説明

パワーモジュール製造方法およびその方法により製造したパワーモジュール

【課題】特性の信頼性が高いパワーモジュールを安定的に製造することができるパワーモジュール製造方法等を提供する。
【解決手段】冷却器5、絶縁樹脂シート4、放熱ブロック3、半導体チップ2を積層してパワーモジュール1を製造するパワーモジュール製造方法であって、最初に、冷却器5に絶縁樹脂シート4の下層を形成する第1の絶縁樹脂シート41を熱圧着する。次いで、第1の絶縁樹脂シート41と放熱ブロック3との間に絶縁樹脂シート4の上層を形成する第2の絶縁樹脂シート42を介在させて、第2の絶縁樹脂シート42を第1の絶縁樹脂シート41に熱圧着しかつ第2の絶縁樹脂シート42に放熱ブロック3を熱圧着する。そして、放熱ブロック3の上に半導体チップ2をはんだ接合する。これにより、各接着界面の接着不良を防止し、絶縁樹脂シート4の絶縁破壊を防ぐ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体チップと、放熱ブロックと、絶縁樹脂シートと、冷却器を有するパワーモジュールのパワーモジュール製造方法およびその方法により製造したパワーモジュールに関する。
【背景技術】
【0002】
インバータ装置等のパワーモジュールを製造する方法として、まず、半導体チップを放熱板にはんだ接合し、その後に、放熱板と冷却器との間に絶縁樹脂シートを介在させて放熱板と冷却器とを熱圧着するパワーモジュール製造方法が知られている(例えば特許文献1を参照)。
【0003】
図3は、従来のパワーモジュール製造方法を説明する模式図である。まず、図3(a)に示すように、半導体チップ101を放熱ブロック102にはんだ付けする(はんだ接合工程)。放熱ブロック102は、半導体チップ101よりも大きな板状の部材からなり、一方面の略中央位置に半導体チップ101がはんだ付けされる。はんだ付けは、例えばリフロー炉内で半導体チップ101および放熱ブロック102の全体をはんだの溶融温度まで均一に加熱(全体加熱)する、はんだリフローによって行われる。
【0004】
次に、図3(b)に示すように、放熱ブロック102と冷却器104との間に絶縁樹脂シート103を介在させて、放熱ブロック102を冷却器104に熱圧着させる工程が行われる(熱圧着工程)。絶縁樹脂シート103は、放熱ブロック102よりも大きなシート状の部材からなり、絶縁樹脂シート103の略中央に放熱ブロック102が熱圧着される。熱圧着は、加熱状態の下で放熱ブロック102と放熱ブロック102から側方に突出した絶縁樹脂シート103の沿面部分を冷却器104に押圧することによって行われる。
【0005】
そして、図3(c)に示すように、半導体チップ101と端子との間をワイヤ105で接続し(ワイヤボンディング工程)、封止材106によってハウジング107内に半導体チップ101を埋める工程(モールド工程)が行われる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−153554号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
熱圧着工程において、放熱ブロック102とともに半導体チップ101を押圧すると、半導体チップ101が破損するおそれがある。従って、放熱ブロック102と冷却器104とを熱圧着させる際に、半導体チップ101を押圧することができず、従来は、図3(b)に矢印で示すように、半導体チップ101よりも側方に突出した放熱ブロック102の縁部と、放熱ブロック102よりも側方に突出した絶縁樹脂シート103の沿面部分を部分的に押圧していた。
【0008】
従って、放熱ブロック102全体を均一の圧力で押圧することができず、放熱ブロック102と絶縁樹脂シート103との間の接着面や、絶縁樹脂シート103と冷却器104との間の接着面に、未着部や接着ムラが発生するおそれがあり、パワーモジュール100の絶縁耐性や熱抵抗等の特性の信頼性が低くなるという問題があった。
【0009】
また、半導体チップ101を避けながら、放熱ブロック102の縁部と絶縁樹脂シート103の沿面部分を部分的に押圧するのは技術的に困難であり、そして、半導体チップ101と放熱ブロック102の形状に応じた専用の押圧治具が必要で治具製作の分だけコスト高を招いていた。
【0010】
図4は、図3(b)のA部を拡大して示す図である。放熱ブロック102は、コストの面から、プレス打ち抜きによって製造されることが多い。プレス打ち抜きによって製造された放熱ブロック102は、一方面側の端縁が断面直角とはならず、ある程度の曲率を有して凸状に湾曲した断面円弧状のR(アール)面102aになる。そして、放熱ブロック102は、応力緩和のために、R面102aの端縁を有する一方面が絶縁樹脂シート103に接面するように配置される。
【0011】
したがって、放熱ブロック102の端縁と絶縁樹脂シート103との間には隙間が形成され、熱圧着すべく専用の押圧治具111を用いて放熱ブロック102と絶縁樹脂シート103の沿面部分を同時に押圧した場合に、物理的に押圧できない領域103aが放熱ブロック102の端縁に沿って絶縁樹脂シート103に局所的に発生する。
【0012】
そして、絶縁樹脂シート103の領域103aの近辺に位置する樹脂が押圧による圧力から逃れるために、領域103aに集まろうとして応力が集中し、絶縁樹脂シート103の領域103aにクラック103bが発生して、絶縁破壊の起点になり、パワーモジュール100の絶縁信頼性が低下するおそれがある。
【0013】
また、絶縁樹脂シート103の熱圧着およびキュアにより、はんだ101aの耐熱信頼性が低下するおそれがあった。例えば、絶縁樹脂シート103の熱圧着およびキュアの温度は150℃から200℃の間であって、現在主流のSi半導体(半導体チップ)の駆動上限温度(実使用時にはんだにかかる温度)である150℃よりも高温であることから、はんだ101aの劣化が加速的に進むおそれがある。
【0014】
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、特性の信頼性が高いパワーモジュールを安定的に製造することができるパワーモジュール製造方法、およびその方法により製造されたパワーモジュールを提供することである。
【課題を解決するための手段】
【0015】
上記課題を解決する本発明のパワーモジュール製造方法は、冷却器、絶縁樹脂シート、放熱ブロック、半導体チップを積層してパワーモジュールを製造するパワーモジュール製造方法であって、絶縁樹脂シートの下層を形成する第1の絶縁樹脂シートを冷却器に熱圧着する第1の熱圧着工程と、第1の絶樹脂縁シートと放熱ブロックとの間に絶縁樹脂シートの上層を形成する第2の絶縁樹脂シートを介在させて、第2の絶縁樹脂シートを第1の絶縁樹脂シートに熱圧着しかつ第2の絶縁樹脂シートに放熱ブロックを熱圧着する第2の熱圧着工程と、放熱ブロックの上に半導体チップをはんだ接合するはんだ接合工程とを含むことを特徴としている。
【0016】
本発明のパワーモジュール製造方法によれば、先に熱圧着工程を行い、その後に、はんだ接合工程を行うので、冷却器に第1の絶縁樹脂シートを熱圧着する際に、第1の絶縁樹脂シート全体を均一に押圧することができる。そして、第1の絶樹脂縁シートと放熱ブロックとの間に第2の絶縁樹脂シートを介在させて第1の絶縁樹脂シートに第2の絶縁樹脂シートを熱圧着しかつ第2の絶縁樹脂シートに放熱ブロックを熱圧着する際に、放熱ブロック全体を均一に押圧することができる。
【0017】
したがって、冷却器と第1の絶縁樹脂シートとの間、第1の絶縁樹脂シートと第2の絶縁樹脂シートとの間、第2の絶縁樹脂シートと放熱ブロックとの間の各接着界面に押圧力不足による未接着部分や接着ムラが発生するのを防ぐことができる。
【0018】
特に、第2の接着工程では、第1の絶縁樹脂シートが冷却器に完全に熱圧着された状態で放熱ブロックを押圧することができるので、放熱ブロックの押圧に起因して第1の絶縁樹脂シートの縁部が冷却器の上面から離間する浮き上がりの発生や、第1の絶縁樹脂シートの割れが発生するのを防ぐことができる。
【0019】
また、第2の接着工程では放熱ブロックのみを押圧することができる。したがって、従来のように放熱ブロックと絶縁樹脂シートの沿面部分の両方を同時に押圧した場合のように、放熱ブロックの端縁に沿って絶縁樹脂シートに局所的に応力が集中するのを防ぐことができる。したがって、応力集中箇所にクラックが発生して絶縁破壊の起点となるのを防ぐことができ、絶縁耐性を高めることができる。また、はんだ接合工程の前に熱圧着工程を行うので、熱圧着の熱によるはんだの耐熱信頼性の低下を防ぐことができる。したがって、特性の信頼性が高いパワーモジュールを製造することができる。
【0020】
本発明のパワーモジュール製造方法において、第1の絶縁樹脂シートと第2の絶縁樹脂シートはそれぞれ熱硬化性樹脂材料によって構成されており、第1の熱圧着工程では、第1の絶縁樹脂シートが熱硬化する温度まで加熱して熱圧着を行い、第2の熱圧着工程では、第2の絶縁樹脂シートが熱硬化する温度まで加熱して熱圧着を行うことが好ましい。
【0021】
そして、本発明のパワーモジュール製造方法において、第1の絶縁樹脂シートは、放熱ブロックよりも広い大きさと、第2の絶縁樹脂シートの層厚以上の層厚を有していることが好ましい。
【発明の効果】
【0022】
本発明のパワーモジュール製造方法によれば、先に熱圧着工程を行い、その後に、はんだ接合工程を行うので、冷却器に第1の絶縁樹脂シートを熱圧着する際に第1の絶縁樹脂シート全体を均一に押圧することができる。そして、第1の絶樹脂縁シートと放熱ブロックとの間に第2の絶縁樹脂シートを介在させて第1の絶縁樹脂シートに第2の絶縁樹脂シートを熱圧着しかつ第2の絶縁樹脂シートに放熱ブロックを熱圧着する際に、放熱ブロック全体を均一に押圧することができる。したがって、冷却器と第1の絶縁樹脂シートとの間、第1の絶縁樹脂シートと第2の絶縁樹脂シートとの間、第2の絶縁樹脂シートと放熱ブロックとの間の各接着界面に押圧力不足による未接着部分や接着ムラが発生するのを防ぎ、特性の信頼性が高いパワーモジュールを製造することができる。
【図面の簡単な説明】
【0023】
【図1】本実施の形態におけるパワーモジュール製造方法を説明する図。
【図2】本発明品と従来品の冷熱耐久試験の試験結果を対比表として示す図。
【図3】従来のパワーモジュール製造方法を説明する図。
【図4】図3のA部を拡大して示す図。
【発明を実施するための形態】
【0024】
次に、本発明の実施の形態について図1を用いて説明する。
【0025】
図1は、本実施の形態におけるパワーモジュール製造方法を説明する図である。
パワーモジュール1は、図1(d)に示すように、半導体チップ2、放熱ブロック3、絶縁樹脂シート4、冷却器5を積層することによって構成される。半導体チップ2は、平面視略矩形の薄板形状を有しており、下面には予めはんだ2aが盛られている。放熱ブロック3は、半導体チップ2よりも広い大きさの平板部材によって構成されている。絶縁樹脂シート4は、絶縁樹脂シート4の下層を形成する第1の絶縁樹脂シート41と、絶縁樹脂シート4の上層を形成する第2の絶縁樹脂シート42によって構成されている。第1の絶縁樹脂シート41は、放熱ブロック3よりも広い大きさのシート状部材からなり、第2の絶縁樹脂シート42は、放熱ブロック3以上の大きさを有するシート状部材からなる。冷却器5は、第1の絶縁樹脂シート41よりも広い大きさの板状部材によって構成されている。
【0026】
放熱ブロック3および冷却器5の材料は、特に限定されないが、コスト、重量、熱伝導性の点から、放熱ブロック3は銅(Cu)、冷却器5はアルミニウム合金(Al)とすることが好ましい。放熱ブロック3は、半導体チップ2の熱を拡散して絶縁樹脂シート4に伝えるための十分な厚さとして1mm以上が好ましい。また、放熱ブロック3と冷却器5を同一材料によって構成して、線膨張係数を同一とし、はんだ接合時における熱応力を低減する構成としてもよい。
【0027】
絶縁樹脂シート4は、例えばバインダーとして熱可塑性樹脂もしくは熱硬化性樹脂(エポキシ樹脂、ポリイミド樹脂、シリコン樹脂等)を10〜70wt%使用し、充填材として高熱伝導率の絶縁性無機フィラー(アルミナ、窒化ホウ素等)を30〜90wt%入れたものからなる。そして、熱伝導率λが5W/mK以上であり、厚さは、電気絶縁性の信頼性と低熱抵抗の両立の点から、第1の絶縁樹脂シート41と第2の絶縁樹脂シート42を重ね合わせて所定必要厚さ0.1〜0.3mmを有することが好ましい。
【0028】
次に、本実施の形態におけるパワーモジュール1の製造方法について説明する。パワーモジュール1の製造方法は、図1に示すように、第1の熱圧着工程(図1(a))、第2の熱圧着工程(図1(b))、はんだ接合工程(図1(c))、ワイヤボンディング工程およびモールド工程(図1(d))を有している。
【0029】
第1の熱圧着工程では、冷却器5に第1の絶縁樹脂シート41を熱圧着する作業が行われる。具体的には、冷却器5の上面略中央に第1の絶縁樹脂シート41を載せて、冷却器5と第1の絶縁樹脂シート41を所定温度(第1の絶縁樹脂シート41が熱硬化性樹脂の場合にはその熱硬化温度)まで加熱し、第1の絶縁樹脂シート41を冷却器5に押圧して、冷却器5に第1の絶縁樹脂シート41を接着する。第1の絶縁樹脂シート41は、熱圧着される際に、第1の絶縁樹脂シート41全体が均一に押圧される。したがって、冷却器5と第1の絶縁樹脂シート41との間の接着界面に、押圧力不足による未接着部分や接着ムラが発生するのを防ぐことができる。
【0030】
第2の熱圧着工程では、第1の絶樹脂縁シート41と放熱ブロック3との間に第2の絶縁樹脂シート42を介在させて、第2の絶縁樹脂シート42を第1の絶縁樹脂シート41に熱圧着すると共に、第2の絶縁樹脂シート42に放熱ブロック3を熱圧着する作業が行われる。
【0031】
具体的には、第1の絶縁樹脂シート41の上面略中央に第2の絶縁樹脂シート42を載せ、更に、その第2の絶縁樹脂シート42の上面に放熱ブロック3を載せて、第1の絶縁樹脂シート41と放熱ブロック3との間に第2の絶縁樹脂シート42を介在させた状態とする。
【0032】
そして、冷却器5、第1の絶縁樹脂シート41、第2の絶縁樹脂シート42、放熱ブロック3を所定温度(第2の絶縁樹脂シート42が熱硬化性樹脂の場合にはその熱硬化温度)に加熱しながら放熱ブロック3を冷却器5に押圧し、第2の絶縁樹脂シート42を第1の絶縁樹脂シート41に接着し、放熱ブロック3を第2の絶縁樹脂シート42に接着する。
【0033】
放熱ブロック3は、熱圧着される際に、放熱ブロック3全体が均一に押圧される。したがって、第1の絶縁樹脂シート41と第2の絶縁樹脂シート42との間の接着界面、および第2の絶縁樹脂シート42と放熱ブロック3との間の接着界面に、押圧力不足による未接着部分や接着ムラが発生するのを防ぐことができる。上記した図1(a)、(b)の第1の熱圧着工程と第2の熱圧着工程は、加熱手段と押圧手段を有するプレス機等の熱圧着装置(いずれも図示せず)によって行われる。
【0034】
次に、図1(c)に示すはんだ接合工程では、半導体チップ2を放熱ブロック3にはんだ接合する作業が行われる。はんだ接合は、はんだリフローによって行われる。はんだリフローでは、まず、放熱ブロック3の上面略中央に半導体チップ2を載せて、図示していないはんだ接合装置のリフロー炉内に入れる。そして、リフロー炉内で加熱し、半導体チップ2の下面に予め盛られているはんだ2aを溶融させて、放熱ブロック3の上面に半導体チップ2をはんだ接合する。
【0035】
本実施の形態のはんだ接合工程では、はんだ接合時に絶縁樹脂シート4に付与される熱応力を低減するために、冷却器5、絶縁樹脂シート4、放熱ブロック3、半導体チップ2からなるワークW全体を均一に加熱するのではなく冷却器5側よりも半導体チップ2側を高温化する温度差加熱処理が行われる。
【0036】
温度差加熱処理では、例えば、リフロー炉内のヒータ側に半導体チップ2が位置するようにワークW全体を配置して、半導体チップ2側を加熱してもよい。また、高周波誘導加熱等により半導体チップ2を局所的に加熱してもよい。そして、冷却器5側の昇温を防ぐために、例えば上記したヒータよりも加熱温度の低い低温ヒータを設ける、あるいは、熱容量の大きな金属ブロック等の冷却手段を配置してもよい。
【0037】
はんだ接合温度(200℃以上)は、絶縁樹脂シート4の熱圧着温度よりも高く、エポキシ系の樹脂の分解開始温度(250℃から300℃程度)とほぼ同等であり、ガラス転移点(ともに150℃から200℃程度)よりも高い温度となっている。従って、はんだ接合工程において、ワークW全体を加熱する全体加熱処理を行うと、放熱ブロック3および冷却器5との線膨張差による応力が急激に大きくなり、冷却器5と第1の絶縁樹脂シート41との間の接着面、もしくは、第1の絶縁樹脂シート41と第2の絶縁樹脂シート42との間の接着面に剥離が生じるおそれがある。
【0038】
そこで、本実施の形態では、温度差加熱処理によってはんだ接合を行い、はんだ接合時に第1の絶縁樹脂シート41と第2の絶縁樹脂シート42に加えられる熱応力を低減して、接着面の信頼性を向上させている。
【0039】
また、現在主流の信頼性の高いPbフリーはんだを使用する場合には、Pbフリーはんだは通常のはんだよりも溶融温度が高温であるので、従来のはんだリフローのように、ワークW全体をはんだ接合温度まで加熱して製造することはできないが、本実施の形態では、温度差加熱処理によって、絶縁樹脂シート4の高温化を防ぐことができ、半導体チップ2を適切にはんだ接合することができる。
【0040】
また、ワークW全体を加熱して熱圧着を行うと、絶縁樹脂シート4の樹脂が揮発し、チップ表面に付着して、次工程であるワイヤボンディング工程(図1(d))において、接合不良等が起こる可能性があるが、本実施の形態では、温度差加熱処理によって、絶縁樹脂シート4の樹脂の揮発を抑制でき、ワイヤボンディング工程における接合不良等の発生を防ぐことができる。
【0041】
そして、ワイヤボンディング工程とモールド工程(図1(d))が行われる。ワイヤボンディング工程では、半導体チップ2と端子との間がワイヤ6で接続され、モールド工程では、ハウジング8内で封止材7によって半導体チップ2、放熱ブロック3、絶縁樹脂シート4が埋められる。なお、ワイヤボンディング工程とモールド工程については、既知の技術と同様であるので、その詳細な説明を省略する。
【0042】
上記した本発明のパワーモジュール製造方法によれば、先に冷却器5と放熱ブロック3とを熱圧着し、その後に放熱ブロック3の上に半導体チップ2をはんだ接合するので、冷却器5に第1の絶縁樹脂シート41を熱圧着する際に第1の絶縁樹脂シート41全体を均一に押圧することができる。そして、第1の絶樹脂縁シート41と放熱ブロック3との間に第2の絶縁樹脂シート42を介在させて第1の絶縁樹脂シート41に第2の絶縁樹脂シート42を熱圧着しかつ第2の絶縁樹脂シート42に放熱ブロック3を熱圧着する際に、放熱ブロック3全体を均一に押圧することができる。
【0043】
したがって、冷却器5と第1の絶縁樹脂シート41との間、第1の絶縁樹脂シート41と第2の絶縁樹脂シート42との間、第2の絶縁樹脂シート42と放熱ブロック3との間の各接着面に押圧力不足による未接着部分や接着ムラが発生するのを防ぐことができる。
【0044】
特に、第2の接着工程(図1(b))では、冷却器5と第1の絶縁樹脂シート41との間を完全に接着させた状態で放熱ブロック3を押圧することができるので、放熱ブロック3の押圧に起因して第1の絶縁樹脂シート41の縁部が冷却器5の上面から離間する浮き上がりや、第1の絶縁樹脂シート41の割れが発生するのを防ぐことができる。
【0045】
また、第2の接着工程において、放熱ブロック3のみを押圧することができる。したがって、従来のように放熱ブロックと絶縁樹脂シートの沿面部分の両方を同時に押圧した場合のように、放熱ブロックの端縁に沿うように絶縁樹脂シートに部分的に応力が集中するのを防ぐことができる。したがって、応力集中箇所にクラックが発生して絶縁破壊の起点となるのを防ぐことができ、絶縁耐性を高めることができる。したがって、特性の信頼性が高いパワーモジュールを製造することができる。
【0046】
また、はんだ接合工程(図1(c))の前に、第1および第2の熱圧着工程(図1(a)、(b))を行うので、熱圧着の熱によるはんだの耐熱信頼性の低下を防ぐことができる。
【0047】
また、はんだ接合工程において、全体加熱処理ではなく、温度差加熱処理によってはんだ接合を行うことによって、はんだ接合時に絶縁樹脂シート4に加えられる熱応力を低減して、各接着界面の剥離を防ぐことができる。従って、特性の信頼性が高いパワーモジュール1を製造することができる。
【0048】
上記したパワーモジュール製造方法によれば、熱圧着のプレス機、治具等として、従来から存在する既存の装置を使用することができ、実施化が容易である。
【実施例】
【0049】
次に、本発明の実施例について説明する。本実施例では、下記の条件によってパワーモジュール1を製造した。
【0050】
(1)第1の熱圧着工程
180℃、5分間、5MPaの条件で、第1の絶縁樹脂シート41を冷却器5に熱圧着した。第1の絶縁樹脂シート41は、熱硬化性樹脂からなり、放熱ブロック3よりも側方に2mm突出する沿面部分を確保するために、放熱ブロック3よりも一辺が4mm大きい、厚さtが0.1mmのものを用いた。第1の絶縁樹脂シート41は、絶縁樹脂シート4として必要な厚さである所定必要厚さの2分の1の厚さを有している。
【0051】
(2)第2の熱圧着工程
第1の絶樹脂縁シート41と放熱ブロック3との間に第2の絶縁樹脂シート42を介在させて、180℃、5分間、5MPaの条件で、第1の絶縁樹脂シート41に第2の絶縁樹脂シート42を熱圧着しかつ第2の絶縁樹脂シート42に放熱ブロック3を熱圧着した。第2の絶縁樹脂シート42は、熱硬化性樹脂からなり、放熱ブロック3と同じ大きさで厚さtが0.1mmのものを用いた。第2の絶縁樹脂シート42は、絶縁樹脂シート4として必要な厚さである所定必要厚さの2分の1の厚さを有している。
【0052】
なお、第2の絶縁樹脂シート42の大きさは、放熱ブロック3以上の大きさを有していればよく、同一である必要はない。また、第1の絶縁樹脂シート41と第2の絶縁樹脂シート42の厚さは、所定必要厚さの2分の1に限定されるものではなく、第1の絶縁樹脂シート41の厚さが第2の絶縁樹脂シート42の厚さ以上であればよい。
【0053】
(3)はんだ接合工程(はんだリフロー工程)
図示していないはんだ接合装置を用いてはんだリフローを実施した。
【0054】
第1の絶縁樹脂シート41と第2の絶縁樹脂シート42の各接着界面が剥離しない条件(今回は250℃×3分)で、はんだと素子を放熱ブロック3の上に実装した。
【0055】
(4)ワイヤボンディング工程およびモールド工程
冷却器5の上にハウジング8を接着剤にて接着し、素子等の必要な部分にワイヤをボンディングした。そして、電子工業向け封止エポキシ樹脂を封止材7として用いて、ハウジング8内で半導体チップ2、放熱ブロック3、絶縁樹脂シート4を埋めて封止した。
【0056】
パワーモジュール1の使用材料および形状を下記に示す。
【0057】
・材料:放熱ブロック…銅(Cu)、冷却器…銅(Cu)
・厚さ:放熱ブロック…t3mm、冷却器…t3mm、第1の絶縁樹脂シート…t0.1mm、第2の絶縁樹脂シート…t0.1mm
・絶縁樹脂シート:フィラー…BN、バインダー…エポキシ樹脂、熱伝導率…10W/mK
・はんだ:Pbフリーはんだ(融点約230℃)
・ハウジング:PPS樹脂製でバスバーは銅(Cu)製
・接着剤:シリコーン系汎用接着剤
・ワイヤー:アルミニウム(Al)
・封止材料:電子工業向け封止エポキシ樹脂
【0058】
本実施例では、本発明品と従来品の冷熱耐久性を評価する冷熱耐久試験を行った。
図2は、本発明品と従来品の冷熱耐久試験の試験結果を対比表として示す図である。
【0059】
本発明品は、本発明のパワーモジュール製造方法により製造したパワーモジュールであり、従来品は、図3に示す従来方法により製造したパワーモジュールである。冷熱耐久試験は、本発明品と従来品を、液槽内に貯留された−40℃の液体に5分間浸漬する工程と、105℃に加熱された加熱炉内に5分間保持する工程を1サイクル(cyc)として、3000サイクル(cyc)繰り返して実施し、初期と3000サイクル後における、接着界面の接着率、絶縁樹脂シートの内部クラック、絶縁破壊電圧の評価を行った。
【0060】
図2の表に示す各接着率は、冷却器5と第1の絶縁樹脂シート41との接着界面、および、第2の絶縁樹脂シート42と放熱ブロック3との接着界面について、それぞれ超音波探傷画像の画像解析を行い、算出した。
【0061】
図2に示すように、本発明品の冷却器5と第1の絶縁樹脂シート41との接着率、および、第2の絶縁樹脂シート42と放熱ブロック3との接着率は、3000サイクル(cyc)後においてもそれぞれ100%であり、接着界面の耐久性が良好であるという結果が得られた。
【0062】
一方、従来品では、初期は冷却器5と第1の絶縁樹脂シート41との接着率、および、第2の絶縁樹脂シート42と放熱ブロック3との接着率のいずれもが100%であったが、3000サイクル(cyc)後は、冷却器5と第1の絶縁樹脂シート41との接着率が93%まで低下し、第2の絶縁樹脂シート42と放熱ブロック3との接着率が86%まで低下した。これは、冷熱処理を行ったことにより、放熱ブロック3と冷却器5との線膨張差による応力が作用し、各接着界面に剥離が生じたものと把握できる。したがって、本発明品は、従来品よりも接着率が向上していることがわかる。
【0063】
そして、本発明品は、初期および3000サイクル(cyc)後のいずれにおいて絶縁樹脂シート4に内部クラックが発生しておらず(無し)、絶縁樹脂シート4の耐久性が良好であるという結果が得られた。一方、従来品は、初期および3000サイクル後のいずれにおいても絶縁樹脂シート4に内部クラックが発生していた(有り)。これは、放熱ブロック3と絶縁樹脂シート4の沿面部分を押圧することによって、放熱ブロック3の端縁に沿って絶縁樹脂シート4に局所的に応力が集中し、内部クラックが発生したものと把握できる。
【0064】
そして、本発明品は、AC50Hzの絶縁破壊電圧を印加した場合に初期および3000サイクル後のいずれにおいても5Kvより高い電圧でも絶縁破壊が生じていない。これに対して、従来品は、初期および3000サイクル後のいずれにおいても2Kvよりも小さい電圧で絶縁破壊が生じていた。したがって、本発明品は、従来品よりも絶縁耐久性が向上していることがわかる。
【符号の説明】
【0065】
1 パワーモジュール
2 半導体チップ
2a はんだ部分
3 放熱ブロック
4 絶縁樹脂シート
41 第1の絶縁樹脂シート
42 第2の絶縁樹脂シート
5 冷却器
W ワーク

【特許請求の範囲】
【請求項1】
冷却器、絶縁樹脂シート、放熱ブロック、半導体チップを積層してパワーモジュールを製造するパワーモジュール製造方法であって、
前記絶縁樹脂シートの下層を形成する第1の絶縁樹脂シートを前記冷却器に熱圧着する第1の熱圧着工程と、
前記第1の絶樹脂縁シートと前記放熱ブロックとの間に前記絶縁樹脂シートの上層を形成する第2の絶縁樹脂シートを介在させて、前記第2の絶縁樹脂シートを前記第1の絶縁樹脂シートに熱圧着しかつ前記第2の絶縁樹脂シートに前記放熱ブロックを熱圧着する第2の熱圧着工程と、
該放熱ブロックの上に前記半導体チップをはんだ接合するはんだ接合工程と、
を含むことを特徴とするパワーモジュール製造方法。
【請求項2】
前記第1の絶縁樹脂シートと前記第2の絶縁樹脂シートは、それぞれ熱硬化性樹脂材料によって構成されており、
前記第1の熱圧着工程では、前記第1の絶縁樹脂シートが熱硬化する温度まで加熱し、
前記第2の熱圧着工程では、前記第2の絶縁樹脂シートが熱硬化する温度まで加熱することを特徴とする請求項1に記載のパワーモジュール製造方法。
【請求項3】
前記第1の絶縁樹脂シートは、前記放熱ブロックよりも広い大きさと、前記第2の絶縁樹脂シートの厚さ以上の厚さを有していることを特徴とする請求項1又は2に記載のパワーモジュール製造方法。
【請求項4】
前記請求項1から請求項3のいずれか一項に記載したパワーモジュール製造方法により製造されたパワーモジュール。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−146471(P2011−146471A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−4908(P2010−4908)
【出願日】平成22年1月13日(2010.1.13)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】