説明

バサルト繊維材料

【課題】玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体を形成・維持し、バサルト繊維の結晶化及び固着を抑制すること、及びバサルト繊維の耐熱性を従来の750℃から850〜900℃まで大幅に向上させ、かつ従来品と比べて大幅な低コスト化を達成する。
【解決手段】含有する元素量の異なる2種の玄武岩を原料としたことを特徴とするバサルト繊維材料;及び含有する元素量の異なる2種の玄武岩を原料とし、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とするバサルト繊維材料。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸音特性と耐熱性に優れたバサルト繊維に関する。さらに詳しくは、本発明は、自動車用マフラーなどに好適に使用される、吸音特性と耐熱性に優れると共に、安価な耐熱性バサルト繊維に関するものである。
【背景技術】
【0002】
自動車用マフラーは、排気音を吸収するための部品であり、その吸音材として、現在ガラス繊維が使用されている。しかしながら、最近の自動車エンジンの省エネルギー化および排ガス規制に伴い、エンジン温度が上昇し、その結果排気ガス温度もマフラー部において、800℃以上になる。そのため、マフラーに使用される吸音材の高耐熱性化(850〜900℃に対応)が急務になってきている。
【0003】
耐熱性ガラス繊維としては、Eガラスの繊維を酸処理したものが知られている。このものは、組成が、SiO50〜63重量%、Al 12〜16重量%、B 8〜13重量%、CaO+MgO 15〜20重量%、NaO+KO微量である一般的なEガラス繊維を、例えば濃度9〜12重量%の塩酸を用いて、40〜70℃の温度で、約30分〜数時間、浸漬処理することにより、表層部をSiO含有率80重量%以上のシリカ質ガラスにし、耐熱性を付与したものである。
【0004】
この酸処理Eガラス繊維は、紡糸温度と液相温度の差が大きくて紡糸が容易であり、かつ安価であるなどの長所を有しているが、排気ガス温度が700℃以上のマフラー部における吸音材用としては、耐熱性が不十分であり、使用しにくいという欠点を有している。このため、該吸音材用として、耐熱性の高いSガラス繊維の使用が考えられるが、このSガラスは非常に高価である。
【0005】
そこで、下記特許文献1には、排気ガス温度が800℃以上の自動車マフラー部における吸音材などとして好適な耐熱性ガラス繊維として、繊維全体として、実質上重量%で、SiO 56〜58.5%、Al 12〜17%、CaO 16〜27%、MgO 1〜9%、NaO 0〜1%、KO 0〜1%を含み、BおよびFを含まないガラス組成を有し、かつ表層部がSiO含有率90重量%以上のシリカ質ガラスからなる耐熱性ガラス繊維、および上記組成を有するガラス繊維の表面を鉱酸で酸処理した該耐熱性ガラス繊維が開示されている。
【0006】
一方、天然の玄武岩(バサルト)原石を原料としたバサルト長繊維は、従来のガラス長繊維と比較し、きわめて安価である。しかし、約750℃から約900℃の高温で使用するとガラス成分から結晶相が生成し、可撓性の消失、結晶層とガラス層界面での剥離等の問題が発生するという問題があった。
【0007】
即ち、下記(1)〜(5)のような問題点があった。
(1)SiO、Al、CaOを主成分とする市販のガラス繊維は排気系の高温(〜800℃)ガスに暴露されると吸音特性・耐久性に問題が発生する。
(2)SiO、Si、MgOを主成分とする市販のガラス繊維は排気系の高温(〜830℃)ガスに暴露されると吸音特性・耐久性に問題が発生する。
(3)市販のガラス長繊維は高コストである。
(4)上記(1)〜(3)を解決するため天然原料を用いたバサルト繊維の適用が検討されている。代表例としてAl量はほぼ同程度であるがSiO量の多い原石(高温度用(A))と、SiO量が少ない原石(中温度用(B))の2種のバサルト繊維が組成も安定し、大量に入手可能である。原石(A)を原料としたバサルト繊維は繊維化は可能であるが750℃以上の温度領域で耐熱性に問題があり、原石(B)を用いた場合は繊維の量産時のエネルギー費が上昇する。
(5)以上より、高耐熱性・低コスト・高耐久性を満足する吸音用ガラス繊維や自動車用断熱部品材料が入手できない。
【0008】
なお、下記特許文献2には、バサルト繊維を樹脂に添加して自動車用内装材とする発明が開示されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2001−206733号公報
【特許文献2】特開2001−315588号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明者らが研究した結果、天然の玄武岩(バサルト)原石を原料としたバサルト長繊維を用いると、上記の問題点・課題が発生する理由は、下記(1)〜(4)にあることが判明した。
(1)完全なガラス相から一部結晶化が進行し、またCa−Si−O系の低融点結晶相の生成によって繊維同士が固着するため見かけの繊維径が単繊維径の数倍になって固化するため可撓性が失われる。
(2)完全なガラス相からすべて結晶相のみとなり、可撓性が失われる。
(3)市販ガラス繊維はガラスの網目形成体(Network Former)と網目修飾体(Network Modfier)となる酸化物原料を所定の組成になるように混合してから高温で溶融させるため、原料費大、混粉工程を要する、原料の溶融温度が高い等の理由から製造コストが高い。
(4)バサルト繊維は天然原料を使用するため製造コストは市販ガラス繊維と比べて低い。しかし原石(中温度用(B))はSiOが少ないため、高温溶融物の粘性が低く、20mμ以下の繊維径を有する長繊維の製造が可能であるが、750℃以上でガラス相が結晶化するため耐熱性に劣る。一方原石(高温度用(A))は〜850℃において結晶化は一部進行するものの、ガラス相も残存するため高耐熱性であるが、高温の粘性が高く、量産時において溶融温度を高くする必要があり、その結果、エネルギー費の増大となる。
【0011】
そこで、本発明は、玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体を形成・維持し、バサルト繊維の結晶化及び固着を抑制すること、及びバサルト繊維の耐熱性を従来の750℃から850〜900℃まで大幅に向上させ、かつ従来品と比べて大幅な低コスト化を達成することを目的とする。
【課題を解決するための手段】
【0012】
本発明者らは、玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体となる酸化物の選定とその添加量の最適化により、結晶化及び固着を抑制できるとともに、耐熱性を大幅に向上させることができることを見出し、本発明に到達した。
【0013】
即ち、第1に、本発明は、バサルト繊維材料の発明であり、玄武岩を原料とし、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とする。
【0014】
本発明のバサルト繊維材料において、前記酸化物の最適添加量は下記(1)〜(3)の通りである。
(1)前記酸化物の添加が1成分であり、その添加量が、該玄武岩100wt%に対して外添加で1.0〜40wt%、望ましくは10〜30wt%である。
(2)前記酸化物が2成分であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜70wt%、望ましくは10〜60wt%である。
(3)前記酸化物が3成分以上であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜60wt%、望ましくは10〜50wt%である。
【0015】
第2に、本発明は、同様にバサルト繊維材料の発明であり、含有する元素量の異なる2種の玄武岩を原料としたことを特徴とする。本発明において、含有する元素量の異なる2種の玄武岩とは、Si元素量が28.7wt%前後でSiO含量が61.5wt%前後の高温度用玄武岩原石(以下、原石(高温度用)という)、及びSi元素量が26.0wt%前後でAl含量が16.5wt%前後の中温度用玄武岩原石(以下、原石(中温度用)という)のことを意味する。
【0016】
第3に、本発明は、同様にバサルト繊維材料の発明であり、含有する元素量の異なる2種の玄武岩を原料とし、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とする。
【0017】
第1の発明のバサルト繊維材料と同様に、前記酸化物の最適添加量は下記(1)〜(3)の通りである。
(1)前記酸化物の添加が1成分であり、その添加量が、該玄武岩100wt%に対して外添加で1.0〜40wt%、望ましくは10〜30wt%である。
(2)前記酸化物が2成分であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜70wt%、望ましくは10〜60wt%である。
(3)前記酸化物が3成分以上であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜60wt%、望ましくは10〜50wt%である。
【0018】
第4に、本発明は、上記のバサルト繊維材料からなる耐熱性吸音材料である。
【0019】
第5に、本発明は、上記のバサルト繊維材料を耐熱性吸音材料として備えたマフラーである。
【発明の効果】
【0020】
本発明では、玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体となる酸化物の選定とその添加量の最適化、及び含有する元素量の異なる2種の玄武岩であるAl量はほぼ同程度であるがSiO量の多い原石(高温度用(A))と、SiO量が少ない原石(中温度用(B))の2種の原石を原料とすることにより、バサルト繊維の結晶化及び固着を抑制できるとともに、耐熱性を大幅に向上させることができた。
【発明を実施するための形態】
【0021】
本発明のバサルト繊維の原料である玄武岩(バサルト原石)は、火成岩の1種であり、主な構成鉱物としては、(1)斜長石:Na(AlSi)−Ca(AlSiO)、(2)輝石:(Ca,Mg,Fe2+,Fe3+,Al,Ti)[(Si,Al)]、(3)カンラン石:(Fe,Mg)SiOである。ウクライナ産のものが安価で良質である。
【0022】
高温度用玄武岩原石(原石(高温度用))、中温度用玄武岩原石(原石(中温度用))及び原石(高温度用)85%/原石(中温度用)15%からなるガラスの、ICP(高周波プラズマ発光分析装置;島津製作所ICPV−8100)分析による元素比(wt%)、及び酸化物換算の組成比(wt%)の例は下記表1及び表2のようである。
【0023】
【表1】

【0024】
【表2】

【実施例】
【0025】
以下、本発明の実施例を示す。
[実施例1]
乳鉢中で粉砕した玄武岩(原石(中温度用))と各種酸化物をボールミルにより12時間混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
【0026】
次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。
【0027】
結果を、表3〜表8に示す。表中、
A:ガラス相のみ、
B:ガラス相多く、結晶相少ない、
C:ガラス相少なく、結晶相多い、
D:結晶相のみ、
を表す。A>B>C>Dの順で耐熱性に優れ、A及びBが耐熱性において実用性を有することを示す。
【0028】
【表3】

【0029】
【表4】

【0030】
【表5】

【0031】
【表6】

【0032】
【表7】

【0033】
【表8】

【0034】
表3〜表8の結果より、以下のことが分かった。
(1)TiOの添加ではガラス化せず、また熱処理後の結晶化の抑制はできない。
(2)NaO(実験ではNaCOを添加)を添加しても熱処理後の結晶化の抑制はできない。
(3)SiOの添加では結晶相は確認されるが、添加量が増加すると結晶相の生成を抑制できる。
(4)Alの添加では添加量の増加に伴い結晶化の抑制効果は大きくなるが、過剰になるとガラス化が困難である。
(5)CaOの添加では800℃の熱処理では結晶化の抑制はできるが、850℃以上では、結晶化の進行が早い。
(6)MgOを添加しても結晶化の抑制はできず、更に添加量が過剰であるとガラス化も困難となる。
【0035】
[実施例2]
クラッシャーにより解砕した玄武岩(原石(中温度用))と各種酸化物をメノウ乳鉢により混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
【0036】
次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。
【0037】
結果を、表9〜表11に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。
【0038】
【表9】

【0039】
【表10】

【0040】
【表11】

【0041】
表9〜表11の結果より、以下のことが分かった。
(1)SiO/Al系を添加すると800℃×200時間の熱処理では完全に結晶化を抑制でき、さらに850℃×200時間、900℃×200時間の熱処理でもガラス相が多量に残存し、結晶相の生成を抑制できる。
(2)SiO/CaO系を添加すると800℃×200時間の熱処理では完全に結晶化を抑制できたが、850℃×200時間、900℃×200時間の熱処理では結晶化の抑制はできない。
(3)SiO/MgO系を添加すると800℃×200時間の熱処理では結晶化を抑制できる傾向にあるが、850℃×200時間、900℃×200時間の熱処理では結晶化の抑制はできない。
(4)Al/MgO系を添加してもガラス化せず、結晶化の抑制はできない。
(5)Al/CaO系を添加してもガラス化せず、結晶化の抑制はできない。
【0042】
これより、バサルト原石の熱処理後の結晶化抑制、すなわち耐熱性向上の効果を示す2成分酸化物系は、
SiO:20wt%/A1:20wt%>SiO/CaO系>SiO/MgO系>Al:20wt%/MgO系>Al:20wt%/CaO系の順であり、特にSiO:20wt%/A1:20wt%を添加するとバサルト繊維の耐熱性は現状の約750℃から850〜900℃レベルまで大く向上することが明らかとなった。
【0043】
[実施例3]
クラッシャーにより解砕した玄武岩(原石(中温度用))とSiO、Al、MgOの3種の酸化物をメノウ乳鉢により混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
【0044】
次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。
【0045】
結果を、表12に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。
【0046】
【表12】

【0047】
表12の結果より、SiO/Al/MgOの3種の酸化物を添加した全ての組成において、800℃の熱処理では結晶化の抑制効果が認められたが、850℃以上の熱処理では結晶化の抑制効果が認められなかった。
【0048】
[実施例4]
乳鉢中で粉砕した玄武岩(原石(中温度用))と玄武岩(原石(高温度用))をボールミルにより12時間混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
【0049】
次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。
【0050】
結果を、表13に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。
【0051】
【表13】

【0052】
表13の結果より、含有する元素量の異なる2種の玄武岩であるSiO含量が61.5wt%前後の高温度用玄武岩原石(原石(高温度用))、とAl含量が16.5wt%前後の中温度用玄武岩原石(原石(中温度用))を原料とすることにより、800℃×200時間、850℃×200時間、900℃×200時間の熱処理でもガラス相が多量に残存し、結晶相の生成を抑制できることが分かった。
【0053】
[実施例5]
クラッシャーにより解砕した玄武岩(原石(高温度用))と酸化物としてAlをメノウ乳鉢により混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
【0054】
次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。
【0055】
結果を、表14に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。
【0056】
【表14】

【0057】
表14の結果より、玄武岩(原石(高温度用))においても酸化物の添加により、800℃×200時間、850℃×200時間、900℃×200時間の熱処理でもガラス相が多量に残存し、結晶相の生成を抑制できる添加量が存在することが分かった。
【産業上の利用可能性】
【0058】
本発明により、バサルト繊維の結晶化及び固着を抑制できるとともに、耐熱性を大幅に向上させることができた。その結果、マフラー等に最適な耐熱性吸音材料を安価に提供することが出来る。

【特許請求の範囲】
【請求項1】
含有する元素量の異なる2種の玄武岩を原料としたことを特徴とするバサルト繊維材料。
【請求項2】
含有する元素量の異なる2種の玄武岩を原料とし、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とするバサルト繊維材料。
【請求項3】
前記酸化物の添加が1成分であり、その添加量が、該玄武岩100wt%に対して外添加で1〜40wt%であることを特徴とする請求項2に記載のバサルト繊維材料。
【請求項4】
前記酸化物が2成分であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1〜70wt%であることを特徴とする請求項2に記載のバサルト繊維材料。
【請求項5】
前記酸化物が3成分以上であり、その添加量の合計が、該玄武岩100wtに対して外添加で1〜60wt%であることを特徴とする請求項2に記載のバサルト繊維材料。
【請求項6】
請求項1乃至5のいずれかに記載のバサルト繊維材料からなる耐熱性吸音材料。
【請求項7】
請求項1乃至5のいずれかに記載のバサルト繊維材料を耐熱性吸音材料として備えたマフラー。

【公開番号】特開2011−140436(P2011−140436A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2011−23643(P2011−23643)
【出願日】平成23年2月7日(2011.2.7)
【分割の表示】特願2005−165959(P2005−165959)の分割
【原出願日】平成17年6月6日(2005.6.6)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(000211857)中川産業株式会社 (20)
【Fターム(参考)】