表面酸素濃度に対する第2のカーボンナノファイバーの表面酸素濃度の増加割合は、43%〜90%であることがより好ましく、さらに48%〜76%であることが好ましい。第1の工程で得られた第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度は、2.6atm%〜4.6atm%であり、好ましくは3.0atm%〜4.0atm%であり、さらに好ましくは3.1atm%〜3.7atm%である。第2のカーボンナノファイバーは、その表面の酸素濃度が第1のカーボンナノファイバーの表面の酸素濃度より0.2atm%以上増加する程度に酸化することが望ましい。このように、第2のカーボンナノファイバーの表面が適度に酸化していることで、第2のカーボンナノファイバーとエラストマーとの表面反応性が向上し、エラストマー中におけるカーボンナノファイバーの分散不良を改善することができる。第1の工程は、第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃〜800℃で熱処理することができる。例えば、大気雰囲気の炉内に第1のカーボンナノファイバーを配置し、600℃〜800℃の温度範囲の所定温度に設定し、熱処理することによって、第2のカーボンナノファイバーの表面が所望の酸素濃度に酸化できる。この第1の工程で熱処理する時間は、所定温度の熱処理炉内で第1のカーボンナノファイバーを保持する時間であって、例えば10分〜180分であることができる。酸素を含有する雰囲気は、大気中でもよいし、酸素雰囲気でもよいし、適宜酸素濃度を設定した雰囲気をもちいてもよい。第2のカーボンナノファイバーの表面が第1の工程で所望の酸素濃度に酸化されるのに十分な酸素濃度が雰囲気中に存在すればよい。熱処理の温度は、600℃〜800℃の範囲で所望の酸化処理を得るために適宜設定することができる。通常、800℃付近で第1のカーボンナノファイバーは燃焼して繊維に大きなダメージを負うため、温度設定と熱処理の時間は実験を繰り返しながら慎重に設定することが望ましい。なお、熱処理の温度や熱処理の時間は、第1の工程に用いる炉内の酸素濃度や炉の内容積、処理する第1のカーボンナノファイバーの量などによって適宜調整することができる。このように第1の工程で酸化処理された第2のカーボンナノファイバーの質量は、第1のカーボンナノファイバーの質量より例えば2%〜20%減量することが好ましく、この減量の範囲であれば第2のカーボンナノファイバーが適度に酸化していると推測できる。第2のカーボンナノファイバーの質量が第1のカーボンナノファイバーの質量より2%未満しか減量していないと、第2のカーボンナノファイバーの表面の酸素濃度が低いため濡れ性の向上が得にくい傾向がある。また、第1のカーボンナノファイバーの質量より20%を超えて減量した第2のカーボンナノファイバーは、減量が20%以下の第2のカーボンナノファイバーに比べて濡れ性がほとんど変わらないにもかかわらず、酸化処理によるカーボンナノファイバーの減量による損失が大きく、しかも熱処理のエネルギー消費量に対して経済的にも不利になる傾向がある。第1のカーボンナノファイバーの表面が酸化することによって、第1のカーボンナノファイバーの表面の炭素の一部が炭酸ガスとして気化して減量することになるからである。第2のカーボンナノファイバーの質量が第1のカーボンナノファイバーの質量より20%を超えなければ繊維長がほとんど短くならないと推測できるため好ましい。なお、第2のカーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光法)によって分析することができる。XPSによる酸素濃度の分析は、第2のカーボンナノファイバーの表面に付着した不純物を除去するために、測定前の第2のカーボンナノファイバーに対し例えば0.5分〜1.0分間のアルゴンガスエッチングを行い、第2のカーボンナノファイバーの清浄な表面を出してから分析を行うことが好ましい。このアルゴンガスエッチングのアルゴンガス濃度は5×10−2Pa〜20×10−2Paが好ましい。また、XPSによる酸素濃度の分析は、XPS装置の金属台の上に導電性接着剤である例えばカーボンテープを貼り、そのカーボンテープ上に第2のカーボンナノファイバーをふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分な第2のカーボンナノファイバーを振り落として取り除いた状態で行うことが好ましい。このように、XPSによる酸素濃度の分析においては、第2のカーボンナノファイバーをカーボンテープ上に押しつけてブロック状に固めることなく、なるべく粉体に近い状態で分析することが好ましい。
【0059】
第1の工程によって得られた第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が好ましくは0.12〜0.22である。第2のカーボンナノファイバーのラマンピーク比(D/G)は、その表面の結晶に欠陥が多くなるため、第1のカーボンナノファイバーのラマンピーク比(D/G)よりも大きくなる。第2のカーボンナノファイバーは、そのラマンピーク比(D/G)が第1のカーボンナノファイバーのラマンピーク比(D/G)より0.02以上増加する程度に酸化することが望ましい。また、第2のカーボンナノファイバーは、窒素吸着比表面積が好ましくは34m/g〜58m/gである。第2のカーボンナノファイバーの窒素吸着比表面積は、その表面が荒れるため、第1のカーボンナノファイバーの窒素吸着比表面積よりも大きくなる。第2のカーボンナノファイバーは、その窒素吸着比表面積が第1のカーボンナノファイバーの窒素吸着比表面積より9m/g以上増加する程度に酸化することが望ましい。第1の工程に用いられる第1のカーボンナノファイバーの平均直径は4nm〜250nmであることが好ましく、第1の工程で得られた第2のカーボンナノファイバーの平均直径は4nm〜230nmであることができる。このような第2のカーボンナノファイバーを用いることにより、エラストマーとの表面反応性が向上し、エラストマーに対する濡れ性を改善することができる。
【0060】
第2のカーボンナノファイバーのエラストマーへの配合量は、用途に応じて設定することができるが、第2のカーボンナノファイバーはエラストマーとの濡れ性が向上しているため、例えば同じ剛性の炭素繊維複合材料を製造する場合、従来よりも配合量を減らすことができる。炭素繊維複合材料は、架橋体エラストマーあるいは無架橋体エラストマーをそのままエラストマー系材料として用いることができ、あるいは金属や樹脂の複合材料の原料として用いることができる。かかる金属あるいは樹脂の複合材料の原料として用いる炭素繊維複合材料は、金属あるいは樹脂にカーボンナノファイバーを混合する際に、カーボンナノファイバーの供給源としてのいわゆるマスターバッチとして用いることができる。
【0061】
第2の工程
第2の工程は、第1の工程で得られた第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る。第2の工程について図1を用いて詳細に説明する。
【0062】
図1は、オープンロール法による炭素繊維複合材料の製造方法を模式的に示す図である。原料となるエラストマーは、パルス法NMRを用いてハーンエコー法によって150℃、観測核がHで測定した、未架橋体における、ネットワーク成分の第1のスピン−スピン緩和時間(T2n)が100〜3000μ秒であることが好ましい。図1に示すように、2本ロールのオープンロール2における第1のロール10と第2のロール20とは、所定の間隔d、例えば0.5mm〜1.5mmの間隔で配置され、図1において矢印で示す方向に回転速度V1,V2で正転あるいは逆転で回転する。まず、図1(a)に示すように、第1のロール10に巻き付けられたエラストマー30の素練りを行ない、エラストマー分子鎖を適度に切断してフリーラジカルを生成する。第2のカーボンナノファイバーは、酸化処理によって適度に表面が活性化されているので、ラジカルや官能基を生成しやすくなり、素練りによって生成されたエラストマーのフリーラジカルが第2のカーボンナノファイバーと結びつきやすい状態となる。
【0063】
次に、図1(b)にしめすように、第1のロール10に巻き付けられたエラストマー30のバンク34に、第2のカーボンナノファイバー40を投入し、混練する。エラストマー30と第2のカーボンナノファイバー40とを混合する工程は、オープンロール法に限定されず、例えば密閉式混練法あるいは多軸押出し混練法を用いることもできる。
【0064】
さらに、図1(c)にしめすように、第1のロール10と第2のロール20とのロール間隔dを、好ましくは0.5mm以下、より好ましくは0〜0.5mmの間隔に設定し、混合物36をオープンロール2に投入して薄通しを1回〜複数回行なう。薄通しの回数は、例えば1回〜10回程度行なうことが好ましい。第1のロール10の表面速度をV1、第2のロール20の表面速度をV2とすると、薄通しにおける両者の表面速度比(V1/V2)は、1.05〜3.00であることが好ましく、さらに1.05〜1.2であることが好ましい。このような表面速度比を用いることにより、所望の剪断力を得ることができる。薄通しして得られた炭素繊維複合材料50は、ロールで圧延されてシート状に分出しされる。この薄通しの工程では、できるだけ高い剪断力を得るために、ロール温度を好ましくは0〜50℃、より好ましくは5〜30℃の比較的低い温度に設定して行われ、エラストマー30の実測温度も0〜50℃に調整されることが好ましい。このようにして得られた剪断力により、エラストマー30に高い剪断力が作用し、凝集していた第2のカーボンナノファイバー40がエラストマー分子に1本づつ引き抜かれるように相互に分離し、エラストマー30中に分散される。特に、エラストマー30は、弾性と、粘性と、第2のカーボンナノファイバー40との化学的相互作用と、を有するため、第2のカーボンナノファイバー40を容易に分散することができる。そして、第2のカーボンナノファイバー40の分散性および分散安定性(第2のカーボンナノファイバーが再凝集しにくいこと)に優れた炭素繊維複合材料50を得ることができる。
【0065】
より具体的には、オープンロールでエラストマーと第2のカーボンナノファイバーとを混合すると、粘性を有するエラストマーが第2のカーボンナノファイバーの相互に侵入し、かつ、エラストマーの特定の部分が化学的相互作用によって第2のカーボンナノファイバーの活性の高い部分と結合する。第2のカーボンナノファイバーの表面は酸化処理によって適度に活性が高いため、エラストマー分子と結合し易い。次に、エラストマーに強い剪断力が作用すると、エラストマー分子の移動に伴って第2のカーボンナノファイバーも移動し、さらに剪断後の弾性によるエラストマーの復元力によって、凝集していた第2のカーボンナノファイバーが分離されて、エラストマー中に分散されることになる。本実施の形態によれば、炭素繊維複合材料が狭いロール間から押し出された際に、エラストマーの弾性による復元力で炭素繊維複合材料はロール間隔より厚く変形する。その変形は、強い剪断力の作用した炭素繊維複合材料をさらに複雑に流動させ、第2のカーボンナノファイバーをエラストマー中に分散させると推測できる。そして、一旦分散した第2のカーボンナノファイバーは、エラストマーとの化学的相互作用によって再凝集することが防止され、良好な分散安定性を有することができる。
【0066】
エラストマーに第2のカーボンナノファイバーを剪断力によって分散させる工程は、前記オープンロール法に限定されず、密閉式混練法あるいは多軸押出し混練法を用いることもできる。要するに、この工程では、凝集した第2のカーボンナノファイバーを分離できる剪断力をエラストマーに与えることができればよい。特に、オープンロール法は、ロール温度の管理だけでなく、混合物の実際の温度を測定し管理することができるため、好ましい。
【0067】
炭素繊維複合材料の製造方法は、薄通し後の分出しされた炭素繊維複合材料に架橋剤を混合し、架橋して架橋体の炭素繊維複合材料としてもよい。また、炭素繊維複合材料は、架橋させずに成形してもよい。炭素繊維複合材料は、オープンロール法によって得られたシート状のままでもよいし、第2の工程で得られた炭素繊維複合材料を一般に採用されるゴムの成形加工例えば、射出成形法、トランスファー成形法、プレス成形法、押出成形法、カレンダー加工法などによって所望の形状例えばシート状に成形してもよい。
【0068】
本実施の形態にかかる炭素繊維複合材料の製造方法において、通常、エラストマーの加工で用いられる配合剤を加えることができる。配合剤としては公知のものを用いることができる。配合剤としては、例えば、架橋剤、加硫剤、加硫促進剤、加硫遅延剤、軟化剤、可塑剤、硬化剤、補強剤、充填剤、老化防止剤、着色剤などを挙げることができる。これらの配合剤は、例えばオープンロールにおける第2のカーボンナノファイバーの投入前にエラストマーに投入することができる。
【0069】
なお、本実施の形態にかかる炭素繊維複合材料の製造方法においては、ゴム弾性を有した状態のエラストマーに第2のカーボンナノファイバーを直接混合したが、これに限らず、以下の方法を採用することもできる。まず、第2のカーボンナノファイバーを混合する前に、エラストマーを素練りしてエラストマーの分子量を低下させる。エラストマーは、素練りによって分子量が低下すると、粘度が低下するため、凝集した第2のカーボンナノファイバーの空隙に浸透しやすくなる。原料となるエラストマーは、パルス法NMRを用いてハーンエコー法によって30℃、観測核がHで測定した、未架橋体における、ネットワーク成分の第1のスピン−スピン緩和時間(T2n)が100〜3000μ秒のゴム状弾性体である。この原料のエラストマーを素練りしてエラストマーの分子量を低下させ、第1のスピン−スピン緩和時間(T2n)が3000μ秒を越える液体状のエラストマーを得る。なお、素練り後の液体状のエラストマーの第1のスピン−スピン緩和時間(T2n)は、素練りする前の原料のエラストマーの第1のスピン−スピン緩和時間(T2n)の5〜30倍であることが好ましい。この素練りは、エラストマーが固体状態のままで行なう一般的な素練りとは異なり、強剪断力を例えばオープンロール法で与えることによってエラストマーの分子を切断し分子量を著しく低下させ、混練に適さない程の流動を示すまで、例えば液体状態になるまで行なわれる。この素練りは、例えばオープンロール法を用いた場合、ロール温度20℃(素練り時間最短60分)〜150℃(素練り時間最短10分)で行なわれロール間隔dは例えば0.5mm〜1.0mmで、素練りして液体状態のエラストマーに第2のカーボンナノファイバーを投入する。しかしながら、エラストマーは液体状で弾性が著しく低下しているため、エラストマーのフリーラジカルと第2のカーボンナノファイバーが結びついた状態で混練しても凝集した第2のカーボンナノファイバーはあまり分散されない。
【0070】
そこで、液体状のエラストマーと第2のカーボンナノファイバーとを混合して得られた混合物中におけるエラストマーの分子量を増大させ、エラストマーの弾性を回復させてゴム状弾性体の混合物を得た後、先に説明したオープンロール法の薄通しなどを実施して第2のカーボンナノファイバーをエラストマー中に均一に分散させる。エラストマーの分子量が増大した混合物は、パルス法NMRを用いてハーンエコー法によって30℃、観測核がHで測定した、ネットワーク成分の第1のスピン−スピン緩和時間(T2n)が3000μ秒以下のゴム状弾性体である。また、エラストマーの分子量が増大したゴム状弾性体の混合物の第1のスピン−スピン緩和時間(T2n)は、素練りする前の原料エラストマーの第1のスピン−スピン緩和時間(T2n)の0.5〜10倍であることが好ましい。ゴム状弾性体の混合物の弾性は、エラストマーの分子形態(分子量で観測できる)や分子運動性(T2nで観測できる)によって表すことができる。エラストマーの分子量を増大させる工程は、混合物を加熱処理例えば40℃〜100℃に設定された加熱炉内に混合物を配置し、10時間〜100時間行なわれることが好ましい。このような加熱処理によって、混合物中に存在するエラストマーのフリーラジカル同士の結合などによって分子鎖が延長され、分子量が増大する。また、エラストマーの分子量の増大を短時間で実施する場合には、架橋剤を少量、例えば架橋剤の適量の1/2以下を混合させておき、混合物を加熱処理(例えばアニーリング処理)し架橋反応によって短時間で分子量を増大させることもできる。架橋反応によってエラストマーの分子量を増大させる場合には、この後の工程で混練が困難にならない程度に架橋剤の配合量、加熱時間及び加熱温度を設定することが好ましい。
【0071】
ここで説明した炭素繊維複合材料の製造方法によれば、第2のカーボンナノファイバーを投入する前にエラストマーの粘性を低下させることで、エラストマー中に第2のカーボンナノファイバーをより均一に分散させることができる。より詳細には、先に説明した製造方法のように分子量が大きいエラストマーに第2のカーボンナノファイバーを混合するよりも、分子量が低下した液体状のエラストマーを用いた方が凝集した第2のカーボンナノファイバーの空隙に侵入しやすく、薄通しの工程において第2のカーボンナノファイバーをより均一に分散させることができる。また、エラストマーが分子切断されることで大量に生成されたエラストマーのフリーラジカルが第2のカーボンナノファイバーの適度に酸化された表面とより強固に結合することができるため、さらに第2のカーボンナノファイバーを均一に分散させることができる。したがって、ここで説明した製造方法によれば、先の製造方法よりも少量の第2のカーボンナノファイバーでも同等の性能を得ることができ、高価な第2のカーボンナノファイバーを節約することで経済性も向上する。
【0072】
(V)炭素繊維複合材料
次に、炭素繊維複合材料について説明する。
炭素繊維複合材料は、エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%であるカーボンナノファイバーを含む。第2のカーボンナノファイバーはエラストマー中に均一に分散している。第2のカーボンナノファイバーは、酸化処理されているため、エラストマーとの濡れ性が改善され、炭素繊維複合材料の剛性や柔軟性が改善される。特に、炭素繊維複合材料は、高温における剛性が改善される。
【0073】
炭素繊維複合材料は、パルス法NMRを用いてハーンエコー法によって150℃、観測核がHで測定した、無架橋体における、第1のスピン−スピン緩和時間(T2n)は100〜3000μ秒であり、第2のスピン−スピン緩和時間を有する成分の成分分率(fnn)は0〜0.2であることが好ましい。
【0074】
炭素繊維複合材料の150℃で測定したT2n及びfnnは、マトリックスであるエラストマーに第2のカーボンナノファイバーが均一に分散されていることを表すことができる。つまり、エラストマーに第2のカーボンナノファイバーが均一に分散されているということは、エラストマーが第2のカーボンナノファイバーによって拘束されている状態であるともいえる。この状態では、第2のカーボンナノファイバーによって拘束を受けたエラストマー分子の運動性は、第2のカーボンナノファイバーの拘束を受けない場合に比べて小さくなる。そのため、炭素繊維複合材料の第1のスピン−スピン緩和時間(T2n)、第2のスピン−スピン緩和時間(T2nn)及びスピン−格子緩和時間(T1)は、第2のカーボンナノファイバーを含まないエラストマー単体の場合より短くなり、特に第2のカーボンナノファイバーが均一に分散することでより短くなる。特に、酸化処理されていない第1のカーボンナノファイバーをそのままエラストマーに混合した炭素繊維複合材料よりも本実施の形態にかかる炭素繊維複合材料の方が第1のスピン−スピン緩和時間(T2n/150℃)は短くなる傾向にある。
【0075】
また、エラストマー分子が第2のカーボンナノファイバーによって拘束された状態では、以下の理由によって、非ネットワーク成分(非網目鎖成分)は減少すると考えられる。すなわち、第2のカーボンナノファイバーによってエラストマーの分子運動性が全体的に低下すると、非ネットワーク成分は容易に運動できなくなる部分が増えて、ネットワーク成分と同等の挙動をしやすくなること、また、非ネットワーク成分(末端鎖)は動きやすいため、第2のカーボンナノファイバーの活性点に吸着されやすくなること、などの理由によって、非ネットワーク成分は減少すると考えられる。そのため、第2のスピン−スピン緩和時間(T2nn)を有する成分の成分分率(fnn)は、fn+fnn=1であるので、第2のカーボンナノファイバーを含まないエラストマー単体の場合より小さくなる。したがって、炭素繊維複合材料は、パルス法NMRを用いてハーンエコー法によって得られる測定値が上記の範囲にあることによって第2のカーボンナノファイバーが均一に分散されていることがわかる。
【実施例】
【0076】
以下、本発明の実施例について述べるが、本発明はこれらに限定されるものではない。
【0077】
(1)第2のカーボンナノファイバーの作成
(1−1)縦型加熱炉(内径17.0cm、長さ150cm)の頂部に、スプレーノズルを取り付ける。加熱炉の炉内壁温度(反応温度)を1000℃に昇温・維持し、スプレーノズルから4重量%のフェロセンを含有するベンゼンの液体原料20g/分を100L/分の水素ガスの流量で炉壁に直接噴霧(スプレー)散布するように供給する。この時のスプレーの形状は円錐側面状(ラッパ状ないし傘状)であり、ノズルの頂角が60°である。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これがシード(種)となってベンゼンの熱分解による炭素から、カーボンナノファイバーを生成成長させた。本方法で成長したカーボンナノファイバーを5分間隔で掻き落としながら1時間にわたって連続的に製造した。
【0078】
このように気相成長法によって製造されたカーボンナノファイバーを、不活性ガス雰囲気中において2800℃で熱処理して黒鉛化した。黒鉛化した第1の(未処理)カーボンナノファイバー(表1では「CNT−N」と示す)は、平均直径87nm、平均長さ10μm、ラマンピーク比(D/G)0.08、窒素吸着比表面積25m/g、表面の酸素濃度2.1atm%であった。
【0079】
(1−2)実施例1〜12及び比較例10,11に用いる第2のカーボンナノファイバーは、黒鉛化した第1のカーボンナノファイバー100gを大気雰囲気の加熱炉(卓上電気炉AMF−20Nアサヒ理化製作所製)に入れ、表1に示す温度(575℃〜720℃)と時間(1時間もしくは2時間)で加熱炉内で保持して熱処理することで酸化処理を行って得た。
【0080】
加熱炉の温度設定は、TG(熱質量分析)法を用いて第1のカーボンナノファイバーの質量減少を測定した結果をみて設定した。TG(熱質量分析)法では、第1のカーボンナノファイバーを大気中で昇温したときの質量減少を測定し、図2に示すような温度に対する第2のカーボンナノファイバーの質量変化を示した。このとき、昇温速度は10℃/min、雰囲気は大気(圧縮空気200ml/min)であった。この測定結果から、第1のカーボンナノファイバーの質量が減少(酸化)し始める600℃から第1のカーボンナノファイバーの質量減少が100%(燃え尽きる)になる800℃の間で加熱炉を表1に示すような5つの設定温度に設定し、5種類の第2のカーボンナノファイバーを得た。第2のカーボンナノファイバーは、表1に示すように、加熱炉の設定温度に応じて「CNT−A(575℃)」、「CNT−B(615℃)」、「CNT−C(650℃)」、「CNT−D(690℃)」、「CNT−E(720℃)」とした。なお、加熱炉内の実際の温度は、設定温度に対し±30℃の範囲であった。
【0081】
また、5種類の第2のカーボンナノファイバーについて、ラマンピーク比(D/G)、窒素吸着比表面積、表面の酸素濃度を測定し、その結果を表1に示した。また、第1及び第2のカーボンナノファイバーの表面の酸素濃度の測定結果に基づいて、酸化処理を行う前の第1のカーボンナノファイバー(「CNT−N」)の表面酸素濃度(a)に対する各第2のカーボンナノファイバーの表面酸素濃度(b)の増加量(c=b−a)及び表面酸素濃度の増加割合(d=100・c/a)を計算し、表1に示した。ラマンピーク比は、KAISER OPTICAL SYSTEM社製HOLOLAB−5000型(532nmND:YAG)を用いてラマン散乱分光法によって第2のカーボンナノファイバーにおける1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)を測定した。窒素吸着比表面積は、ユアサアイオニクス社製NOVA3000型(窒素ガス)を用いて第2のカーボンナノファイバーの窒素吸着比表面積(m/g)を測定した。第2のカーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光分析法(X−ray Photoelectron Spectroscopy))を用いて測定した。具体的には、まず、第2のカーボンナノファイバーを金属台上のカーボンテープ上にふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分な第2のカーボンナノファイバーを振り落として取り除いて、金属台をXPS装置の中に装着した。XPS装置は、日本電子社製の「マイクロ分析用X線光電子分光装置JPS−9200(以下、XPS装置)を用いた。そして、次に、粉体状の試料である第2のカーボンナノファイバーをアルゴンガス濃度8×10−2Pa、0.5分間でアルゴンガスエッチングを行い、第2のカーボンナノファイバーの清浄な表面を出した。さらに、XPS装置のX線源を分析径1mm、対陰極Al/Mgツインターゲット、加速電圧10kV、エミッション電流30mAに設定して第2のカーボンナノファイバーの表面の酸素濃度を測定した。XPSによって検出された第2のカーボンナノファイバーの表面の元素は酸素と炭素であった。
【0082】
【表1】

【0083】
また、カーボンナノファイバーを電子顕微鏡で写真撮影した。図3は第1のカーボンナノファイバー「CNT−N」、図4〜図6はそれぞれ第2のカーボンナノファイバー「CNT−B」、「CNT−C」、「CNT−D」の電子顕微鏡写真である。図4〜図6の第2のカーボンナノファイバーの表面は、図3の「CNT−N」の第1のカーボンナノファイバーの表面に比べて適度に荒れ(酸化され)ており、エラストマーに対する濡れ性の改善が推測される。
【0084】
(2)実施例1〜12及び比較例1〜11の炭素繊維複合材料サンプルの作製
実施例1〜12及び比較例1〜11サンプルとして、オープンロール(ロール設定温度20℃)に、表1に示す所定量のエチレン−プロピレンゴムを投入し、カーボンナノファイバーをエチレンプロピレンゴムに投入し素練りの後、第1の混練工程を行いロールから取り出した。さらに、その混合物をロール温度100℃に設定されたオープンロールに再度投入し、第2の混練工程を行って取り出した。
【0085】
次に、この混合物をオープンロール(ロール温度10〜20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し5回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られた炭素繊維複合材料を投入し、分出しした。
【0086】
分出ししたシートを90℃、5分間圧縮成形して厚さ1mmの実施例1〜12及び比較例1〜11の無架橋体の炭素繊維複合材料サンプルを得た。
また、薄通しして得られた無架橋の炭素繊維複合材料にパーオキサイド2質量部(phr)を混合し、ロール間隙を1.1mmにセットしたオープンロールに投入し、分出しした。分出しして金型サイズに切り取ったパーオキサイドを含む炭素繊維複合材料を金型にセットし、175℃、100kgf/cm、20分間圧縮成形して厚さ1mmの実施例1〜12及び比較例1〜11の架橋体の炭素繊維複合材料サンプルを得た。
【0087】
表2及び表3において、「HAF」は平均粒径27nm、窒素吸着比表面積が82m/gのHAFグレードのカーボンブラックであり、「EPDM」はJSR社製のエチレン−プロピレンゴム(EPDM)の商品名EP103AFであった。また、表2及び表3において、前記(1)で得られた第2のカーボンナノファイバーは「CNT−A」〜「CNT−E」とし、酸化処理しない第1のカーボンナノファイバーは「CNT−N」とした。
【0088】
(3)実施例13〜14及び比較例11〜14の炭素繊維複合材料サンプルの作製
実施例13〜14及び比較例11〜14サンプルとして、オープンロール(ロール設定温度20℃)に、表4に示す所定量の含フッ素エラストマーを投入し、カーボンナノファイバーを含フッ素エラストマーに投入し素練りの後、混合物をロールから取り出した。
次に、この混合物をオープンロール(ロール温度10〜20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し10回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られた炭素繊維複合材料を投入し、分出しした。
【0089】
分出ししたシートを圧縮成形して厚さ1mmの実施例13〜14及び比較例11〜14の無架橋体の炭素繊維複合材料サンプルを得た。
また、薄通しして得られた無架橋の炭素繊維複合材料をロールで圧延後、170℃、10分間プレス成形(キュア)した後、さらに200℃、24時間ポストキュアして、実施例13,14及び比較例11〜14の架橋体の炭素繊維複合材料(厚さ1mmのシート形状)を得た。
【0090】
表4において、「HAF」は平均粒径27nm、窒素吸着比表面積が82m/gのHAFカーボンブラックであり、「2元系FKM」はデュポン・ダウ・エラストマー・ジャパン社製の含フッ素エラストマーのバイトンA−500(分子量50,000)であった。また、表4において、前記(1)の加熱炉温度650℃で得られた第2のカーボンナノファイバーを「CNT−C」とし、酸化処理しない第1のカーボンナノファイバーは「CNT−N」とした。
【0091】
(4)パルス法NMRを用いた測定
実施例1〜14及び比較例1〜14の各無架橋体の炭素繊維複合材料サンプルについて、パルス法NMRを用いてハーンエコー法による測定を行った。この測定は、日本電子(株)製「JMN−MU25」を用いて行った。測定は、観測核がH、共鳴周波数が25MHz、90゜パルス幅が2μsecの条件で行い、ハーンエコー法のパルスシーケンス(90゜x−Pi−180゜x)にて、Piをいろいろ変えて減衰曲線を測定した。また、サンプルは、磁場の適正範囲までサンプル管に挿入して測定した。測定温度は、150℃であった。この測定によって、各サンプルについて第1のスピン−スピン緩和時間(T2n/150℃)と第2のスピン−スピン緩和時間を有する成分の成分分率(fnn)とを求めた。測定結果を表2〜4に示した。なお、同様に測定した原料ゴムの第1のスピンースピン緩和時間(T2n/30℃)は、「EPDM」が520μsec、「2元系FKM」が55μsecであった。また、パルス法NMRを用いてソリッドエコー法による測定を行った。この測定は、日本電子(株)製「JMN−MU25」を用いて行った。測定は、観測核がH、共鳴周波数が25MHz、90゜パルス幅が2μsecの条件で行い、ソリッドエコー法のパルスシーケンス(90゜x−Pi−90゜y)にて、減衰曲線を測定し、無架橋体の炭素繊維複合材料サンプルの150℃におけるスピン−スピン緩和時間(T2s)を検出した。
【0092】
(5)硬度の測定
実施例1〜14及び比較例1〜14の架橋体の炭素繊維複合材料サンプルのゴム硬度(JIS−A)をJIS K 6253に基づいて測定した。測定結果を表2〜4に示す。
【0093】
(6)100%モジュラス(M100)の測定
実施例1〜14及び比較例1〜14の架橋体の炭素繊維複合材料サンプル(幅5mm×長さ50mm×厚さ1mm)を10mm/minで伸長し、100%変形時の応力(M100:100%モジュラス(MPa))を求めた。測定結果を表2〜4に示す。実施例1〜12及び比較例1、10の測定結果を図7にフィラーの配合量(phr)に対して100%モジュラス(MPa)の変化をグラフで示した。図7における符号は、それぞれAは「CNT−A(比較例10)」、Bは「CNT−B」,Cは「CNT−C」,Dは「CNT−D」,Hは「HAF」,Nは「CNT−N」、EPDMは「EPDM単体(比較例1)」である。また、この測定結果に基づいて、エラストマー100重量部に配合されたカーボンナノファイバー1重量部当たりにおける、エラストマー単体の100%モジュラスに対する炭素繊維複合材料の100%モジュラスの上昇率(M100上昇率)を計算した。100%モジュラスの上昇率(M100上昇率)は、例えば、実施例1であれば、実施例1と比較例1のM100の差(4.9−1.4=3.5)を比較例1のM100の値(1.4)で割り、さらに実施例1のCNT−Aの配合量(20)で割った百分率(12.5%)である。
【0094】
(7)引張強さ(MPa)及び破断伸び(%)の測定
各架橋体の炭素繊維複合材料サンプルを1A形のダンベル形状に切り出した試験片について、東洋精機社製の引張試験機を用いて、23±2℃、引張速度500mm/minでJIS K6251に基づいて引張試験を行い引張強さ(MPa)及び破断伸び(%)を測定した。これらの結果を表2〜4に示す。実施例1〜12及び比較例1〜9の測定結果を図8にM100(MPa)に対して破断伸び(%)の変化をグラフで示した。図8における符号は、それぞれAは「CNT−A(比較例10)」、Bは「CNT−B」,Cは「CNT−C」,Dは「CNT−D」,Hは「HAF」,Nは「CNT−N」,EPDMは「EPDM単体(比較例1)」である。
【0095】
(8)動的粘弾性試験
実施例1〜14及び比較例1〜14の架橋体の炭素繊維複合材料サンプルを短冊形(40×1×5(巾)mm)に切り出した試験片について、SII社製の動的粘弾性試験機DMS6100を用いて、チャック間距離20mm、測定温度−100〜300℃、動的ひずみ±0.05%、周波数10HzでJIS K6394に基づいて動的粘弾性試験を行い動的弾性率(E’、単位はMPa)を測定した。測定温度が25℃と200℃における動的弾性率(E’)の測定結果を表2〜4に示す。また、この測定結果に基づいて、測定温度200℃、エラストマー100重量部に配合されたカーボンナノファイバー1重量部当たりにおける、エラストマー単体の動的弾性率に対する炭素繊維複合材料の動的弾性率の上昇率(E’上昇率)を計算した。動的弾性率の上昇率(E’上昇率)は、例えば、実施例1であれば、実施例1と比較例1のE’上昇率の差(18−4.7=13.3)を比較例1の動的弾性率の値(4.7)で割り、さらに実施例1のCNT−Aの配合量(20)で割った百分率(14.1%)である。
【0096】
(9)クリープ特性の測定
実施例1〜14及び比較例1〜14の架橋体の炭素繊維複合材料サンプルについて、120℃で250KPaの負荷をかけ、耐熱クリープ試験を行ない、200分〜900分の間における定常クリープ期の1時間当たりのクリープ変形速度(ppm/時間)を測定した。クリープ変形速度は、クリープ瞬間ひずみの後かつ加速クリープ期の前の定常クリープ期における1時間当たりのひずみ変化量(1ppm=0.0001%)であり、表2〜4では「クリープ速度」と示す。これらの結果を表2〜4に示す。
【0097】
(10)平均線膨張係数の測定
実施例1〜14及び比較例1〜14の架橋体の炭素繊維複合材料サンプルについて、測定温度範囲における平均線膨張係数を測定した。これらの結果を表2〜4に示す。測定装置はSII社製TMASS、測定試料形状は1.5mm×1.0mm×10mm、側長荷重は25KPa、測定温度は室温〜150℃、昇温速度は2℃/分であった。
【0098】
【表2】

【0099】
【表3】

【0100】
【表4】

【0101】
表2〜4から、本発明の実施例1〜14によれば、以下のことが確認された。すなわち、本発明の実施例1〜14の表面が適度に酸化処理されたカーボンナノファイバーを用いた架橋体の炭素繊維複合材料サンプルは、比較例1〜14に比べてM100上昇率及びE’上昇率が高く、カーボンナノファイバーとエラストマーとの濡れ性が向上したことによって剛性、特に高温における剛性が向上したことがわかった。また、図7及び図8から、本発明の実施例1〜12の架橋体の炭素繊維複合材料サンプルは、比較例1〜9に比べてM100が大きくかつ破断伸びが大きいので、剛性と柔軟性とを兼ね備えることがわかった。実施例1〜14の無架橋体の炭素繊維複合材料サンプルは、スピン−スピン緩和時間(T2s/150℃)は、同じ量のカーボンナノファイバーを配合した比較例2〜5、10、11、13、14に比べT2nが短くなり、fnnが小さくなった。なお、比較例10は、第2のカーボンナノファイバーの表面の酸化処理が不十分であったため、比較例5の第1のカーボンナノファイバーを用いた炭素繊維複合材料の物性とほとんど変わらなかった。また、比較例11は、第2のカーボンナノファイバーの表面が熱処理によって傷みすぎてしまったため、M100、引張強さ及び破断伸びにおける物性が低下した。
【図面の簡単な説明】
【0102】
【図1】オープンロール法による炭素繊維複合材料の製造方法を模式的に示す図である。
【図2】TG(熱質量分析)法による温度に対する第2のカーボンナノファイバーの質量変化を示したグラフである。
【図3】比較例2〜5に用いた第1のカーボンナノファイバー(CNT−N)の電子顕微鏡写真である。
【図4】実施例1〜4に用いた第2のカーボンナノファイバー(CNT−B)の電子顕微鏡写真である。
【図5】実施例5〜8に用いた第2のカーボンナノファイバー(CNT−C)の電子顕微鏡写真である。
【図6】実施例9〜12に用いた第2のカーボンナノファイバー(CNT−D)の電子顕微鏡写真である。
【図7】実施例1〜12及び比較例1〜9のフィラーの充填量−M100のグラフである。
【図8】実施例1〜12及び比較例1〜9のM100−破断伸びのグラフである。
【符号の説明】
【0103】
10 第1のロール
20 第2のロール
30 エラストマー
36 混合物
40 第2のカーボンナノファイバー
50 炭素繊維複合材料
d ロール間隔
V1 第1のロールの表面速度
V2 第2のロールの表面速度

【特許請求の範囲】
【請求項1】
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して得られた、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である、カーボンナノファイバー。
【請求項2】
請求項1において、
ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22である、カーボンナノファイバー。
【請求項3】
請求項1または2において、
窒素吸着比表面積が34m/g〜58m/gである、カーボンナノファイバー。
【請求項4】
請求項1〜3のいずれかにおいて、
平均直径が4nm〜230nmである、カーボンナノファイバー。
【請求項5】
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量は、0.5atm%〜2.6atm%である、カーボンナノファイバーの製造方法。
【請求項6】
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合は、20%〜120%である、カーボンナノファイバーの製造方法。
【請求項7】
請求項5または6において、
前記工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃〜800℃で熱処理する、カーボンナノファイバーの製造方法。
【請求項8】
請求項5〜7のいずれかにおいて、
前記工程は、前記第1のカーボンナノファイバーの質量を2%〜20%減量して前記第2のカーボンナノファイバーを得る、カーボンナノファイバーの製造方法。
【請求項9】
請求項5〜8のいずれかにおいて、
前記工程で得られた前記第2のカーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である、カーボンナノファイバーの製造方法。
【請求項10】
請求項5〜9のいずれかにおいて、
前記工程で得られた前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22である、カーボンナノファイバーの製造方法。
【請求項11】
請求項5〜10のいずれかにおいて、
前記工程で得られた前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g〜58m/gである、カーボンナノファイバーの製造方法。
【請求項12】
請求項5〜11のいずれかにおいて、
前記工程で得られた前記第2のカーボンナノファイバーは、平均直径が4nm〜230nmである、カーボンナノファイバーの製造方法。
【請求項13】
気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、
前記第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る第2の工程と、
を含み、
前記第1の工程で得られた前記第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%である、炭素繊維複合材料の製造方法。
【請求項14】
請求項13において、
前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%〜2.6atm%になるように酸化処理する、カーボンナノファイバーの製造方法。
【請求項15】
請求項13において、
前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%〜120%になるように酸化処理する、カーボンナノファイバーの製造方法。
【請求項16】
請求項13〜15のいずれかにおいて、
前記第1の工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃〜800℃で熱処理する、炭素繊維複合材料の製造方法。
【請求項17】
請求項13〜16のいずれかにおいて、
前記第1の工程は、前記第1のカーボンナノファイバーの質量を2%〜20%減量して前記第2のカーボンナノファイバーを得る、炭素繊維複合材料の製造方法。
【請求項18】
請求項13〜17のいずれかにおいて、
前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22である、炭素繊維複合材料の製造方法。
【請求項19】
請求項13〜18のいずれかにおいて、
前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g〜58m/gである、炭素繊維複合材料の製造方法。
【請求項20】
請求項13〜19のいずれかにおいて、
前記第1のカーボンナノファイバーは、平均直径が4nm〜250nmである、炭素繊維複合材料の製造方法。
【請求項21】
請求項13〜20のいずれかで製造された炭素繊維複合材料。
【請求項22】
エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%〜4.6atm%であるカーボンナノファイバーを含む、炭素繊維複合材料。
【請求項23】
請求項22において、
前記カーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.12〜0.22である、炭素繊維複合材料。
【請求項24】
請求項22または23において、
前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g〜58m/gである、炭素繊維複合材料。

【図1】
image rotate

【図2】
image rotate

【図7】
image rotate

【図8】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−275337(P2009−275337A)
【公開日】平成21年11月26日(2009.11.26)
【国際特許分類】
【出願番号】特願2008−181248(P2008−181248)
【出願日】平成20年7月11日(2008.7.11)
【出願人】(000226677)日信工業株式会社 (840)
【出願人】(504469776)MEFS株式会社 (13)
【Fターム(参考)】