説明

バイオマスの処理システム

【課題】 バイオマスを、コンポスト化することなく有効利用可能に処理する方法を提供すること。
【解決手段】 バイオマスを水素発酵させる水素発酵槽;該水素発酵槽と連結し、生成する水素発酵ガスを回収する水素発酵ガス回収装置;該水素発酵の残渣を受け入れメタン発酵させるメタン発酵槽;該メタン発酵槽と連結し、生成するメタン発酵ガスを回収するメタン発酵ガス回収装置;該メタン発酵の残渣を固液分離し、脱水残渣を回収するための固液分離装置;および、該脱水残渣を可燃性ガス化する可燃性ガス化装置を備える、バイオマス処理システムが提供される。

【発明の詳細な説明】
【技術分野】
【0001】
バイオマスの処理方法に関する。より詳細には、バイオマスを、コンポスト化することなく有効利用可能に処理する方法に関する。
【背景技術】
【0002】
生ごみ、家畜糞尿、下水汚泥などの有機性廃棄物、または資源作物あるいはその廃棄物などの処理システムとして、微生物利用技術が行われており、好気発酵によりコンポストを得るシステム、嫌気発酵によりメタンガスを発生させてそれを燃料として用いるシステムなどがある。
【0003】
好気発酵によりコンポストを得る場合、常に酸素(空気)を送給する必要があるため、送風時に臭気が飛散するという問題があり、環境上好ましいものではなく、改良の要請が強い。
【0004】
一方、密閉したシステムで処理が可能な嫌気発酵では、そのような問題がないため、近年注目を集めており、このシステムによる処理が増大している。そして、嫌気発酵システムから得られたメタンガスは、発電装置などに送給されて有効に利用されている。さらに、メタン発酵残渣は、脱水処理された後、コンポストなどとして有効利用されるようになっている。しかし、現在、コンポストは供給過剰になっているため、このような発酵残渣は廃棄・埋立処分される場合が多く、そのための処理コストが必要であるなど、発酵残渣の処理方法についてさらなる改善が望まれている。
【0005】
そこで、有機性廃棄物を発酵槽でコンポスト化した後、得られたコンポストを炭化装置で炭化処理し、発酵工程で発生する臭気ガスを炭化処理工程で発生する乾留ガスと混合して燃焼させる方法が提案されている(特許文献1)。また、有機性廃棄物のメタン発酵残渣をガス化して、発電に供する方法も考案されている(特許文献2)。
【特許文献1】特開2000−107731号公報
【特許文献2】特開2002−151131号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、バイオマスを、コンポスト化することなく有効利用可能に処理する方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、バイオマスを水素発酵処理し、次いでメタン発酵処理した残渣をガス化することにより、嫌気発酵残渣の有効利用が可能となることを見出したことに基づく。
【0008】
本発明は、バイオマスを水素発酵させる水素発酵槽;該水素発酵槽と連結し、生成する水素発酵ガスを回収する水素発酵ガス回収装置;該水素発酵の残渣を受け入れメタン発酵させるメタン発酵槽;該メタン発酵槽と連結し、生成するメタン発酵ガスを回収するメタン発酵ガス回収装置;該メタン発酵の残渣を固液分離し、脱水残渣を回収するための固液分離装置;および、該脱水残渣を可燃性ガス化する可燃性ガス化装置を備える、バイオマス処理システムを提供する。
【0009】
一つの実施態様において、本発明のバイオマス処理装置は、前記脱水残渣を乾燥し、乾燥した脱水残渣を可燃性ガス化装置に供給する乾燥装置をさらに備えている。
【0010】
さらに、別の実施態様において、本発明のバイオマス処理装置は、前記可燃性ガス送給装置からの可燃性ガスにより発電を行う発電装置を備えている。
【0011】
また、別の実施態様において、本発明のバイオマス処理装置は、メタン発酵ガス回収装置からのメタンガスを発電装置に導入するメタンガス送給装置をさらに備える。
【0012】
本発明は、さらに、バイオマスを水素発酵させて、水素発酵ガスおよび水素発酵残渣を得る工程;該水素発酵残渣をメタン発酵させて、メタン発酵ガスおよびメタン発酵残渣を得る工程;該メタン発酵残渣を固液分離して、脱水濾液および脱水残渣を得る工程;および該脱水残渣を可燃性ガス化する工程;を含む、バイオマスの処理方法を提供する。
【0013】
一つの実施態様において、本発明の方法は、該可燃性ガスを発電装置に送給し、発電を行う工程を含む。
【発明の効果】
【0014】
本発明によれば、ガス化処理前に、水素発酵処理とメタン発酵処理とを組み合わせることにより、水素ガスが回収され、さらにメタンガスの単位時間あたりの発生量が増加するため、バイオマスからのエネルギー回収量が増加する。また、発酵残渣(固形分)の量および含水率が、メタン発酵単独の場合に比べて、低下する。そのため、脱水残渣(固形分)を可燃性ガス化する過程における必要な乾燥エネルギーが大きく削減でき、可燃性ガス化装置の小型化が可能となる。得られた可燃性ガスは、発電用の燃料として利用できるので、発酵残渣を近年過剰気味のコンポスト以外の用途として使用できる。
【0015】
このように、本発明によれば、バイオマスから発酵によってエネルギーを回収し、さらに発酵残渣を可燃性ガス化して、熱エネルギーを回収できる。しかも、最終廃棄物の量が大きく減少するので、バイオマスの著しい減量が達成される。
【発明を実施するための最良の形態】
【0016】
本発明のバイオマス処理システムを、添付の図面を参照しつつ、説明する。
【0017】
図1は、本発明のバイオマス処理システムの一実施態様を示す系統図である。本発明のバイオマス処理システムは、バイオマス1を水素発酵させる水素発酵槽2;該水素発酵槽2と連結し、生成する水素発酵ガス3を回収する水素発酵ガス回収装置31;該水素発酵の残渣4を受け入れメタン発酵させるメタン発酵槽5;該メタン発酵槽5と連結し、生成するメタン発酵ガス6を回収するメタン発酵ガス回収装置61;該メタン発酵の残渣7を固液分離し、脱水残渣9を回収するための固液分離装置8;および、該脱水残渣9を可燃性ガス化する可燃性ガス化装置13を備えている。
【0018】
可燃性ガス化装置13で生成した可燃性ガス14は、燃料として利用される。例えば、後述の発電装置において、発電のために利用され、生じた電力は、本発明のバイオマス処理システムを構成する各装置における消費電力として利用される他、売電される。
【0019】
図2は、図1のシステムに加えて、バイオマス1を前処理し、水素発酵槽2に供給するための前処理槽20、メタン発酵の脱水残渣9を乾燥し、乾燥物12を得て、これを可燃性ガス化装置13に供給するための乾燥装置11、および可燃性ガス14を燃焼させて発電するための発電装置15を備え、それにより電力16を得るように構成されている。また、必要に応じて、メタン発酵ガス6からのメタンガスを貯蔵するガス貯蔵装置17を備えている。
【0020】
図2における前処理槽20は、必ずしも必要ないが、後述するように、難分解性のバイオマスを水素発酵する場合に、備えることが好ましい。さらに、乾燥装置11は、可燃性ガス化装置13に乾燥手段が組み込まれている場合は、特に必要とされないが、可燃性ガス化装置とは別に設けることが好ましい。
【0021】
以下、本発明のバイオマス処理システムを用いて、バイオマスを処理する方法について図1および図2に基づいて、説明する。本発明のバイオマス処理方法は、バイオマス1を必要に応じて前処理する工程(図2参照)、バイオマス1あるいは前処理された前処理後バイオマス21(図2参照)を水素発酵させて、水素発酵ガス3および水素発酵残渣4を得る工程;該水素発酵残渣4をメタン発酵させて、メタン発酵ガス6およびメタン発酵残渣7を得る工程;該メタン発酵残渣7を固液分離して、脱水濾液10および脱水残渣9を得る工程;必要に応じて、該脱水残渣9を乾燥する工程;該脱水残渣9あるいは脱水残渣9の乾燥物12を可燃性ガス化する工程;を含む。好ましくは、さらに、可燃性ガス14を発電装置15で燃焼させて発電する工程をさらに含む(図2参照)。このように、本発明の方法は、バイオマスから、水素およびメタンをエネルギーとして回収し、さらに、その発酵残渣をガス化し、そのガスを発電などの用途に利用することに特徴がある。
【0022】
(バイオマス)
本明細書で、バイオマスとは、生物由来の有機資源を意味する。好ましくは、有機性廃棄物、資源作物あるいはその廃棄物などの有機性物質が用いられる。有機性廃棄物としては、例えば、食品工業、製紙工業、畜産業などにおける有機性廃水、有機廃棄物、あるいは糞尿、または都市下水の汚泥などが例示されるが、有機物を含む廃棄物であれば、これらに制限されない。資源作物としては、例えば、とうもろこし、さとうきびなどが挙げられ、さらにこれらの処理工程で発生する廃棄物なども、本発明に使用される。
【0023】
まず、バイオマス1を、図1に示すようにそのまま水素発酵に供するか、もしくは図2に示すようにバイオマス1を前処理槽20で前処理する。
【0024】
(前処理)
バイオマス1の前処理手段に特に制限はなく、例えば、加熱処理、超音波処理、破砕処理、酸処理、アルカリ処理などの物理化学的処理が挙げられる。これらの処理は、単独で、あるいは組み合わせて行われる。これらの前処理によって、バイオマス1を発酵されやすい形態に変化させる。
【0025】
バイオマス1が、有機汚泥などの難分解性物質を含む場合には、これらの難分解性物質を可溶化するために、アルカリ処理をすることが好ましい。アルカリ前処理を行うことにより、前処理後バイオマス21が水素発酵微生物によって利用され易くなり、水素発生効率が向上する。さらに、水素発酵工程中にpHが低下することから、アルカリ性の前処理後バイオマス21を水素発酵槽2に投入することが好ましい。すなわち、アルカリ処理した前処理後バイオマス21が、水酸化ナトリウム、水酸化カリウムなどのアルカリ剤の代わりに、水素発酵槽2に投入される。
【0026】
アルカリ処理に特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ剤を用いて、バイオマス1のpHは10以上、好ましくはpH10〜12に調整される。アルカリ処理は、通常0.5〜24時間、好ましくは2〜12時間攪拌することにより行われる。連続的にアルカリ前処理を行う場合、滞留時間が0.5〜24時間、好ましくは2〜12時間となるように処理を行う。このような処理により、バイオマス1中に含まれる水素消費型細菌、あるいは水素発酵に悪影響を与える微生物(例えば、乳酸菌、メタン生成菌など)の活動を低下させ、あるいはこれらの微生物を死滅させることができる。
【0027】
アルカリ前処理は、加熱下で行ってもよい。加熱温度に特に制限はないが、30℃〜90℃で、あるいは35〜80℃で行われる。さらに、アルカリ処理の効率を高めるために超音波処理、破砕処理などを組合せてもよい。超音波処理の条件に特に制限はなく、処理温度、処理量を考慮して、周波数、処理時間を適宜決定すればよい。
【0028】
バイオマス1が酸処理に適したものである場合は、酸処理を行った後、そのまま前処理後バイオマス21として用いてもよい。しかし、次の水素発酵工程においてアルカリ性に調整しておくことが有利である場合は、酸処理後のバイオマスをさらにアルカリ側にpH調整し、アルカリ性の前処理後バイオマス21としてもよい。この場合も、pHは、好ましくは10以上、より好ましくはpH10〜12に調整され得る。
【0029】
(水素発酵)
上記バイオマス1あるいは前処理後バイオマス21は、水素発酵槽2に導入され、水素発酵が行われる。
【0030】
水素発酵槽2は、バイオマス1の投入口、水素発酵ガス3を回収する水素発酵ガス回収装置21、および水素発酵残渣4の取出口が備えられている。水素発酵槽2内は、嫌気性雰囲気に保たれている。この水素発酵槽2内で、バイオマス1を水素発酵させることにより、水素および二酸化炭素を主成分とする水素発酵ガス3が生成する。
【0031】
水素発酵に使用される微生物は、嫌気性非光合成微生物群あるいは純粋菌であり、水素生成能を有する微生物群または純粋菌であれば、どのような由来のものでもよい。好適には、水素生成能を有する微生物群が用いられ、例えば、下水汚泥や生ごみのメタン発酵後の汚泥、あるいはその培養物が用いられる。水素発酵は、一般的には20〜60℃、好ましくは30〜37℃で行われる。
【0032】
本発明においては、水素発酵は、酸性条件下あるいはアルカリ条件下で行われる。酸性条件下で行われる場合、pHは、好ましくは4〜7.5であり、より好ましくはpH5.5〜7である。水素発酵中に有機酸が生成して水素発酵液のpHが低下するので、アルカリ前処理した前処理後バイオマス21をpH調整のために水素発酵槽2に添加しても良い。アルカリ条件下で行われる場合、pHは10〜12で行うことが好ましい。
【0033】
生成した水素発酵ガス3は、水素発酵ガス回収装置21に回収された後、適宜精製(炭酸ガスなどの除去)され、燃料電池用燃料として使用されたり、あるいは水素ガスステーションへ供給され得る。あるいは、以下に詳述する乾燥工程に使用する乾燥装置11の燃料として、または水素発酵槽2もしくはメタン発酵槽5を所定の温度に維持するための熱源として、利用することもできる。
【0034】
水素発酵残渣4は、水素発酵槽2で生成した有機酸、分解されなかった有機物などを含有するので、これをメタン発酵させることにより、バイオマス1からの更なるエネルギー回収が可能となるのみならず、廃棄物の量が減少する。
【0035】
(メタン発酵)
この水素発酵残渣4は、次いで、メタン発酵槽5へ移送され、嫌気的にメタン発酵される。水素発酵残渣4のメタン発酵によって、水素発酵の副生物である有機酸(酢酸、ギ酸、乳酸、酪酸、プロピオン酸など)、あるいは水素発酵では利用されなかった炭水化物、タンパク質、脂質などから、メタン発酵ガス6が生成される。したがって、上記のように、バイオマス1から、さらなるエネルギーが回収される。
【0036】
メタン発酵細菌は、活性汚泥や消化汚泥を嫌気条件下で馴養することにより、集積される。メタン発酵は、一般的に25〜65℃、好ましくは30〜40℃、高温菌の場合は50〜60℃で行われる。メタン発酵は、一般的にpH5〜10、好ましくは7〜9のアルカリ側で行われる。メタンガスの発生量(有機物の分解率)は、一般に、高温発酵の方が中温発酵よりも高い。
【0037】
このメタン発酵においては、水素発酵残渣4がアルカリ性である場合は、そのままメタン発酵に使用してもよく、あるいはpH調整剤の添加によってpH調整を行ってもよい。
【0038】
メタン発酵槽5は、メタン発酵ガス6を回収するメタン発酵ガス回収装置22を備えている。メタン発酵で生じたメタン発酵ガス8は、通常、メタンガスと二酸化炭素との混合ガスである。この発生ガスは、そのまま、あるいは二酸化炭素除去を行った後、メタン発酵ガス回収装置22に貯留してもよい。
【0039】
生成したメタン発酵ガス6は、メタン発酵ガス回収装置22に回収された後、適宜精製(炭酸ガスなどの除去)され、必要に応じてガス貯蔵装置17に貯蔵され(図2参照)、メタンガスとしてガス発電に供され得る。あるいは、メタンガスは、さらに水素へ改質され、上記と同様に水素として別途使用され得る。
【0040】
本発明においては、バイオマス1を水素発酵させた後にメタン発酵に供しているため、バイオマス1を直接メタン発酵させる従来のシステムに比べて、メタン発酵後の有機物の分解率が10〜20%程度向上している。そのため、メタンガスの発生量が多くなるとともに、生成するメタン発酵残渣7は、従来システムのメタン発酵残渣に比べて有機物含有量が少ない。しかし、メタン発酵残渣7は有機物を含有するので、さらに水素発酵槽2あるいは前処理槽20に返送することができ、廃棄されるバイオマス1の量が減少する。さらに、メタン発酵残渣はアルカリ性であるため、バイオマス1の処理に使用するアルカリ量を減少することができる。
【0041】
次に、このメタン発酵残渣7を、脱水残渣9を回収するための固液分離装置8に投入する。この固液分離装置8により、メタン発酵残渣7は脱水濾液10と脱水残渣9とに分離される。固液分離装置8としては、通常、汚泥などの分離に用いる脱水機で、十分な固液分離能を有するものであれは特に制限はなく用いられる。このような固液分離機としては、例えば、遠心脱水機、スクリュープレス脱水機、ロータリープレス脱水機などが挙げられる。この固液分離装置8によりメタン発酵残渣7が固液分離され、脱水残渣(固形分)9と脱水濾液10とに分離される。脱水残渣(固形分)9中の水分含量は、85質量%以下であることが好ましく、80質量%以下であることがより好ましい。脱水濾液10は、当該技術分野で通常行われる水処理に供される。
【0042】
脱水残渣(固形分)9は、次いで、必要に応じて、乾燥装置11に移送され、好ましくは水分含量が20〜40%となるように乾燥され、乾燥物12が得られる。
【0043】
さらに、得られた乾燥物12を、可燃性ガス化装置13に投入して、可燃性ガス化する。この可燃性ガス化装置13では、約900℃の高温水蒸気と有機性物質とを接触させ、一酸化炭素、水素、メタンなどの可燃性ガス14を発生させるとともに、有機性物質が低分子化される。有機物をガス化することにより、バイオマス1の量は、最初に投入された量の1/200〜1/10まで減らすことができる。
【0044】
なお、図2においては、乾燥装置11と可燃性ガス化装置13とが別々の装置として構成されているが、図1に示すように、乾燥および可燃性ガス化の機能を1つの装置内に備えるように構成されたガス化装置13を用いてもよい。
【0045】
可燃性ガス化装置13から取り出された可燃性ガス14は、例えば図2に示すように、発電用エネルギーとして発電装置15に送給される。発電装置15は、例えば、燃料電池が備えられており、送給されたガス14を原料として発電が行われる。また、上述のように、メタン発酵ガス回収装置61に回収されたメタン発酵ガス6あるいは精製されたメタンガスは、ガス貯蔵装置17に貯蔵される。このメタンガスを発電装置15に送給し、発電に利用してもよい。
【0046】
発電された電力16は、本発明のバイオマス処理システムを構成する各装置における消費電力として利用され得る。あるいは、余剰の電力16は、売電され得る。一方、ガス化装置13、発電装置15などの運転によって生じる排熱(図2において破線の矢印で示す)は、水素発酵槽2およびメタン発酵槽5の保温、乾燥装置11における乾燥などにおける熱源として利用することも可能である。
【0047】
以下に実施例を挙げて、本発明をより詳細に説明する。
【実施例】
【0048】
(実施例1)
汚泥(水分96%)20kgを水素発酵およびメタン発酵に供した。汚泥を80℃まで加熱して前処理をした後、水素発酵を温度35℃で行った。水素の発生が止まった時点で、水素発酵残渣をメタン発酵に供した。メタン発酵は、高温(温度55℃)で行い、メタンガスの発生が止まったところで発酵を終了した。発酵残渣を3000rpmで遠心分離して、脱水し、脱水後の固形分量および水分量を測定し、ついで、水分40%以下まで乾燥し、900℃の高熱蒸気で可燃性ガス化した。結果を表1に示す。
【0049】
(比較例1)
実施例1と同じ汚泥(水分96%)20kgを、水素発酵することなく、そのままメタン発酵に供した。実施例1と同様にメタン発酵を行い、脱水残渣を可燃性ガス化した。結果を表1に示す。
【0050】
【表1】

【0051】
表1の結果が示すように、水素発酵とメタン発酵とを組合わせた実施例1のメタン発酵の効率が、メタン発酵を単独で行った場合(比較例1)よりも大きかった。さらに、水素発酵とメタン発酵とを組合わせた実施例1の脱水残渣の量および水分量が、メタン発酵のみの場合(比較例1)に比べて、低下した。実施例1で生じる可燃性ガスは、比較例1で生じる可燃性ガスとほぼ同量回収された。このように、水素発酵とメタン発酵とを組み合わせることにより、エネルギーの回収量が増加し、そのうえ、脱水残渣(固形分)の量および含水率が低下することから、脱水残渣の乾燥に必要なエネルギーが大幅に削減できる。そのため、可燃性ガス化装置の小型化を図ることができ、さらに、発酵によるエネルギー回収も加えると、トータルのエネルギー回収量が向上する。
【産業上の利用可能性】
【0052】
本発明によれば、水素発酵とメタン発酵とを組合せることにより、バイオマスからのエネルギー回収量が増加し、メタン発酵後の脱水残渣から可燃性ガスを生じさせるので、近年過剰気味のコンポストの代わりに、バイオマスを発電用の燃料などの用途に利用できるようになる。さらに、可燃性ガス化対象物質の量および水分量が減少することから、可燃性ガス化装置の小型化を図ることができる。発酵によるエネルギー回収を考慮すると、トータルのエネルギー回収量が向上するので、バイオマスの処理において、極めて有用な装置として利用される。
【図面の簡単な説明】
【0053】
【図1】本発明のバイオマス処理方法の一実施態様を示す系統図である。
【図2】本発明のバイオマス処理方法の別の実施態様を示す系統図である。
【符号の説明】
【0054】
1 バイオマス
2 水素発酵槽
3 水素発酵ガス
4 水素発酵残渣
5 メタン発酵槽
6 メタン発酵ガス
7 メタン発酵残渣
8 脱水装置
9 脱水残渣(固形分)
10 脱水濾液
11 乾燥装置
12 乾燥物
13 ガス化装置
14 可燃性ガス
15 発電装置
16 電力
17 ガス貯蔵装置
20 前処理槽
21 前処理後バイオマス
31 水素発酵ガス回収装置
61 メタン発酵ガス回収装置

【特許請求の範囲】
【請求項1】
バイオマスを水素発酵させる水素発酵槽;該水素発酵槽と連結し、生成する水素発酵ガスを回収する水素発酵ガス回収装置;該水素発酵の残渣を受け入れメタン発酵させるメタン発酵槽;該メタン発酵槽と連結し、生成するメタン発酵ガスを回収するメタン発酵ガス回収装置;該メタン発酵の残渣を固液分離し、脱水残渣を回収するための固液分離装置;および、該脱水残渣を可燃性ガス化する可燃性ガス化装置を備える、バイオマス処理システム。
【請求項2】
前記脱水残渣を乾燥し、乾燥した脱水残渣を可燃性ガス化装置に供給する乾燥装置をさらに備える、請求項1に記載のバイオマス処理システム。
【請求項3】
さらに、前記可燃性ガス送給装置からの可燃性ガスにより発電を行う発電装置を備える、請求項1または2に記載のバイオマス処理システム。
【請求項4】
メタン発酵ガス回収装置からのメタンガスを発電装置に導入するメタンガス送給装置をさらに備える、請求項3に記載のバイオマス処理システム。
【請求項5】
バイオマスを水素発酵させて、水素発酵ガスおよび水素発酵残渣を得る工程;
該水素発酵残渣をメタン発酵させて、メタン発酵ガスおよびメタン発酵残渣を得る工程;
該メタン発酵残渣を固液分離して、脱水濾液および脱水残渣を得る工程;および
該脱水残渣を可燃性ガス化する工程;を含む、バイオマスの処理方法。
【請求項6】
さらに、該可燃性ガスを発電装置に送給し、発電を行う工程を含む、請求項5に記載のバイオマスの処理方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2006−82075(P2006−82075A)
【公開日】平成18年3月30日(2006.3.30)
【国際特許分類】
【出願番号】特願2005−230985(P2005−230985)
【出願日】平成17年8月9日(2005.8.9)
【出願人】(000133032)株式会社タクマ (308)
【Fターム(参考)】