Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
パラジウム合金細管の製造方法
説明

パラジウム合金細管の製造方法

【課題】 肉厚が30μm〜100μmである2本のパラジウム合金細管から1本のパラジウム合金細管を簡単に製造できる方法を提供する。
【解決手段】 2本のパラジウム合金細管を長さ方向に突合わせ、該突合わせ部をレーザ溶接することにより、1本のパラジウム合金細管を得る。2本のパラジウム合金細管をレーザ溶接する際には、好ましくは、レーザ溶接入熱量は、0.05〜0.5J/パルス、単位溶接線当りに対する溶接入熱量は、0.5〜20J/mmとする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水素ガスの精製等の用途に用いられるパラジウム合金細管の製造方法に関する。
【背景技術】
【0002】
水素ガスの精製方法としては、加熱下でのパラジウム合金膜の水素選択透過性を利用した精製方法、金属触媒による化学反応と吸着材による物理吸着性とを組み合せて常温で精製する常温吸着精製法、液体窒素を冷熱源として極低温下に設定した吸着材の物理吸着性を利用した深冷吸着精製法や、ジルコニウム合金の水素化物等のゲッター剤による化学反応を利用した精製方法等が知られている。
これらのうちでも、パラジウム合金膜を利用した精製方法は、水素ガスの選択透過性を利用しているため、不純物である水素以外の成分は全て除かれ、超高純度の水素ガスを得ることができる。また、この精製方法は、常温吸着精製法、深冷吸着精製法やゲッター剤を用いた精製方法に比べ高純度の水素が得られるほか、操作的にも簡便であることから、実験室的規模から工業的な規模まで広い範囲にわたり多用されており、半導体製造工業の発展とともにその需要が増大している。
【0003】
パラジウム合金膜を用いた水素ガス精製装置は、通常はパラジウム合金細管が内蔵された水素透過器本体、冷却管、接続管、バルブ、継ぎ手等から構成されている。水素透過器本体は種々の形態のものが知られているが、一端が封じられ、内部にコイル状スプリングが挿入された複数本のパラジウム合金細管が開口端で管板に固定されて、筒状の容器に収納され、これらの細管及び管板によって内部が二つの空間に仕切られたものが多用されている。
尚、水素ガスの精製の際には、水素透過器を250〜500℃に加熱しながら、原料水素ガスを加圧状態で水素透過器本体の入口側に供給することにより、水素ガスのみがパラジウム合金細管を透過して、水素透過器本体の出口側に達するので高純度の水素を得ることができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第2572612号公報
【特許文献2】特許第2596767号公報
【特許文献3】特許第3273641号公報
【特許文献4】特開平7−223802号公報
【特許文献5】特開2002−308605号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
前述のような水素ガスの精製をはじめとした様々な用途に用いられるパラジウム合金細管を製造する際、または使用する際に、ピンホール、傷、凹み等の欠陥が生じたときは、欠陥部及びその周辺を切除して残りの部分を使用することもできる。しかし、このような欠陥部及びその周辺を切除した後のパラジウム合金細管の長さは、所定の長さよりも短くなってしまい、目的の用途に使用できないことが多い。そのため、前述のような欠陥を有するパラジウム合金細管は、廃棄されるか、融解されて原材料として再利用されることもあった。
【0006】
しかし、このような細管を廃棄することは資源の浪費であり、融解による再利用も、所定の長さの細管を得るために再度同じ製造工程を行わなければならないという問題があった。そのため、例えば製造又は使用の際に生じた欠陥部及びその周辺の切除等により得られた、所定の長さよりも短い2本のパラジウム合金細管から、所定の長さを有する1本のパラジウム合金細管を簡単に製造できる方法が求められてきた。従って、本発明が解決しようとする課題は、前記のような2本のパラジウム合金細管をから、1本のパラジウム合金細管を容易に製造する方法を提供することである。
【課題を解決するための手段】
【0007】
本発明の発明者らは、所定の長さより短い2本のパラジウム合金細管を長さ方向に突合わせ、該突合わせ部を好ましい範囲に設定された条件下でレーザ溶接することにより、肉厚が30μm〜100μmの合金細管であっても、充分な機械的強度を有し、ガス漏洩の虞がなく、所定の長さを有する1本のパラジウム合金細管が得られることを見出し本発明に到達した。
すなわち、本発明は、肉厚が30μm〜100μmである2本のパラジウム合金細管を長さ方向に突合わせ、該突合わせ部をレーザ溶接するレーザ溶接工程を含むことを特徴とするパラジウム合金細管の製造方法である。
【発明の効果】
【0008】
本発明により、所定の長さより短い2本のパラジウム合金細管から、所定の長さのパラジウム合金細管を簡単に得ることができるため、前述のような欠陥を有するパラジウム合金細管から所定の長さの1本のパラジウム合金細管を簡単に得ることができる。レーザ溶接におけるワークへの入熱は極めて局所的であるため、本発明により、小さい溶接入熱量で突合わせ部に深い溶込みが得られ、精密で歪の少ない溶接が可能となる。そのため、本発明により、水素ガスの精製の用途に用いられることが多い外径1mm〜5mmの小口径および/または肉厚30μm〜100μmの薄肉のパラジウム合金細管も製造可能になる。
【0009】
また、レーザ溶接工程において突合わせ部の全周を溶接することにより、突合わせ部に漏れのないパラジウム合金細管が製造されるので、本発明により得られたパラジウム合金細管を、水素ガスの精製の用途の他、他の用途にも使用することができる。さらに、レーザ溶接工程において突合わせ部の全周を溶接する前に、該突合せ部を点付け溶接して仮溶接することにより、レーザ溶接工程中の突合わせ部のずれを防止でき、突合わせ部に漏れのないパラジウム合金細管が高い収率で製造される。
【発明を実施するための形態】
【0010】
本発明は、パラジウム合金細管の製造方法に適用される。以下、本発明のパラジウム合金細管の製造方法を、図1〜図3を用いて説明するが、本発明がこれらにより限定されることはない。尚、図1は、本発明の製造方法の一例を示す説明図であり、2本のパラジウム合金細管(第1のパラジウム合金細管1及び第2のパラジウム合金細管2)が長さ方向に突合わされたレーザ溶接工程開始前の状態が示されている。図2は、本発明の製造方法に用いられるレーザ溶接装置の一例を示す上面構成図であり、2本のパラジウム合金細管(第1のパラジウム合金細管1及び第2のパラジウム合金細管2)が長さ方向に突合わされてレーザ溶接装置3にセットされたレーザ溶接工程開始前の状態が示されている。図3は、図2のA−A断面構成図である。
【0011】
図1に示すように、本発明の製造方法におけるレーザ溶接工程は、2本のパラジウム合金細管(1、2)を長さ方向に突合わせ、該突合わせ部9をレーザ溶接することにより行われ、このようなレーザ溶接工程により2本のパラジウム合金細管(1、2)は一体化され、1本のパラジウム合金細管が得られる。レーザ溶接は、レーザ出射ユニット4から出射されるレーザにより行われる。
【0012】
以下、図2及び図3により本発明を詳細に説明する。図2のレーザ溶接装置3において、2本のパラジウム合金細管(1、2)は長さ方向に突合わせられ、突合わせ部9に向けてレーザが出射されるように突合わせ部9及びその周辺を露出した状態で、それぞれ別々の細管保持具8に固定して保持されている。2本のパラジウム合金細管(1、2)を保持する細管保持具8は、2本のパラジウム合金細管(1、2)が長さ方向を軸として回転自在となるように、それぞれ別々の軸受部6により保持されている。また、レーザ溶接工程中に突合わせ部9がずれないように、2本のパラジウム合金細管(1、2)は、突合わせ部9付近の露出部においてそれぞれ別々の先端保持部5により回転自在に直接保持されている。それぞれの細管保持具8の片端には回転用モータ7が接続されており、細管保持具8に固定して保持されているパラジウム合金細管(1、2)に長さ方向を軸とした回転駆動力を与えることができる。2本のパラジウム合金細管(1、2)の突合わせ部9を形成する端面は、あらかじめヤスリ等により端面処理されていることが好ましいが、端面処理方法が限定されることはなく、端面処理されていなくてもよい。
【0013】
レーザ溶接装置3内に設置されたレーザ出射ユニット4からのレーザを、突合わせ部9に向けて出射することにより、第1のパラジウム合金細管1と第2のパラジウム合金細管2がレーザ溶接される。レーザ出射ユニット4により出射されるレーザとしては、炭酸ガスレーザ又はYAG(イットリウム・アルミニウム・ガーネット)レーザ等が用いられ、YAGレーザが用いられることが好ましいが、これらのレーザに限定されることはない。レーザ出射ユニット4から出射されるレーザは、レーザ溶接中にパラジウム合金細管(1、2)が高温になることを避けるために、パルス発振レーザであることが好ましいが、パルス発振レーザに限定されることはない。尚、レーザ溶接中における2本のパラジウム合金細管(1、2)への溶接入熱量は、通常は0.05〜0.5J(ジュール)/パルス、好ましくは0.1〜0.3J/パルスであるが、このような溶接入熱量に限定されることはない。また、単位溶接線当りに対する溶接入熱量は、通常は0.5〜20J/mm、好ましくは1〜10J/mmであるが、このような溶接入熱量に限定されることはない。さらに、レーザ溶接の照射スポットの形状は、円形、四角形等であり、大きさは通常は0.1〜1mm程度である。パルス発振レーザを使用する場合は、通常は10〜200パルス/秒である。
【0014】
レーザ溶接中における突合わせ部9およびその周辺の酸化を防ぐために、突合わせ部9およびその周辺にアシストガスを吹き付けながらレーザ溶接を行うことが好ましく、アシストガスの吹き付けは、突合せられた2本パラジウム合金細管(1、2)の外側及び/又は内側から行うことができるが、吹き付け方法に限定はなく、アシストガスの吹き付けを行わなくてもよい。また、レーザ出射ユニット4のレーザ出射部10にフュームが付着すると曇りが生じてレーザの出射が不安定になることがあるので、フュームの付着を防ぐために、突合せられた2本パラジウム合金細管(1、2)の外側やレーザ出射ユニット4のレーザ出射部10周辺にアシストガスを吹き付けながらレーザ溶接を行うことが好ましいが、吹き付け方法に限定はなく、アシストガスの吹き付けを行わなくてもよい。アシストガスは、アルゴン、窒素またはヘリウム等の不活性ガスであることが好ましいが、このようなガスに限定されることはない。尚、アシストガスの吹き付け手段は図示していない。
【0015】
また、2本のパラジウム合金細管(1、2)を回転させながら突合わせ部9に向けてレーザを連続的に出射することにより、突合わせ部9の周方向に連続的なレーザ溶接を行うこともできる。2本のパラジウム合金細管(1、2)を回転させずにレーザ出射ユニット4を回転させることにより、突合わせ部9の周方向に連続的なレーザ溶接を行うことも可能であるが、レーザ出射ユニット4を回転させながらレーザの出射方向を一定に保たなくてはならず、製造装置の構成が複雑になるため、2本のパラジウム合金細管(1、2)を回転させることが好ましい。
【0016】
2本のパラジウム合金細管(1、2)を回転させながらレーザ溶接を行う際に、レーザ溶接中の2本のパラジウム合金細管(1、2)の回転方向及び回転速度は同じであり、2本のパラジウム合金細管(1、2)の回転速度は、0.1〜1.0回転/秒であることが好ましく、0.2〜0.5回転/秒であることがより好ましいが、このような回転速度に限定されることはない。突合わせ部9の全周をレーザ溶接する際には、2本のパラジウム合金細管(1、2)を同じ回転方向及び同じ回転速度で1回転させながら突合わせ部9にレーザを連続的に出射することにより突合わせ部9の全周をレーザ溶接することが好ましく、このようにすることにより突合わせ部9に漏れのない1本のパラジウム合金細管を製造することができる。突合わせ部9の全周をレーザ溶接する際には、回転の開始時にレーザ出力を徐々に増加させるフェードイン及び/又は回転の終了時にレーザ出力を徐々に減少させるフェードアウトを行うことにより、レーザ溶接の開始点(終了点)の溶接状態が滑らかになり、溶接痕を残さないようにすることもできる。
【0017】
突合わせ部9の全周を連続的にレーザ溶接する際には、突合わせ部9を仮溶接した後に、仮溶接された2本のパラジウム合金細管(1、2)を1回転させながら突合わせ部9に向けてレーザを連続的に出射することにより突合わせ部9の全周をレーザ溶接することが好ましい。このようにすることにより、全周溶接中における突合わせ部9のずれを防止できる。突合わせ部9の仮溶接は、2本のパラジウム合金細管(1、2)を回転させずに静止させた状態で所望のレーザ溶接箇所に向けてレーザを出射することにより行われることが好ましいが、このような手順に限定されることはない。このような仮溶接は、3箇所以上で行われることが好ましく、等間隔に行われることが好ましいが、特に限定されることはない。また、仮溶接は、2本のパラジウム合金細管(1、2)を回転させることにより、レーザが出射される位置に所望の仮溶接箇所を合わせる位置合わせを行ってから、レーザを出射することにより行われることが好ましく、レーザを出射する際に2本のパラジウム合金細管(1、2)を静止させてから出射することもできるが、このような手順に限定されることはない。仮溶接箇所1箇所当たりの発振パルス数は1〜2パルスであることが好ましいが、このような発振パルス数に限定されることはない。位置合わせを行う際に、2本のパラジウム合金細管(1、2)の回転方向及び回転速度は同じであり、2本のパラジウム合金細管(1、2)の回転速度は、0.1〜1.0回転/秒であることが好ましく、0.4〜0.6回転/秒であることがより好ましいが、このような回転速度に限定されることはない。複数箇所の仮溶接により仮溶接を行う際には、前述の手順を繰り返すことにより仮溶接することが好ましいが、前述の手順の繰り返しに限定されることはない。
【0018】
2本のパラジウム合金細管(1、2)の材質、外径、肉厚は同じであることが好ましいが、同じであることに限定されることはない。また、2本のパラジウム合金細管(1、2)の両方又はいずれか1本は、ピンホール、傷、凹み等の欠陥を有する1本のパラジウム合金細管から欠陥部及びその周辺を切除することにより得られたものであることが好ましいが、特に限定されることはない。2本のパラジウム合金細管(1、2)の材質は、パラジウム及び銀の二元合金、又はパラジウム、銀及び金の三元合金であることが好ましいが、このような材質に限定されることはない。2本のパラジウム合金細管(1、2)はそれぞれ直管であることが好ましく、外径はそれぞれ1〜5mmであることが好ましく、肉厚はそれぞれ30μm〜100μmであることが好ましく、長さはそれぞれ100〜500mmであることが好ましいが、このような形状、外径、肉厚、長さに限定されることはない。また、2本のパラジウム合金細管(1、2)として用いられる直管は、曲がり等がないことがあらかじめ確認された直管であることが好ましいが、このような直管に限定されることはない。
【実施例】
【0019】
(実施例1)
図2及び3に示すようなレーザ溶接装置3により、本発明の製造方法を実施した。まず、1個のピンホールを有するパラジウム合金細管(パラジウム、銀及び金の三元合金製、外径1.6μm、肉厚70μm、長さ245mm)のピンホール周辺を長さ10mmにわたり切除し、ピンホール等の欠陥の無いパラジウム合金細管2本(長さ180mm及び55mm)を用意した。次に、このようにして得られた長さ180mmのパラジウム合金細管を第1のパラジウム合金細管1とし、同じ材質、外径、肉厚でピンホール等の欠陥が無い長さ65mmのパラジウム合金細管を別途用意して第2のパラジウム合金細管2とし、突合わせ部9を形成する端面をヤスリで端面処理した。このような2本のパラジウム合金細管(1、2)を、両者の回転軸が同一になるようにレーザ溶接装置3にセットした。
【0020】
次に、2本のパラジウム合金細管(1、2)の外側から突合わせ部9およびその周辺に対して、アシストガスであるアルゴンガスの吹き付けを開始し、レーザ溶接工程が終了するまでアシストガスの吹き付けを続けた。2本のパラジウム合金細管(1、2)を、同じ回転方向に0.3回転/秒で120°回転させる度にレーザ出射ユニット4からYAGレーザを出射することにより、等間隔に3箇所の仮溶接を行って突合わせ部9を仮溶接した。回転開始から仮溶接終了までに要した時間は3秒であった。
【0021】
このようにして仮溶接された2本のパラジウム合金細管(1、2)を、同じ回転方向に0.5回転/秒で1回転させながら、突合わせ部9にレーザ出射ユニット4からYAGレーザを連続的に出射して、突合わせ部9の全周を溶接した。全周溶接に要した時間は2秒であった。尚、仮溶接及び全周溶接はすべて一貫して自動制御により連続的に行った。このようにして得られた1本のパラジウム合金細管を目視により点検したところ、傷、凹み、ピンホール等の欠陥は確認されず、溶接による焼け等の異常も確認されなかった。また、機械的強度も充分であった。レーザ溶接中における2本のパラジウム合金細管(1、2)への溶接入熱量は0.2J/パルス、単位溶接線当りに対する溶接入熱量は、4J/mmであった。また、レーザ溶接の照射は、スポット径0.3mm、50パルス/秒であった。
【0022】
また、上記の長さ55mmのパラジウム合金細管を第1のパラジウム合金細管1とし、同じ材質、外径、肉厚でピンホール等の欠陥が無い長さ190mmのパラジウム合金細管を別途用意して第2のパラジウム合金細管2とし、同様に1本のパラジウム合金細管を製造し、これを目視により点検したところ、傷、凹み、ピンホール等の欠陥は確認されず、溶接による焼け等の異常も確認されなかった。また、機械的強度も充分であった。
同様にして、本発明の製造方法により長さ245mmのパラジウム合金細管を90本製造した。このようにして得られた90本のパラジウム合金細管を目視により点検したところ、傷、凹み、ピンホール等の欠陥、及び溶接による焼け等の異常は確認されなかった。また、機械的強度も充分であった。
【0023】
(実施例2)
実施例1のパラジウム合金細管のレーザ溶接において、溶接入熱量を1.3J/パルス、単位溶接線当りに対する溶接入熱量を24J/mmに設定したほかは実施例1と同様にしてパラジウム合金細管のレーザ溶接を行なった。その結果、表面に若干溶接による焼けが確認されたが、傷、凹み、ピンホール等の欠陥は確認されなかった。また、機械的強度も充分であった。
【産業上の利用可能性】
【0024】
本発明の製造方法は、水素ガスの精製装置において水素透過膜として用いられるパラジウム合金細管の製造に好適である。
【図面の簡単な説明】
【0025】
【図1】本発明の製造方法の一例を示す説明図である。
【図2】本発明の製造方法に用いられるレーザ溶接装置の一例を示す上面構成図である。
【図3】図1の断面図(A−A)を示す。
【符号の説明】
【0026】
1 第1のパラジウム合金細管
2 第2のパラジウム合金細管
3 レーザ溶接装置
4 レーザ出射ユニット
5 先端保持部
6 軸受部
7 回転用モータ
8 細管保持具
9 突合わせ部
10 レーザ出射部
11 レーザの出射方向

【特許請求の範囲】
【請求項1】
肉厚が30μm〜100μmである2本のパラジウム合金細管を長さ方向に突合わせ、該突合わせ部をレーザ溶接するレーザ溶接工程を含むことを特徴とするパラジウム合金細管の製造方法。
【請求項2】
パラジウム合金細管の外径が1mm〜5mmである請求項1に記載のパラジウム合金細管の製造方法。
【請求項3】
レーザ溶接工程が、突合わせ部の全周を溶接する段階を含む請求項1に記載のパラジウム合金細管の製造方法。
【請求項4】
レーザ溶接工程が、突合わせ部を仮溶接する段階をさらに含む請求項3に記載のパラジウム合金細管の製造方法。
【請求項5】
突合わせ部の全周を溶接する段階において、2本のパラジウム合金細管を回転させながら該突合わせ部の全周を溶接する請求項3に記載のパラジウム合金細管の製造方法。
【請求項6】
レーザ溶接工程が、2本のパラジウム合金細管を回転させることにより仮溶接のための位置合わせをする段階をさらに含み、突合わせ部の全周を溶接する段階において、仮溶接された2本のパラジウム合金細管を回転させながら該突合わせ部の全周を溶接する請求項4に記載のパラジウム合金細管の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−94800(P2013−94800A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−238532(P2011−238532)
【出願日】平成23年10月31日(2011.10.31)
【出願人】(000229601)日本パイオニクス株式会社 (96)
【Fターム(参考)】