説明

プロテオーム解析装置

【課題】
短時間でプロテオームの解析を行なえるようにする。
【解決手段】
サンプル又は試薬を滴下する分注素子10を備えた分注機構と、下方の画像を読みとる画像読み取り装置6と、対象物52を上面に支持し、水平面内で移動して対象物52を少なくとも分注素子の下方の分注位置及び画像読取り装置6の下方の画像読取り位置に位置決めする可動テーブル2と、画像読取り装置6が読み取った画像を表示するモニター部60と、モニター部60に表示された対象物52の画像に基づいて対象物52上の分注位置を指定する分注位置指定部62と、分注位置指定部62が指定した対象物52上の分注位置が分注機構の分注素子10の下方にくるように対象物52と分注素子10との相対的位置決めを行ない分注機構による分注動作を制御する分注制御部7と、可動テーブル2上に支持された対象物52に光を照射しその蛍光を検出する蛍光検出部12とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化学、工業、臨床、バイオ分野などの分野で使用される分析装置に関する。
【背景技術】
【0002】
対象分子の質量を分析する目的で、質量分析装置に装着されたサンプルプレート上に配置されたサンプルにレーザー光を照射することによりサンプルをイオン化して分析するレーザー脱離イオン化質量分析方法が行なわれている。サンプルをサンプルプレート上に配置して作成する際、マトリックスを使用する方法と、使用しない方法がある。
【0003】
マトリックスを使用する方法を飛行時間型質量分析装置と組み合わせた方法は、MALDI−TOF(マトリックス支援型レーザー脱離イオン化−飛行時間)質量分析方法と呼ばれている。MALDI−TOFでは、測定サンプルはマトリックス溶液とともにサンプルプレート上に滴下し、乾燥後測定を行なっている。
【0004】
一方、対象サンプルとしては、生体分子を電気泳動等により分離した後、メンブレンに転写して固相化し、そのメンブレンに固相化されたサンプルに対しピエゾ素子による微量分注技術を利用してメンブレン上で各種反応を行ない生成する反応産物を利用して質量分析する方法が提唱されている(特許文献1参照。)。
【0005】
メンブレン上に展開して固相化された物質を検出する方法として、免疫ブロット法がある。免疫ブロット法は一般にはウェスタンブロット法とも呼ばれ、タンパク質サンプル等を電気泳動により展開し、その後メンブレンに固相化した後に、対象物質に対する特異抗体をプローブとして反応させてその存在を検出する方法である。
【0006】
サンプルプレート、又はサンプルプレート上にメンブレンを固定した対象物にピエゾ素子などによる分注機構により試薬やサンプルを分注した後、そのサンプルプレートなどを別の装置、例えば質量分析系やその他の分析装置、又は前処理装置に移し変えて分析や次の処理を行なう。
【0007】
サンプルプレートやメンブレンに展開したスポットのみに正確に試薬やサンプルを分注する装置が提案されている(特許文献2参照。)。
スライドガラス、ゲル又は膜上に保持され、蛍光物質にて標識化されたタンパク質などの対象物を含む微小領域(数μm〜数十μm)の蛍光を検出するには、測定しようとする領域に励起光を照射し、その励起光により励起されて対象物から発生する蛍光を検出する。そのような測定では、励起光として主にレーザー光が用いられている。
【0008】
一例として、レーザ光源から発したレーザ光をサンプルに照射し、そのレーザ光の照射により励起されたサンプルから発した蛍光を、共焦点光学系を通して結像させ、分光して検出するようにしたレーザ顕微鏡がある。そこでは励起光学系は光束を小さくするためのピンホールや、集光してサンプル上に照射するための集光レンズを用いて構成されている。
【0009】
そのようなレーザ顕微鏡として、異なる波長を有する複数のレーザ光を発するレーザ光源と、このレーザ光源から発せられる各波長のレーザ光から特定波長のレーザ光を選択するレーザ光選択手段と、このレーザ光選択手段により選択されたレーザ光を走査してサンプルに照射する手段と、この照射手段により照射されたレーザ光により励起されたサンプルが発した蛍光を通過させる如くサンプルの面と共役な位置に設置され蛍光の波長に対応した開口径に切換え可能な共焦点ピンホールと、この共焦点ピンホールの開口径を蛍光の波長にあわせて切換え制御する制御装置とを備えた走査型レーザ顕微鏡が提案されている(特許文献3参照。)。
【0010】
そのような蛍光測定装置では、必要な波長ごとにレーザー光源が設置され、それらは共通した光学系によりサンプルに集光されて照射されるように構成されている。
【特許文献1】国際公開第WO98/47006号パンフレット
【特許文献2】国際公開第WO2004/036228号パンフレット
【特許文献3】特開平11−271636号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
プロテオームの解析及びタンパク質の相互作用解析(これらを含めてプロテオーム解析という。)の要請が高まっているが、これまでは解析に膨大な時間がかかっていた。また、これらの作業は煩雑で膨大な時間がかかる。
本発明は、短時間で、自動的にプロテオーム解析を行なうことのできる装置を提供することを目的とするものである。
【課題を解決するための手段】
【0012】
本発明は、サンプル又は試薬を滴下する分注素子を備えた分注機構と、下方の画像を読みとる画像読み取り装置と、サンプル又は試薬が分注される対象物を上面に支持し、水平面内で移動して前記対象物を少なくとも前記分注素子の下方の分注位置及び前記画像読取り装置の下方の画像読取り位置に位置決めする可動テーブルと、前記画像読取り装置が読み取った画像を表示するモニター部と、前記モニター部に表示された前記対象物の画像に基づいて対象物上の分注位置を指定する分注位置指定部と、前記分注位置指定部が指定した対象物上の分注位置が前記分注機構の分注素子の下方にくるように前記対象物と分注素子との相対的位置決めを行ない前記分注機構による分注動作を制御する分注制御部と、前記可動テーブル上に支持された前記対象物に光を照射しその蛍光を検出する蛍光検出部と、を備えたプロテオーム解析装置である。
なお、プロテオームはタンパク質全体を意味するが、本発明のプロテオーム解析装置はタンパク質以外のゲノムやトランスクリプトームなどのバイオ物質も対象とする。
【0013】
本発明で採用する蛍光検出部の第1の態様は、蛍光画像を得るためのものであり、白色光源、前記白色光源から出た光を分光する励起側分光手段、レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起側分光手段により分光された光を励起光としてサンプルに照射する励起光学系と、レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起光により励起されたサンプルから発生した蛍光を集光する蛍光光学系と、前記蛍光光学系により集光された蛍光を分光する蛍光側分光手段と、前記蛍光側分光手段により分光された蛍光を検出する検出器とを備えた蛍光検出器と、サンプルと前記蛍光検出器を相対的に移動させ、前記蛍光検出器をサンプル上の所定の位置に位置決めする移動機構と、前記移動機構により位置決めされた蛍光検出位置情報と前記蛍光検出器による検出蛍光情報とから蛍光画像を作成する蛍光画像作成部とを備えている。
【0014】
本発明で採用する蛍光検出部の第2の態様は、蛍光スペクトルを得るためのものであり、第1の態様におけるのと同じ蛍光検出器と移動機構の他に、励起側分光手段及び蛍光側分光手段の少なくとも一方の波長を走査することにより、前記移動機構により位置決めされた蛍光検出位置における蛍光スペクトルを測定するスペクトル作成部を備えている。
【0015】
本発明で採用する蛍光検出部の第3の態様は、蛍光画像と蛍光スペクトルをともに得るためのものであり、上記の蛍光検出器と移動機構の他に、第1の態様における蛍光画像作成部と、第2の態様におけるスペクトル作成部とを備えている。
【0016】
これらの蛍光検出部では、白色光を分光するので、どの波長でも選択できるようになる。
励起光学系も蛍光光学系もレンズを使用しないので色収差をなくすことができ、解像度が劣ることがない。
またそれにより波長ごとに焦点を調整するような機構が不用なので、光学系が小型で簡単なものになる。
【0017】
蛍光画像を作成する場合でも、蛍光スペクトルを測定する場合でも、蛍光を検出する位置を割り出すことが必要になる。その際、サンプル位置の基準点を決定するために、蛍光側分光手段の設定波長を励起側分光手段の設定波長と同一波長に設定し、移動機構によりサンプルを移動させてサンプル上の特定のマークを検出することによりサンプル位置の基準点を検出する基準位置検出部を備えていることが好ましい。
【0018】
本発明の蛍光測定装置に含まれる蛍光検出器における励起光学系と蛍光光学系は共通の結像光学系を備えたものとすることができる。
その際、励起光学系と蛍光光学系とは一部の光路を共通にしており、その共通の光路とそれぞれの光路との分岐位置に励起光と蛍光を分離するハーフミラー又はダイクロイックミラーを備えて励起光と蛍光を分離する光学系とすることができる。
【0019】
励起光学系はサンプル面上に一方の焦点をもつ共焦点光学系を構成しているものとすることができる。その際、その励起光学系でサンプル面上の焦点と共役な関係にある他方の焦点の位置にピンホールを配置してもよい。そのピンホールにより、サンプルの検出領域以外のところに強い励起光が照射されて蛍光物質の褪色が生じるのを防ぐことができるので、正確な蛍光測定を行なうのに好都合である。
【0020】
蛍光光学系もサンプル面上に一方の焦点をもつ共焦点光学系を構成しているものとすることができる。その際、蛍光光学系でサンプル面上の焦点と共役な関係にある他方の焦点の位置にピンホールを配置してもよい。そのピンホールにより、サンプルの所定領域のみの蛍光を検出するようにすることができるので、蛍光測定の解像度を向上させるのに好都合である。
【0021】
また、励起光学系と蛍光光学系はサンプル面上に一方の焦点を共通にもつ共焦点光学系を構成しており、かつサンプル面上の焦点と共役な関係にある他方の焦点を共通の焦点としているものとすることができる。その際、共通の焦点の位置にピンホールを配置してもよい。このピンホールにより、サンプルの検出領域以外のところに強い励起光が照射されて蛍光物質の褪色が生じて正確な蛍光測定ができなくなるのを避けるとともに、サンプルの所定領域のみの蛍光を検出するようにしてその解像度を向上させることができる。
【0022】
励起光学系は光源からの白色光又分光された励起光を、サンプル面上の焦点と共役な関係にある他方の焦点の位置に結像する第2の光学系を備えることができ、その光学系もレンズを含まず鏡を組み合わせてなる結像光学系とすることができる。これにより、励起光密度を高めることができる。
その第2の光学系は分光に影響のない小さい角度で光を射出するように配置して、結像光学系の数を少なくすることができる。
【0023】
本発明において、「焦点」の語は、結像光学系に光軸に平行な光線が入射したとき光線が収斂あるいはそこから光線が発散していくように見える点であると定義される狭義の焦点に限らず、光軸に対し傾斜した角度で結像光学系に光線が入射し結像している場合には、その結像点も含めて焦点と呼ぶ。
結像光学系として、シュワルツシルト鏡のほか、ウォルタ鏡や楕円面鏡、放物面鏡なども用いることができる。
【0024】
シュワルツシルト鏡は、図13(A)に示されるように、大きな凹面主鏡426と小さな凸面副鏡428を対向させたものであり、凹面主鏡426の中央には凸面副鏡428で反射された光束が通る孔が開けられている。これは双曲面と楕円鏡との組合わせからなり、それぞれの焦点の一方a(又はb)を光源、他方b(又はa)を集光点とするものである。シュワルツ鏡は像を縮小したり拡大したりすることができ、また平行光(完全な平行光のみならず、平行光に近い擬似平行光も含む。以下の記述においても同じ。)も出すことができる。
【0025】
ウォルタ鏡は双曲面鏡と楕円面鏡とを組み合わせたミラーである。双曲面鏡の右側焦点から出た発散光は双曲面鏡を反射後、左側焦点から出た発散光のように振る舞う。一方、楕円面鏡では左側焦点から出た発散光は楕円面鏡を反射した後、右側焦点に集光する。したがって、双曲面鏡の左側焦点と楕円面鏡の左側焦点を一致させることにより、双曲面鏡の右側焦点から出た発散光は双曲面鏡、楕円面鏡と反射した後、楕円面鏡の右側焦点に集光する。(なお、ここで、右側、左側というのは説明の便宜上定めているだけで、左右を入れ替えても同じである。)
【0026】
楕円面鏡は楕円面の一方の焦点から出た発散光を他方の焦点に集光させるように作用する。
放物面鏡は平行光を一点に集光したり、逆に一点から出た発散光を平行光に変換したりするように作用する。
【0027】
白色光源は紫外から赤外に及ぶ波長範囲内の光を発生ものである。白色光源としては、キセノンランプのほか、水銀キセノンランプ、ハロゲンランプなどを用いることができる。
励起側分光手段はグレーティング、プリズム及び分光フィルターのうちのいずれかである。
【0028】
蛍光側分光手段もグレーティング、プリズム及び分光フィルターのうちのいずれかである。
励起光学系は励起側分光手段により分光された光を集光して光束密度をあげるために鏡を組み合わせてなる結像光学系をさらに備えることができる。
【0029】
従来、タンパク質などのサンプルを解析する際には、サンプルをメンブレンに固定し、蛍光標識された試薬を分注して反応させた後、メンブレンを洗浄して反応に使われなかった余分や試薬を除去した上で蛍光を検出するという操作が必要であった。そのため、操作に時間がかかっていた。
【0030】
そこで、本発明の好ましい局面では、可動テーブル上に支持された対象物を洗浄する洗浄ユニットをさらに備えることができる。
洗浄ユニットを備えた場合、その洗浄ユニットは、可動テーブル上に支持された対象物上の指定されたサンプル位置にバイオ分子が分注され、そのバイオ分子が反応した後に対象物を洗浄するものとすることができる。
【0031】
また、その洗浄ユニットは、対象物上の指定された位置にサンプルが分注され、さらにバイオ分子が分注され、そのバイオ分子が反応した後に対象物を洗浄するものとすることもできる。
洗浄工程の後に、蛍光検出部で、指定したスポット位置のサンプルの判定又は分析を行なうことができる。
【0032】
続いて、そのサンプルを質量分析するために、分注機構は、サンプルの判定又は分析の後に、サンプルと結合していたバイオ分子をサンプルから外す試薬を分注し、さらにその後、マトリックスを分注するものとすることができる。サンプルが分子量の大きいタンパク質の場合、マトリックスの分注に先立ち、タンパク質をペプチドに分解するための消化酵素を分注するようにしてもよい。その際、このプロテオーム解析装置から判定又は分析を行なったスポット位置の位置情報が質量分析装置へ送り出される。
【0033】
サンプルに結合されるバイオ分子としては、抗体、蛍光標識抗体、相互作用させるタンパク又はペプチドを用いることができる。
対象物としては、サンプルを支持していない支持体、クロマトグラフィーで分離されたサンプルを支持している支持体、又は電気泳動後に転写されたサンプルを支持している支持体とすることができる。そのような好ましい支持体の一例はメンブレンである。メンブレンにはタンパク質などの生体分子を吸着しやすくする官能基を予め有するものが多いが、さらに所定の官能基を付与することもできる。
そのような支持体を自動供給する支持体自動供給ユニットをさらに備えていることが好ましい。
【0034】
また、サンプルが変わるたびに新しい支持体を使用する必要があるが、そのたびに支持体を交換していると解析に多くの時間を必要とする。
そこで、本発明の他の好ましい局面では、そのような支持体を自動供給する支持体自動供給ユニットを備えることができる。
【発明の効果】
【0035】
本発明のプロテオーム解析装置によれば、サンプル又は試薬の分注装置内に蛍光検出器を備えたので、プロテオームの解析を迅速に、自動的に行なうことができる。
また、分注するサンプル量や試薬量を減らすことができるために、ランニングコストを減少させることができ、さらに微量の反応系にすることができるため反応時間が短く、稼動効率を上げることもできる。
【0036】
蛍光検出部が、光源として白色光源を使用し、励起光をサンプルに照射する励起光学系にもサンプルから発生した蛍光を集光する蛍光光学系にも、レンズを含まず鏡を組み合わせてなる結像光学系を備えた蛍光検出器を用いるようにすれば、白色光を分光することによりどの波長でも選択できるようになり、レンズを使用しないので色収差をなくすことができ、解像度が劣ることがなく、また色収差がなくなることにより波長ごとに焦点を調整するような機構が不用で光学系が小型で簡単なものになる。
【0037】
励起光学系と蛍光光学系が共通の結像光学系を備えたものとすれば、光学系が簡単になる。
励起光学系と蛍光光学系の一方又は両方がサンプル面上に一方の焦点をもつ共焦点光学系を構成しているものとすれば、光学系が簡単になる。
励起光学系でサンプル面上の焦点と共役な関係にある他方の焦点の位置にピンホールを配置すれば、そのピンホールにより、サンプルの検出領域以外のところに強い励起光が照射されて蛍光物質の褪色が生じるのを防ぐことができるので、正確な蛍光測定を行なうのに好都合である。
蛍光光学系でサンプル面上の焦点と共役な関係にある他方の焦点の位置にピンホールを配置すれば、そのピンホールにより、サンプルの所定領域のみの蛍光を検出するようにすることができるので、蛍光測定の解像度を向上させるのに好都合である。
【0038】
励起光学系が光源からの光をサンプル面上の焦点と共役な関係にある他方の焦点の位置に結像する第2の光学系を備えた場合には、励起光密度を高めることができる。
その第2の光学系が分光に影響のない小さい角度で光を射出するように配置すれば、結像光学系の数を少なくすることができる。
【0039】
本発明のプロテーム解析装置は、さらに洗浄ユニットを備えれば、サンプルと反応した試薬と遊離の試薬とを分離する、いわゆるB/F分離のための洗浄を、このプロテオーム解析装置内で行なうことができ、操作性が向上する。
本発明のプロテーム解析装置は、さらに支持体自動供給ユニットを備えれば、連続作業が可能になる。
支持体としてサンプルの固定に寄与する官能基を付与したメンブレンを使用すれば、サンプルの特別な固定化が不要になり、操作性が向上する。
【発明を実施するための最良の形態】
【0040】
図1は本発明の液体分注装置の一実施例を概略的に表したものである。
4は分注機構であるプリントヘッドであり、試薬などを分注するピエゾ素子を備えた4個の分注素子10−1〜10−4が一列に並べられて装着されている。分注素子10−1〜10−4の位置は固定されている。分注素子10−1〜10−4からの分注量を制御するために、分注素子10−1〜10−4にかかる圧力を調整するための圧力制御部7が装置本体の前面に取り付けられており、分注素子10−1〜10−4内の圧力を調整する摘み8が各分注素子10−1〜10−4に対応して4個配列されている。
プリントヘッド4はZ軸駆動が可能であり、シリンジ空気圧力制御によってピエゾ分注を行なうことができる。シリンジについては、後で記載する。
【0041】
分注しようとする対象物であるサンプルプレート50をテーブル2とともに画像として取り込むために画像読取り装置としてスキャナー6が配置されている。スキャナー6の位置は固定されている。スキャナー6はラインセンサのみ搭載し、装置をコンパクト化している。
【0042】
テーブル2は水平面内で移動できる可動テーブルであり、そのテーブル2上には、後で図2を参照して示すように、サンプルプレート50が所定の位置に載置されている。テーブル2は平面内で移動し、分注時にはサンプルプレート50の指定された位置を分注素子10−1〜10−4の下方に位置決めし、画像の取込み時にはテーブル2上の撮像すべき部分をスキャナー6の下方に位置決めする。
【0043】
分注素子10−1〜10−4から分注をするときに、先端部の画像を取り込み、分注の様子をモニタするために撮像装置としてCCDカメラ5が配置されている。CCDカメラ5は、設置スペースを抑えるために、斜め上方から分注素子10−1〜10−4の先端部の画像を取り込むように取りつけられている。分注素子10−1〜10−4は互いに異なる液を分注するものであり、サンプルプレート50などの所定の分注位置が下方に位置決めされた分注素子10−1〜10−4が分注動作を行なう。分注動作を行なう分注素子10−1〜10−4が変わったときに、その動作を行なう分注素子10−1〜10−4の画像を取り込むように、カメラ5は分注素子10−1〜10−4の配列に平行に移動できるように取り付けられている。
【0044】
蛍光検出器12はサンプルの蛍光を測定するための検出器であり、テーブル2の上部で、スキャナ6の隣に設置されている。蛍光検出器12の検出部はテーブル2に面する側に設置され、テーブル2が水平面で動くことによって、サンプルの目的箇所からの蛍光画像を取得することができる。
【0045】
蛍光検出器12によって、サンプルプレート50上のメンブレン52,53の蛍光画像を取得し、指定した目的スポットに対し1次抗体、蛍光標識抗体や、相互作用させるバイオ分子を分注素子10−1〜10−4から分注し、その目的スポットの定量解析や相互作用したスポットを判定することができる。
プリントヘッド4、スキャナー6、テーブル2、カメラ5及び蛍光検出器12は本体9aと蓋9bとからなるケース内に収納され、ケースの蓋9bはサンプルプレート50の交換の際など、随時に開けることができるようになっている。
【0046】
図2はテーブル2上に配置されたサンプルプレート50などを表したものである。
2枚のサンプルプレート50がそれぞれ所定の位置に固定して載置できるようになっている。52は支持体としてのメンブレンで、サンプルプレート50上に貼り付けられ、この分注装置で試薬やサンプルが分注されるものである。メンブレン52に固相化されたサンプルは、例えば、SDS(ドデシル硫酸ナトリウム)ポリアクリルアミドゲル電気泳動やその他のクロマトグラフィーによって一次元方向に分離されて展開したタンパク質、ペプチド、糖、脂質、核酸等の分子又はそれらの混合物である。
【0047】
メンブレン52へのサンプルの固相化は、ゲルその他の泳動媒体にサンプルを展開させた後、メンブレン52に転写することにより行なうことができる。
このような固相化に使用されるメンブレン52の材質としては、PVDF(polyvinylidene difluoride)、ニトロセルロース、ナイロン(登録商標)又はその派生物等を挙げることができる。
メンブレン52上に展開して固相化されたスポット内の物質を検出するために、メンブレン52に固相化されたサンプル成分に分注素子10−1〜10−4から消化液や抽出液を分注することができる。
【0048】
また、対象分子に結合するプローブとなる物質を分注することもできる。そのようなプローブとしては、対象分子が抗原である場合には抗体を使用する。一般的には、対象分子と特異的に反応する生体物質を使用することができる。また、幾つかの抗体や生体物質を組み合わせて使用することもできる。
試薬の分注は、メンブレン52上のスポットの存在する領域のみに行なうようにするのが好ましい。それにより、試薬の無駄を省くことができる。
【0049】
対象物質を光学的に検出できるようにするためには、分注する試薬として対象物質と特異的に反応するプローブを含む一次試薬と、プローブと反応した後の対象物質を発色させる二次試薬を用いることができる。その場合、分注素子10−1〜10−4のいずれかからまず一次試薬を分注し、その後一次試薬を分注した領域上に分注素子10−1〜10−4の他のものから二次試薬を分注する。そのような二次試薬としては、発色試薬や蛍光試薬を用いることができる。
【0050】
また、対象分子にプローブを反応させた後、それを適当な手段により検出する方法として、発色試薬や蛍光試薬を分注することのほかに、金属イオンを反応させたり、又はこれらの方法を組み合わせることができる。そのような方法としては、金コロイド標識抗体を用いる方法や、金属イオンに親和性をもつタンパク質等をNi2+キレート酵素などを用いて蛍光反応に導入する方法がある。
【0051】
複数の分注素子10−1〜10−4が設けられているので、テーブル2によりサンプルプレート50上の分注位置を移動させることにより、分注素子10−1〜10−4を替えて複数の試薬を分注することができる。
【0052】
各サンプルプレート50には複数のマークbが設けられている。それらのマークbはサンプルプレート50上に貼り付けられたメンブレン52上の分注位置を情報として作成するときの基準となるリファレンスポイントである。この例ではほぼ矩形の4つの隅にリファレンスポイントbが設けられており、メンブレン52の画像とともにそれらのリファレンスポイントbもスキャナー6によって取り込まれる。サンプルプレート50の1つの角は、サンプルプレート50の方位を示すために切り落とされている。
【0053】
テーブル2上に設けられた領域54は、分注素子10−1〜10−4による分注テストを行なうためのテストプリント部として設けられた領域である。そこにもろ紙が取りつけられており、テストプリント時の分注状態をCCDカメラ5で確認できるようになっている。
【0054】
テーブル2上に設けられた領域56は、分注素子10−1〜10−4のメンテナンス部であり、スポンジ57が設けられている。分注素子10−1〜10−4の先端に液や汚れが付着した場合に、このメンテナンス部が分注素子10−1〜10−4の下に移動させられ、そのスポンジ57によって分注素子10−1〜10−4の先端についた液や汚れが拭き取られるようになっている。
【0055】
また、テーブル2の表面にはテーブル2上に配置されるサンプルプレート50の位置の基準となるベースポイントとしてマークaが設けられている。マークaは、分注位置を情報として取り出す場合の基準となるものであり、またスキャナー6で取得した画像上の位置とテーブル2の動きとを合わせる基準となるものである。
ヘッド4におけるそれぞれの分注素子10−1〜10−4は同じ構造である。
【0056】
微量分注方式に用いる液体分注装置の一例は、上に述べたピエゾ素子による分注方式のものである。
そのような液体分注装置では、先端の吐出部につながる空間に充填された試薬を、ピエゾ素子を備えた駆動部により押圧することによりその吐出部から液滴を吐出する。その場合、制御信号のパラメータは、ピエゾ素子への印加電圧の大きさ、印加電圧の立上がり時間、印加時間、印加電圧の立下がり時間のうちの少なくとも1つを含んだものとすることができる。
これに類似の液体分注装置として、インクジェット方式の液体吐出装置で用いられている液体吐出素子を備えたものも用いることができる。
【0057】
微量分注方式に用いる液体分注装置の他の例として、シリンジポンプによる分注方式の装置も用いることができる。その場合、制御信号のパラメータは、シリンジポンプのプランジャのストローク、速さ、加速のうちの少なくとも1つを含んだものとすることができる。
【0058】
分注素子として、ピエゾ素子を内蔵した分注素子10を備えた分注機構の一例を図3を用いて詳細に説明する。
下端に吐出口11をもち上端に中空針16をもった液体吐出部としての分注素子10が、ネジ29により、液体分注装置のチップ保持部31に着脱可能に取りつけられている。分注素子10はネジ29を緩めることにより取り外すことができ、ネジ29を締付けることにより固定することができる。分注素子10を着脱すると、分注位置のずれが生じる。そのために、後述するように、この実施例ではテーブル2上のベースポイントaを基準として分注位置を校正する。
【0059】
分注液容器20は使い捨て可能なものであり、下端と上端に開口をもち、下端開口が蓋15により閉じられて内部に分注液を収容する容器である。下端開口の蓋15は弾性体セプタムであり、分注素子10の中空針16により貫通でき、かつその貫通した中空針16を引き抜くとその貫通穴を弾性によって閉じることのできる弾性部材により構成されている。蓋15を構成する弾性部材は、例えばゴムである。
【0060】
容器20をチップ10上に装着し、中空針16により下端開口の蓋15を貫通して装着した状態で、容器20の上部からエアー導入ヘッド30を取り付けることができるようになっている。エアー導入ヘッド30は、容器20内の圧力を調整し、チップ10からの液の吐出量を調整するものである。
【0061】
エアー導入ヘッド30の先端部にはシール部材32が設けられている。シール部材32は例えばOリングである。エアー導入ヘッド30を容器20に対して押し付けることにより、シール部材32は容器20の開口部の内側面と接触して容器20の開口部を、気密を保って封止し、エアー導入ヘッド30に圧力制御機構から送られるエアーにより容器20内の圧力を制御できるようになる。
【0062】
エアー導入ヘッド30を着脱可能に装着するためにアーム機構を備えている。アーム機構はアーム33とロック36を備え、エアー導入ヘッド30はアーム33の一端部で保持されている。アーム33はその基端部がピン34によって液体分注装置本体に回動可能に支持されている。ロック36はピン38によってアーム33に回動可能に支持されており、基端部には鉤40が設けられている。鉤40は液体分注装置本体に固定された凸部35と係合して、容器20をチップ10上に装着した状態でロックできるようになっている。
【0063】
エアー導入ヘッド30はアーム33に開けられた穴にスライド可能に挿入され、バネ41によってエアー導入ヘッド30を容器20の方向に押し出すように付勢される。エアー導入ヘッド30の基端部はアーム33から突出し、その部分に鍔45が設けられていることによってエアー導入ヘッド30がアーム33から抜け出るのが防止されている。エアー導入ヘッド30の基端部は配管44を介して圧力制御機構に接続されている。
【0064】
ロック36を、ピン38を中心に鉤40が凸部35と係合する方向に付勢するためにアーム33とロック36の間には圧縮状態のコイルバネ42が挿入されている。
アーム33と液体分注装置本体の間にはバネ43がかけられており、バネ43はアーム33を開く方向(図では時計周りの方向)に引っ張るように付勢している。
【0065】
図3の機構において、容器20を装着する場合は、容器20をチップ10上に置き、下方向に押して中空針16でセプタム15を貫通し、容器20内の溶液に中空針16を浸す。エアー導入ヘッド30はアーム33に保持されているため、アーム33を図で反時計方向に回動させることにより、エアー導入ヘッド30が容器20の開口部に装着され、容器20とエアー導入ヘッド30がシール部材32によって気密を保って接続される。またこのとき、鉤40は凸部35と係合してアーム33がロックされ、アーム33が開くように時計方向に回動するのが防止される。エアー導入ヘッド30はバネ41によって容器20の方向に押し付けるように付勢されているので、アーム33をロックした状態で容器20とヘッド30の気密接続が維持される。
この状態でチップ10から液の吐出を行なうことができるようになる。
【0066】
容器20を取り外す場合は、ロック36をアーム33の方向に押す。ロック36はピン38を中心に図で時計方向に回動し、鉤40と凸部35の係合が解除され、アーム33はバネ43の力によって図で時計方向に回動し、エアー導入ヘッド30が容器20から離れる。
【0067】
この状態ではエアー導入ヘッド30はアーム機構とともにピン34を中心に回動するため、エアー導入ヘッド30と容器20の間が大きく開き、エアー導入ヘッド30のシール材32や、容器20の周辺の掃除などのメンテナンスがしやすくなる。
【0068】
また、このようにアーム機構を用いてエアー導入ヘッド30を容器20に対して着脱できるようにすれば、容器20の着脱、及び容器20へのエアー導入ヘッド30の着脱を容易に行なうことができるようになる。
【0069】
図1に戻ってCCDカメラ5について説明する。
サンプル、試薬にかかわらず、液相を用いることの多い分析装置の分野では、分析の際に使用する溶液の量を減らす試みが行なわれている。これは、貴重なサンプルの無駄を省くためや高価な試薬の使用量を減らすためのみならず、溶液間の生化学的な反応においては、溶液の量が少ないほど反応にかかる時間が短くてすむため、実験の処理効率をあげるために有効な方法だからである。
【0070】
微量溶液で反応を実行するためには、サンプル又は試薬を微量に分注する分注装置が必要である。微量の液を分注するための方法として、実施例のピエゾ素子などの圧電素子を用いた方法のほか、バルブの開閉による方法、溶液を局所的に加熱してできる気泡を用いる方法など、様々なものが実用化されている。
【0071】
微量な液体を目的の位置に分注する際には、圧電素子であれば素子への電圧の与え方、バルブを用いるのであれば開閉時間など、種々のパラメータの微妙な制御が要求される。これらのパラメータを最適化するため、また、数多くの位置に分注する際には分注時間も長くなるため、分注する液滴の形状をモニタして分注機のおかれている環境の変化や圧電素子の経時変化に対応するために、分注素子先端部に形成される液滴の画像を撮像装置で取り込んでモニタすることが好ましい。CCDカメラ5はそのような撮像装置の一例である。
分注状態をモニタするためのCCDカメラ5を水平方向から角度をもたせて斜め上方に配置するようにしたことにより、可動テーブル2と干渉することなく可動テーブル2の移動範囲内に設置することができ、分注装置が小型になる。
【0072】
分注素子先端部を挟んでCCDカメラ5とは反対側の位置に光源を配置してもよく、その場合、その光源はその発する光がサンプルプレート50の表面で反射し分注素子先端部を経由してCCDカメラ5に入射する方向に向けられる。このような光源を設けることにより、分注素子先端部に形成されるサンプル又は試薬の滴をモニタする場合には、その滴の画像を透過光で撮像することができるようになり、より鮮明な画像を得て正確なモニタを行なうことができるようになる。さらに、この光源を分注のタイミングと同期させて点灯することにより、液滴を静止画像のように取り込むことができる。
【0073】
CCDカメラ5は分注素子先端部の画像とともに分注素子の下方にあるサンプルプレート表面の画像も撮像するように設定しておくこともできる。その場合には、分注素子先端部のモニタとともに、サンプルプレート表面の状態もモニタできるようになり、より多くの情報を得ることができる。例えば、目的とする位置に的確にサンプルや試薬が分注できているかどうかを確認できるようになったり、また例えば、サンプルや試薬が分注される対象物が膜の場合、分注前後の膜の状態を観察したり、反応中の膜状態の経時変化の観察をしたりすることも可能になる。
【0074】
この分注装置の用途として、例えばPVDF膜のような固相に試薬を分注するものがあげられる。PVDF膜には、クロマトグラフィーにより展開したスポットが転写させられており、そのスポットを発色させるために、試薬が分注される。そのような固相として使用できるものとしては、PVDF膜の他に、ニトロセルロースやナイロン(登録商標)なども用いることができる。
【0075】
図4は図1の装置の機能をブロック図として示したものである。
60はスキャナーなどの画像読取り装置6が読み取った画像を表示するモニター部である。分注位置指定部62はモニター部60に表示されたメンブレン52などの対象物の画像に基づいて対象物上の分注位置を指定するためのものである。分注制御部64は分注位置指定部62が指定した対象物上の分注位置が分注素子10の分注素子の下方にくるように対象物と分注素子との相対的位置決めを行ない、分注素子10による分注動作を制御するものである。分注素子10がピエゾ素子を備えたものである場合には、分注制御部64は圧力制御部7により分注素子10内の圧力を調整し、分注制御ユニット66によりピエゾ素子への電圧印加を制御してピエゾ素子から液を吐出する。
蛍光検出部12はサンプルからの蛍光を検出する。
【0076】
分注位置情報作成部68は、分注位置指定部62が指定し分注動作がなされた対象物52上の分注位置に関する分注位置情報を作成するものである。分注位置情報作成部68は作成した分注位置情報を外部に出力することができる。
【0077】
サンプルプレート50には図2に示されるように対象物内の位置の基準となるリファレンスポイントbを複数個設けておき、画像読取り装置6がサンプルプレート50の画像とともにリファレンスポイントbの画像も読み取るようにする。これにより、分析位置情報作成部68は分析位置指定部62が指定したサンプルプレート50上の位置を複数のリファレンスポイントbを基にして作成するものとすることができ、対象物をいったん取り外し、再びテーブル2に取りつけた場合にもスキャナー6で画像を取得すれば、リファレンスポイントbを基に正確に位置決めすることができるようになる。また、サンプルプレート50を分析装置などに移動させた場合にも、そのリファレンスポイントbを基にしてその分注位置情報からサンプルプレート50内での分注位置に正確に位置決めすることができるようになる。
【0078】
対象物を支持するテーブル2はテーブル駆動機構65により駆動されて平面内で移動し、分注制御部64により指示された所定の位置に位置決めされる。テーブル2上には、基準となるベースポイントaを複数個設けておき、画像読取り装置6がサンプルプレート50の画像とともにベースポイントaの画像も読み取るようにし、分析位置情報作成部68はサンプルプレート50上の位置を複数のベースポイントaを基にして作成することもできるものとすることができる。これにより、サンプルプレート50内での分注位置情報をベースポイントaを基にして正確に定めることができるようになる。
【0079】
サンプル又は試薬を滴下する分注素子10は着脱可能になっており、分注素子10の分注位置を校正するための校正部72を備えている。校正部72は、分注素子10によりテーブル2上の所定の位置に分注を行なったときの画像読取り装置6による読取り画像に基づいて分注位置を検出し、同時に読み取ったテーブル2上の基準となるベースポイントを基にして分注位置の校正を行なう。校正のための分注は、例えば図2に示すテーブル2上の試薬などを分注すると発色するようなメンブレン53による3つの点で示すような、予め定められた複数の位置で行なう。この校正は、分注素子を装着するたびに行なう。
【0080】
上記の実施例は分注装置に本発明を適用した場合を例にして説明しているが、求めようとする位置情報は分注位置の情報に限らず、メンブレン53や泳動媒体などの画像を画像読取り装置6で読み取り、その画像中のスポットなど検出された位置の情報を作成する場合にも本発明を同様に適用することができる。
【0081】
図1の装置構成に追加して、メンブレン用の洗浄ユニット13を設置したものを図5に示す。洗浄ユニット13はテーブル2の上部で、スキャナー6の隣にZ軸方向に移動可能に設置されている。洗浄ユニット13の洗浄部はテーブル2と面する側に設けられている。CCDカメラ5により洗浄すべき目的部位が定められると、テーブル2が水平面内で移動してその目的部位が洗浄ユニット13の洗浄部の下部に位置決めされる。洗浄ユニット13はZ軸駆動が可能であるので、メンブレン52を洗浄するときにテーブル2側に下降して洗浄動作を行ない、それ以外のときは装置内の上部に待機している。
【0082】
図1の装置構成では、メンブレン52を洗浄する場合、メンブレン52を取り出すために装置の蓋9bを開けることが必要であったが、図5のように洗浄ユニット13を装置内に組み入れることで、分注した試薬などでサンプルと結合しなかった余分なものを除去する、いわゆるB/F分離のための洗浄を、蓋9bを開けることなく装置内で行なうことができる。
【0083】
洗浄ユニット13としての一実施例を図6(A)に示す。この洗浄ユニットは、洗浄液を貯蔵することのできるタンク80、洗浄液の吸い上げと吐き出しを行なうシリンジ81、洗浄液の吸い上げと吐き出しを行なうノズル82、及び流路を切り替えてシリンジ81をノズル82又はタンク80に接続するバルブ83を備えている。タンク80を複数個設けた場合は、メンブレン52の洗浄液貯蔵用と洗浄後のドレイン用に分けることができ、流路を切り換えてバルブ83に接続するようにすることができる。
【0084】
次に、この洗浄ユニットでメンブレン52を洗浄する動作を同図(B)を参照して説明する。バルブ83をタンク80とシリンジ81が接続されるように切り替えて、タンク80内の洗浄液をシリンジ81に吸い込む。その後、バルブ83をシリンジ81とノズル82が接続されるように切り替えて、シリンジ81内の洗浄液をノズル81からメンブレン52上に供給する。
【0085】
次に、バルブ83をノズル82とシリンジ81が接続されるように切り替えて、メンブレン52上の洗浄液をシリンジ81に吸い込む。その後、バルブ83をシリンジ81とタンク80が接続されるように切り替えて、シリンジ81内の洗浄後の液体をタンク80に排出する。このとき、タンク80が複数個設けられている場合は、洗浄後の洗浄液は流路を切り換えてドレイン用のタンクに排出する。
メンブレン52が疎水性材料である場合は、洗浄液の吸入が容易であるために、より好ましい。
【0086】
洗浄ユニット13の他の実施例を図7(A)に示す。この洗浄ユニットは、メンブレン52上に洗浄液を供給する供給プローブ85とメンブレン52上の洗浄液を吸引して排出する排出プローブ87を1組として隣接して備えている。さらに、供給プローブ85を介してメンブレン52上に洗浄液を供給するためのシリンジ81と、メンブレン52上の洗浄液を排出プローブ87で吸引して排出するためにドレインタンク86を介して吸引する真空ポンプ84を備えている。
【0087】
この洗浄ユニットでメンブレンを洗浄する動作を説明する。シリンジ81から供給プローブ85を介して洗浄液をメンブレン52上に供給しながら、真空ポンプ84によってドレインタンク86を吸引する。ドレインタンク86内が減圧になることによって、メンブレン52上の洗浄液は排出プローブ87を介してドレインタンク86に吸入され、溜められる。
この場合も、メンブレン52が疎水性材料である場合は液の吸入が容易であるために好ましい。
【0088】
図7(A)の洗浄ユニットの供給プローブ85と排出プローブ87の組を複数組並べたマニーホールド式洗浄ユニットの一実施例を図7(B)と(C)に示す。(C)は供給プローブ85と排出プローブ87の1組の部分を示す断面図である。この洗浄ユニットは、供給プローブ85と排出プローブ87の組をX方向に並列に配置し、シリンジ81からは各組の供給プローブ85に同時に洗浄液を供給し、各組の排出プローブ87をドレインタンク86を介して真空ポンプ84により同時に吸引する。そして全体をY方向に移動させることで、メンブレン52上の広い面積を洗浄することができる。
【0089】
図1の装置構成に洗浄ユニット13を組み込んだ図5の装置構成にすることによって、B/F分離やその他の洗浄を装置内部で自動で行なうことができる。
メンブレンの供給を自動化するため、メンブレン自動供給ユニット17をさらに組み込んだ装置構成を図8に示す。メンブレン自動供給ユニット17はテーブル2の上にメンブレンを自動的に供給できるものである。
【0090】
メンブレン自動供給ユニット17の一実施例を図9(A),(B)に示す。(A)は連続供給されるメンブレン52aとその駆動機構を概略的に示したものであり、(B)はこのメンブレン自動供給ユニット17をテーブル2に組み込んだ状態を示すものである。
【0091】
このメンブレン自動供給ユニット17は、メンブレン供給部90とメンブレン巻取り部91の間に帯状のメンブレン52aが巻かれており、メンブレン供給部90とメンブレン巻取り部91はテーブル2の下部に配置され、使用される部分のメンブレン52aがテーブル2上に配置される。メンブレン52aの供給を駆動するために、メンブレン巻取り部91はギア92を介して駆動モータ93に接続されている。94はモータ93の駆動を制御するメンブレン自動供給ユニット制御部である。
【0092】
モータ93によりメンブレン巻取り部91を回転させることにより、新たなメンブレン52aがメンブレン供給部90がテーブル2上に供給されて配置され、次の分析に供せられる。
このメンブレン自動供給ユニットの動作について説明する。テーブル2上にあったメンブレン52aの部分での分析が終了すると、制御部94によってモータ93が駆動され、メンブレン巻取り部91を回転する。その回転により新たなメンブレン52aがメンブレン供給部90からテーブル2上に引き出されて配置され、次の分析に供せられる。
【0093】
図10は蛍光検出器12の一実施例である。
402は白色光源としてのキセノンランプである。光源402からの光を励起側分光器404に集めるために、光源402に関し分光器404とは反対側に凹面ミラー406が配置されている。
【0094】
分光器404で分光されて所定の波長とされた励起光の光量を多く利用するために、レンズを用いず鏡を組み合わせてなる結像光学系としてのシュワルツシルト鏡408が配置され、励起光はそのシュワルツシルト鏡408により集光され、位置424に結像する。
【0095】
位置424の励起光の像を一方の焦点とし、サンプル面上に他方の焦点を結ぶ励起光学系としての共焦点光学系を構成するために、レンズを用いず鏡を組み合わせてなる結像光学系としてのシュワルツシルト鏡410,414が配置されている。シュワルツシルト鏡410,414の間の光路上には光路を90°折り曲げるハーフミラー412が配置されている。シュワルツシルト鏡410はシュワルツシルト鏡408で集光された励起光の像からの光を受光し、分光に影響のない小さい角度で射出し、ハーフミラー412の手前の位置424aに像を結ぶように配置されている。また、シュワルツシルト鏡414はシュワルツシルト鏡410から射出された励起光をハーフミラー412での反射を介して集光し、サンプル面416に像を結ぶように配置されている。シュワルツシルト鏡414はサンプル面416から発生する蛍光を集光して分光に影響のない小さい角度で射出し、ハーフミラー412を透過して分光器420の入口付近の位置419に像を結ぶ。分光器420に入射した蛍光は、分光器420で分光され、検出器422で検出される。検出器422はPMT(光電子増倍管)又はシリコンフォトダイオードなどである。
【0096】
この実施例では、位置424a,サンプル面416上の点及び位置419は結像点であり、狭義の焦点ではないが、これらの点も焦点と呼ぶ。
この実施例ではシュワルツシルト鏡414は励起光学系と蛍光光学系に共通の共焦点光学系を構成している。焦点424aは励起光学系におけるサンプル面416上の焦点と共役な関係にある焦点であり、焦点419は蛍光光学系におけるサンプル面416上の焦点と共役な関係にある焦点である。
【0097】
この実施例の蛍光検出器12では、分光に影響のない小さい角度でハーフミラー412に入射させるようにシュワルツシルト鏡410,414を配置したことにより、サンプルへの照射面積、光量、蛍光検出の解像度などを減少させることなく、シュワルツシルト鏡の数を少なくしている。シュワルツシルト鏡の数が少なくなると、光学系を小さくすることができ、光軸調整も容易になり、コスト低下につながる。
【0098】
さらに、この実施例の蛍光検出器12では、励起光学系の焦点424aの位置に励起光スポットの大きさを制限するピンホール434を配置し、蛍光光学系の焦点419の位置に蛍光検出の解像度を向上させるピンホール436を配置している。
【0099】
共焦点光学系をなす励起光学系において、焦点424aはサンプル面416上の焦点と共役な関係にあるので、その焦点424aの位置にピンホール434を配置することにより、サンプル面416に照射される励起光スポットの大きさを制限することができ、サンプル面416において検出しようとする微小領域以外の部分が励起光で照射されるのを防ぐことができる。
【0100】
一方、共焦点光学系をなす蛍光光学系においても、焦点419はサンプル面416上の焦点と共役な関係にあるので、その焦点419の位置にピンホール436を配置することにより、サンプル面416上の所定の微小領域以外からの蛍光が分光器420に入射するのを排除して所定領域のみの蛍光を検出することができ、その結果として蛍光検出の解像度を向上させることができる。
【0101】
この実施例では、光源402からの白色光は凹面ミラー406により励起側分光器404に集められ、分光器404で分光されて所定の波長の励起光となる。その励起光はシュワルツシルト鏡408により集光され、位置424に結像される。結像された励起光はシュワルツシルト鏡410によってハーフミラー412に射出される。励起光はハーフミラー412で反射されてシュワルツシルト鏡414に入射し、シュワルツシルト鏡414によってサンプル面416の所定の領域に集光されて照射される。励起光により励起されてサンプル面416から発生した蛍光は、同じシュワルツシルト鏡414により集光され、シュワルツシルト鏡414から射出されてハーフミラー412を透過し、蛍光側分光器420に入射する。蛍光は分光器420で分光され、検出器422で検出される。
【0102】
後の実施例においても同様であるが、ハーフミラー412に替えてダイクロイックミラーを使用していてもよい。ダイクロイックミラーを使用する場合は、励起光波長成分を反射し、それよりも長波長の蛍光を透過させる特性をもったものを使用する。シュワルツシルト鏡410,414が分光に影響のない小さい角度で光を射出させるように配置されているのは、ハーフミラー412に替えてダイクロイックミラーを使用した場合に、ダイクロイックミラーでの反射と透過に関する波長特性に影響を与えないようにすることである。
【0103】
次に、この実施例で蛍光画像を作成するための構成について説明する。
52は蛍光画像を作成しようとするメンブレンである。メンブレン52はテーブル2に固定されている。ここではメンブレン52がテーブル2に直接固定されているが、図1の実施例のようにサンプルプレート50を介してテーブル2に固定されていてもよい。
テーブル2はX−Yステージであり、水平面内のX,Y方向に移動することができ、検出位置を平面内の任意の位置に移動させることができるものである。このようなテーブル2にメンブレン52を固定することにより、蛍光検出器12とメンブレン52を相対的にX軸上とY軸上に移動させながら蛍光を取得し、蛍光画像を構成することができる。
【0104】
テーブル2にはテーブル2をX,Y方向に移動させるための駆動機構が設けられている。その駆動機構を介してテーブル2の駆動を制御するために、サンプルステージ駆動制御部470が設けられている。テーブル2、その駆動機構及びサンプルステージ駆動制御部470は、サンプルであるメンブレン52と蛍光検出器12を相対的に移動させ、蛍光検出器12をサンプル上の所定の位置に位置決めする移動機構を構成している。また、移動機構は、蛍光検出器12をサンプル面に対して相対的に垂直方向に移動させて焦点をあわせる自動焦点(オートフォーカス)機構を含むことができる。
【0105】
メンブレン52は各工程のためにテーブル2から外され、再度サンプルステージに固定されることがある。メンブレン52の着脱を繰り返すと、装着位置が数μmから数十μmの範囲でずれることがある。そのため、図11に示されるように、メンブレン52には幾つかの基準マーク464を設けておくのが好ましい。基準マーク464は蛍光を発するものではなく、励起光を照射し、その反射光の強弱によって認識することができるものであるとする。
ただし、図1の実施例の装置において、メンブレン52がテーブル2に固定されたままで一連の操作を完了することができる場合は、基準マーク464は位置決め用には必要ではないが、蛍光測定後を行なったスポット位置情報として使用することができるので、基準マーク464は設けておく方がよい。
【0106】
図10に戻って、その基準マーク464を検出するために、基準位置検出部472が設けられている。基準位置検出部472は、蛍光側分光器420が励起波長と同じ波長を選択するように蛍光側分光器420を設定し、蛍光検出器12を基準マーク464と相対的にX軸、Y軸上を移動させながら強度を検出することにより、基準マーク464を検出する。基準位置検出部472は検出した基準マーク464を画像処理して基準点を決定し、目的サンプル位置を補正する情報として供する。
【0107】
蛍光画像を作成するために蛍光画像作成部474が設けられている。蛍光画像作成部474は、サンプルステージ駆動制御部470から、位置決めされた蛍光検出位置情報を取り込んで基準位置検出部472が検出した基準位置に基づいて蛍光検出位置情報を補正し、蛍光検出器12の検出器422から検出蛍光情報を取り込み、蛍光検出位置情報と検出蛍光情報とから蛍光画像を作成する。
【0108】
476は表示部であり、蛍光画像作成部474により作成された蛍光画像を表示する。
サンプルステージ駆動制御部470、基準位置検出部472及び蛍光画像作成部474は専用のコンピュータ478により、又はパーソナルコンピュータにより実現される。
【0109】
図12は蛍光スペクトルを測定する態様の蛍光検出器の一実施例である。
蛍光検出器の光学系、テーブル2、サンプルステージ駆動制御部470及び基準位置検出部472の構成は、図10に示された実施例のものと同じである。
【0110】
この実施例では、蛍光スペクトルを測定するために、スペクトル作成部480を備えている。スペクトル作成部480は、サンプルステージ駆動制御部470から、位置決めされた蛍光検出位置情報を取り込んで基準位置検出部472が検出した基準位置に基づいて蛍光検出位置情報を補正し、励起側分光器404及び蛍光側分光器420の少なくとも一方の波長を走査することにより、蛍光検出位置における蛍光スペクトルを測定する。
【0111】
表示部476は、スペクトル作成部480により測定された蛍光スペクトルを表示する。
スペクトル作成部480もサンプルステージ駆動制御部470、基準位置検出部472とともに専用のコンピュータ478により、又はパーソナルコンピュータにより実現される。
【0112】
本発明のさらに他の態様は、蛍光画像と蛍光スペクトルを1台の装置でともに測定できるようにするものである。そのような測定装置は、図10と図12の実施例におけるサンプルステージ駆動制御部470、基準位置検出部472、蛍光画像作成部474及びスペクトル作成部480を全て備えることにより実現することができる。
【0113】
蛍光による画像化としては、目的サンプル位置での蛍光強度の他に、蛍光スペクトルなどの蛍光情報を検出して画像化してもよい。
サンプル表面には数μm〜数十μmの幅で凹凸があるので、正確な蛍光検出ができないことがある。そのため、サンプル表面から蛍光検出部までの高さを可変にしておき、目的サンプルの各位置でオートフォーカスするようにすればよい。
【0114】
蛍光検出器12は図10及び図12に示されたものの他に種々の構成をとることができる。次に、蛍光検出器12の幾つかの構成を示す。図10又は図12の実施例の光学系をこれらの光学系に置き換えたものも本発明の実施例である。
【0115】
図13(A)はシュワルツシルト鏡を表わしたものであるが、図13(B)は図10及び図12の実施例に含まれる光学系におけるシュワルツシルト鏡をウォルタ鏡、楕円面鏡又は放物面鏡に置き換えた光学系を表わす。409,413及び417はウォルタ鏡又は楕円面鏡であり、シュワルツシルト鏡408,410及び414にそれぞれ替わるものである。
図10の実施例及び図12の実施例で光学系を図13(B)の光学系に置き換えても動作はそれぞれ図10の実施例及び図12の実施例の動作と同じである。
【0116】
図14(A)は他の蛍光検出器12の例である。光源2からの光は凹面ミラー406により励起側分光器404に集められ、分光器404で分光されて所定の波長とされた励起光はシュワルツシルト鏡408により集光され、位置424に結像する。ここまでの光学系は図10のものと同じである。
【0117】
位置424の励起光の像を一方の焦点とし、サンプル面上に他方の焦点を結ぶ励起光学系としての共焦点光学系を構成するために、シュワルツシルト鏡410,414が配置されている。シュワルツシルト鏡410,414の間の光路上には光路を90°折り曲げるハーフミラー412が配置されている。シュワルツシルト鏡410は焦点424からの励起光を平行光として射出し、シュワルツシルト鏡414はシュワルツシルト鏡410からの平行光とされた射出光をハーフミラー412を介して受光し、サンプル面416の所定の領域の焦点に集光して照射する。
【0118】
シュワルツシルト鏡414はサンプル面416が励起光の照射により励起されて発生する蛍光を集光し平行光にして射出する。シュワルツシルト鏡414とともに蛍光光学系としての共焦点光学系を構成するために、ハーフミラー412を挟んでシュワルツシルト鏡418が配置されている。ハーフミラー412は励起光を反射するとともに、シュワルツシルト鏡414から射出した蛍光を透過させる。シュワルツシルト鏡418は蛍光側分光器420の入口に焦点419をもち、分光器420の入口に蛍光を集光して入射させる。分光器420で分光された蛍光は検出器422で検出される。
【0119】
この実施例では、光源402からの白色光は凹面ミラー406により励起側分光器404に集められ、分光器404で分光されて所定の波長の励起光となる。その励起光はシュワルツシルト鏡408により集光され、位置424に結像される。結像された励起光はシュワルツシルト鏡410に集光され平行光としてハーフミラー412に射出される。励起光はハーフミラー412で反射されてシュワルツシルト鏡414に入射し、シュワルツシルト鏡414によってサンプル面416の所定の領域に集光されて照射される。励起光により励起されてサンプル面416から発生した蛍光は、同じシュワルツシルト鏡414により集光され、平行光とされてハーフミラー412を透過し、シュワルツシルト鏡418により集光されて蛍光側分光器420に入射する。蛍光は分光器420で分光され、検出器422で検出される。
【0120】
図14(B)は図14(A)の光学系のシュワルツシルト鏡をウォルタ鏡、楕円面鏡又は放物面鏡に置き換えた光学系を表わす。409はウォルタ鏡又は楕円面鏡で、シュワルツシルト鏡408に替わるもの、411,415及び418aは放物面鏡で、シュワルツシルト鏡410,414及び418にそれぞれ替わるものである。
図14(B)の光学系の動作は図14(A)の光学系の動作と同じである。
【0121】
図15(A)はさらに他の蛍光検出器を表わしたものであり、図14(A)の蛍光検出器において、励起光学系の焦点424の位置にピンホール434を配置し、蛍光光学系の焦点419の位置にピンホール436を配置したものである。
【0122】
図15(B)は図15(A)の光学系のシュワルツシルト鏡をウォルタ鏡、楕円面鏡又は放物面鏡に置き換えた光学系を表わす。ウォルタ鏡又は楕円面鏡409はシュワルツシルト鏡408に替わるもの、放物面鏡411,415及び418aはシュワルツシルト鏡410,414及び418にそれぞれ替わるものである。
図15(B)の光学系の動作は図15(A)の光学系の動作と同じである。
【0123】
図16(A)はさらに他の蛍光検出器を表わす。この蛍光検出器は、図10に示されたピンポール434,436が設けられていない点で相違している。ピンポール434,436を設けないことによって光軸調整が容易になる。
【0124】
図16(B)は図16(A)の光学系のシュワルツシルト鏡をウォルタ鏡、楕円面鏡又は放物面鏡に置き換えた光学系を表わす。409,413及び417はウォルタ鏡又は楕円面鏡であり、シュワルツシルト鏡408,410及び414にそれぞれ替わるものである。
図16(B)の光学系の動作は図16(A)の光学系の動作と同じである。
【0125】
図17(A)はさらに他の蛍光検出器を表わす。この蛍光検出器でも、シュワルツシルト鏡410,414は分光に影響のない小さい角度でハーフミラー412に光を入射させるように配置されているが、図16(A)の蛍光検出器と比較すると、シュワルツシルト鏡410,414による結像の位置が異なっている。図17(A)の蛍光検出器では、シュワルツシルト鏡410から射出された励起光がハーフミラー412で反射された後に位置440に結像するようにシュワルツシルト鏡410が配置されている。また、シュワルツシルト鏡414は、像440からの励起光を集光してサンプル面416上に結像するとともに、サンプル面416から発生した蛍光を励起光の像と同じ位置440に結像するように配置されている。蛍光はその結像点440からハーフミラー412を透過して分光器420へ入射する。
【0126】
この蛍光検出器でもシュワルツシルト鏡414は励起光学系と蛍光光学系に共通の共焦点光学系を構成しているが、サンプル面416上の焦点と共役な関係にある焦点440は励起光学系の焦点であるとともに蛍光光学系の焦点を兼ねている。
【0127】
この蛍光検出器においても、焦点440の位置にピンホール42を配置することができる。このピンホール442は励起光スポットの大きさを制限するとともに、蛍光検出の解像度を上げる作用をし、共通の焦点440の位置に1つ配置するだけですむ利点がある。
ピンホールの数が少なくなると、光学系が小さくなり、光軸調整も容易になり、コスト低下にもなる。
【0128】
図17(B)は図17(A)の光学系のシュワルツシルト鏡をウォルタ鏡、楕円面鏡又は放物面鏡に置き換えた光学系を表わす。ウォルタ鏡又は楕円面鏡409,413及び417はシュワルツシルト鏡408,410及び414にそれぞれ替わるものである。
図17(B)の光学系の動作は図17(A)の光学系の動作と同じである。
【0129】
以上の蛍光検出器は分光手段としてグレーティングを用いた分光器を使用している。それに対し、図18以降の実施例においては分光手段として分光フィルタを使用する。グレーティングは波長精度が高い利点があり、分光フィルタは検出感度を高める上で利点がある。
【0130】
グレーティングを用いた蛍光検出器は蛍光画像作成と蛍光スペクトル測定の両方を行なうことができる。分光フィルタを用いた蛍光検出器は、蛍光画像作成はできるが、蛍光スペクトル測定は行なうことができない。
【0131】
図18(A)は分光フィルタを用いた蛍光検出器の一例を表わす。光源402から発生する白色光はシュワルツシルト鏡410により集光され、平行光として射出される。その射出された光は励起光を選択する分光フィルタ444を透過して波長が選択されて励起光となる。励起光はハーフミラー412で反射され、シュワルツシルト鏡414でサンプル面416に集光されて照射される。サンプル面416から発生した蛍光はシュワルツシルト鏡414で集光され、平行光となってハーフミラー412を透過し、蛍光を選択するための分光フィルタ446を透過してシュワルツシルト鏡418に入射し、集光されて検出器422に入射する。
【0132】
この実施例では、シュワルツシルト鏡410とシュワルツシルト鏡414により励起光学系の共焦点光学系を構成しており、光源412の像がサンプル面416上に結ばれる。蛍光光学系においてはシュワルツシルト鏡414とシュワルツシルト鏡418により共焦点光学系を構成しており、サンプル面416上の蛍光像が検出器422の入口に結ばれる。検出器422の入口付近の蛍光の焦点位置には蛍光検出の解像度を上げるためのピンホール436が配置されている。
【0133】
図18(B)は図18(A)の光学系のシュワルツシルト鏡をウォルタ鏡、楕円面鏡又は放物面鏡に置き換えた光学系を表わす。放物面鏡411,415及び418aはシュワルツシルト鏡410,414及び418にそれぞれ替わるものである。
図18(B)の光学系の動作は図18(A)の光学系の動作と同じである。
【0134】
図19(A)は分光フィルタを用いた他の蛍光検出器を表わす。図18の蛍光検出器と比較すると、励起光学系においてサンプルの検出領域以外のところに強い励起光が照射されるのを防ぐために、励起光学系の共役な焦点位置に光源の像を形成し、その位置にピンホール434を設けることができる構成になっている点で異なる。この蛍光検出器では、光源402からの白色光がシュワルツシルト鏡408bにより集光され、平行光として射出されてシュワルツシルト鏡408c入射し、シュワルツシルト鏡408cにより焦点424の位置に結像する。その焦点424を経た白色光はシュワルツシルト鏡410に入射し、シュワルツシルト鏡410で平行光とされた後は、図18の蛍光検出器と同じ光学系によって光学フィルタ444で波長が選択されて励起光となり、ハーフミラー412からシュワルツシルト鏡414をへてサンプル面416に集光して照射される。サンプル面416からの蛍光はシュワルツシルト鏡14、ハーフミラー412を経て、分光フィルタ446で波長選択され、シュワルツシルト鏡418により集光され、ピンホール436を経て検出器422に入射する。
【0135】
励起光学系においてはシュワルツシルト鏡410とシュワルツシルト鏡414により共焦点光学系を構成しており、サンプル面416上の焦点と共役な関係にある焦点424の位置に励起光スポットの大きさを制限するためのピンホール434が配置されている。
【0136】
図19(B)は図19(A)の光学系におけるシュワルツシルト鏡を放物面鏡に置き換えた光学系を表わす。放物面鏡409b,409c,411,415及び418aはシュワルツシルト鏡408b,408c,410,414及び418にそれぞれ替わるものである。
図19(B)の光学系の動作は図19(A)の光学系の動作と同じである。
【0137】
図20(A)は分光フィルタを用いたさらに他の蛍光検出器を表わす。この蛍光検出器では、光源402からの白色光がシュワルツシルト鏡410で集光され、平行光となって光学フィルタ444を透過し、励起波長が選択される。その励起光はハーフミラー412で反射され、シュワルツシルト鏡450によって焦点440に結像する。結像した励起光は、シュワルツシルト鏡452とシュワルツシルト鏡414によってサンプル面416に集光されてサンプルを照射する。サンプル416からの蛍光はシュワルツシルト鏡414,452により焦点440に蛍光像を結ぶ。蛍光はシュワルツシルト鏡により集光され、平行光となってハーフミラー412を透過し、蛍光を選択する光学フィルタ446を経て検出器422に入射して検出される。
【0138】
この蛍光検出器ではシュワルツシルト鏡414とシュワルツシルト鏡452により励起光学系と蛍光光学系の共通の共焦点光学系を構成しており、サンプル面416上の焦点と共役な位置に両光学系に共通の焦点440をもっている。
この蛍光検出器では励起光スポットの大きさを制限するとともに、蛍光検出の解像度を上げるために、共通の焦点440にピンホール442を1つ配置するだけですむ。
【0139】
図20(B)は図20(A)の光学系におけるシュワルツシルト鏡を放物面鏡に置き換えた実施例を表わす。放物面鏡411,415,451及び453はシュワルツシルト鏡410,414,450及び452にそれぞれ替わるものである。
図20(B)の光学系の動作は図20(A)の光学系の動作と同じである。
【0140】
図21(A)は分光フィルタを用いたさらに他の蛍光検出器を表わす。この蛍光検出器では、光源402からの白色光がシュワルツシルト鏡410により集光され、分光に影響のない小さい角度で射出されてハーフミラー412の手前の位置424に光源の像を結ぶようにシュワルツシルト鏡410が配置されている。光源からの光が、その後、光学フィルタ444を経て励起光が選択され、ハーフミラー412で反射されてシュワルツシルト鏡414に入射し、集光されてサンプル面416に照射されるようにシュワルツシルト鏡414が配置されている。サンプル面416からの蛍光はシュワルツシルト鏡414で集光され、小さい角度で射出され、ハーフミラー412を透過して光学フィルタ446で蛍光が選択された後、検出器422の入口の近くの位置419に結像する。その後検出器422に入射して検出される。
【0141】
シュワルツシルト鏡414は励起光学系と蛍光光学系で共通の共焦点光学系を構成している。励起光学系においてサンプル面416上の焦点に共役な焦点424には励起光スポットの大きさを制限するピンホール34が配置され、蛍光光学系の共役な焦点419には蛍光検出の解像度を向上させるピンホール436が配置されている。
【0142】
図21(B)は図21(A)の光学系におけるシュワルツシルト鏡をウォルタ鏡又は楕円面鏡に置き換えた光学系を表わす。ウォルタ鏡又は楕円面鏡413及び417はシュワルツシルト鏡410及び414にそれぞれ替わるものである。
図21(B)の光学系の動作は図19(A)の光学系の動作と同じである。
【0143】
図22(A)は分光フィルタを用いたさらに他の蛍光検出器を表わす。この蛍光検出器では、シュワルツシルト鏡410から小さい角度で射出した光源402からの光が、ハーフミラー412で反射された後に位置440に結像するようにシュワルツシルト鏡410が配置されている。シュワルツシルト鏡410とハーフミラー412の間の光路上に励起光を選択する光学フィルタ44が配置されている。位置440に結像した励起光が、シュワルツシルト鏡414を経てサンプル面416上に集光して照射されるようにシュワルツシルト鏡414が配置されている。サンプル面416からの蛍光はシュワルツシルト鏡414で集光され、励起光の像と同じ位置440に結像した後、ハーフミラー412を透過して光学フィルタ446で蛍光波長が選択された後、検出器422に入射して検出される。
【0144】
この蛍光検出器では励起光学系と蛍光光学系で共焦点光学系の共役な焦点440が共通した位置にあり、その位置にピンホール442を配置することにより、1つのピンホール442が励起光スポットの大きさの制限と蛍光検出の解像度向上の両方の機能を果たすことができる。
【0145】
図22(B)は図22(A)の光学系におけるシュワルツ鏡をウォルタ鏡又は楕円面鏡に置き換えた実施例を表わす。ウォルタ鏡又は楕円面鏡409及び417はシュワルツシルト鏡410及び414にそれぞれ替わるものである。
図22(B)の光学系の動作は図22(A)の光学系の動作と同じである。
【0146】
図21(A),(B)、図22(A),(B)の蛍光検出器では、ハーフミラー412への入射角を分光に影響のない小さい角度にすることにより、シュワルツシルト鏡、ウォルタ鏡、楕円面鏡又は放物面鏡の数を減らしている。
【0147】
図23(A)は光源からの白色光の受光光量を増加させるための励起光学系の一部を示したものである。光源2に関しシュワルツシルト鏡408fとは反対側に凹面ミラー406を配置して光源402からの白色光を集光してシュワルツシルト鏡408fに入射させ、シュワルツシルト鏡408fでさらに小さい像に結像した後、シュワルツシルト鏡410に入射させる。その後、図22と同様に、シュワルツシルト鏡10により分光に影響のない小さい角度で射出される。その後の光学系は図22と同じである。
この蛍光検出器12では、シュワルツシルト鏡408fと410の間の共焦点424の位置にも励起光スポットの大きさを制限するピンホール434を配置することができる。
【0148】
図23(B)は図23(A)の光学系におけるシュワルツ鏡をウォルタ鏡又は楕円面鏡に置き換えた実施例を表わす。ウォルタ鏡又は楕円面鏡409f及び413はシュワルツシルト鏡408f及び410にそれぞれ替わるものである。
図23(B)の光学系の動作は図23(A)の光学系の動作と同じである。
【0149】
図24は分注装置の他の実施例を示したものである。試薬(又はサンプル)を分注する分注機構102は、その下端にノズルを有し、微量の液を滴下できるようになっている。分注機構102の下部には可動テーブルとしてのX−Yテーブル104が配置されており、X−Yテーブル104上には試薬の分注される対象物が載置される。X−Yテーブル104は、対象物を支持する面を図で紙面垂直方向(Y方向)に駆動するY駆動機構104Yと、Y駆動機構104Yに取りつけられ、対象物を支持する面を図で横方向(X方向)に駆動するX駆動機構104Xとを備えている。X−Yテーブル104の対象物支持面はそのY駆動機構104YとX駆動機構104Xにより水平面内でY方向とX方向に移動し、支持面上に載置された対象物を分注機構102のノズルの下方に位置決めする。
【0150】
撮像装置5は例えばCCDカメラであり、撮像装置5の受光軸110が水平方向から角度θをもつように、撮像装置5は分注機構102のノズル先端部の斜め上方に取り付けられている。撮像装置5は分注機構102のノズル先端部に形成される液滴の画像を取り込むように設定されている。
【0151】
撮像装置5が取り付けられている位置の平面上の位置は、X−Yテーブル104の移動範囲内にあるが、X−Yテーブル104がその移動範囲内で移動しても撮像装置5と接触しないように、撮像装置5の取付け位置はX−Yテーブル104の上方に設定されている。
【0152】
撮像装置5の受光軸110と水平面のなす角θには適当な範囲が存在する。θは少なくとも撮像装置5がX−Yテーブル104と干渉しないだけの大きさをもち、分注機構102のノズル先端に形成されるサンプル又は試薬の液滴の画像を取り込むのに支障のない範囲に設定される。そのような角度θとしては、15〜45度程度が適当である。
【0153】
ノズル先端を挟んで撮像装置5と反対側の位置で、X−Yテーブル104の上方には、光源108が取り付けられており、撮像装置5が透過光で撮像できるようになっている。
【0154】
図25に示されるように、光源8から発した光112がX−Yテーブル104上のサンプルプレート50の表面で反射し、分注機構102の分注素子10の先端部に形成された液滴122を経由し、撮像装置5の受光軸110に沿って撮像装置5に入射するように、光源108、撮像装置5、分注素子10及びサンプルプレート50の相対的な位置関係が設定されている。
【0155】
撮像装置5の被写界深度は、ノズル先端部の液滴122及びその下にあるサンプルプレート50の表面にも焦点が合うように設定されていることが好ましい。これにより、ノズル先端部の液滴122の状態と、サンプルプレート50の表面の状態を同時に画像として取り込みモニタすることができる。
この分注装置の用途として、例えばPVDF膜のような固相に試薬を分注するものがあげられる。PVDF膜には、薄層クロマトグラフィーにより展開したスポットが転写させられており、そのスポットを発色させるために、試薬が分注される。そのような固相として使用できるものとしては、PVDF膜の他に、ニトロセルロースやナイロン(登録商標)なども用いることができる。
【0156】
X−Yテーブル104を移動させて多数の分注位置でノズル先端から試薬やサンプルの分注を繰り返す。その際、ノズル先端から滴下する液滴の形状をモニタするときに、分注素子10からの液滴122の滴下開始から撮像装置5が画像を取り込むタイミングを一定にすることにより、それらの液滴を同じタイミングの画像として処理することができるようになる。
【0157】
そのような画像の取込みを実現する1つの方法として、光源108としてストロボを使用し、撮像装置5は連続して撮像するようにし、分注素子10からの滴下開始からストロボを点灯させるまでの時間を一定にする方法を挙げることができる。これにより、多数の液滴を同じタイミングで撮像して液滴の形状をモニタするのが容易になる。このような液滴形状のモニタは、多数繰り返される液滴の形状が一定になるように、サンプルや試薬を分注する分注機構のピエゾ素子への印加電圧やバルブの開閉などを制御するのに利用することができる。
【0158】
光源108はストロボに限らず、連続して発光するものであってもよく、その場合は撮像装置5の方で液滴122滴下開始から一定の時間に画像を取り込むような制御をすればよい。
【0159】
図26は図25の一実施例の分注装置を概略的に表したものである。201は分注素子10による分注機構で、後で図27に示されるような分注素子10が設けられている。203はその分注素子10から吐出された液滴であり、分注機構201の下部に保持された容器やプレートなどのターゲット205に分注される。分注機構201の先端にある吐出部の画像を取り込んでモニタするために撮像装置としてCCDカメラ5が配置されている。CCDカメラ5は吐出部の状態とともに、吐出される液滴203も同時に撮像することができる。撮像装置としてはCCDカメラに限らず、他のカメラを用いてもよい。
【0160】
CCDカメラ5は分注機構1の先端部を水平方向から撮像する。水平から傾斜をもって斜め上方向から撮像してもよいが、吐出部の先端の状態をより正確にモニタするためには、水平方向から撮像するのが好ましい。
【0161】
分注機構201の先端部の画像をより正確に取り込むために、この実施例では透過光で撮像できるように、CCDカメラ5の光軸上には、分注機構1の先端部を挟んでCCDカメラ5と反対側に光源2が配置されている。光源108としては時間的に連続した光を発光するものでもよいが、この実施例としてはストロボを使用する。ストロボの場合、液滴203が分注機構201から吐出されるタイミングと同期して発光するように設定することができ、その場合にはカメラ5を連続して作動させている場合でも、ストロボ108が発光した場合にのみ鮮明な画像が取り込まれる。その鮮明な画像は、順次吐出される液滴203の画像が同じタイミングで取り込まれたものであるため、あたかも静止画像のような情報が得られる。そのため液滴203の状態をモニタするのに好都合である。
【0162】
206は分注制御ユニットで、分注機構201のピエゾ素子に電圧を印加することにより吐出を行なう。また、ストロボ108の発光するタイミングは、分注制御ユニット206により分注機構201のピエゾ素子への電圧印加のタイミングに同期させて分注機構201からの液滴吐出の一定時間後に発光するように制御される。
【0163】
208は圧力制御機構であり、分注機構201の液を充填する空間であるリザーバに充填されたサンプルや試薬などの吐出液が常に一定の圧力を保つように保持するものである。圧力制御機構208は、この発明において吐出動作開始前の吐出部先端の液面を調製するためにも使用される。
【0164】
207は制御コンピュータであり、分注制御ユニット206を制御して分注動作を制御するとともに、CCDカメラ5が撮像した画像を記憶する記憶装置を備え、分注機構201における分注素子10のリザーバに液を充填する前の吐出部の画像で記憶装置に記憶された画像とリザーバに液を充填した後の画像とを比較し、液が吐出部から現れた後、液充填前の画像との差異がなくなるまで後退するように圧力制御機構208を制御する制御装置の機能も実現している。
【0165】
図27は分注機構201における分注素子10の一例を概略的に示したものである。
分注素子10は、リザーバ232から先端の吐出部230の孔につながる流路を備えており、リザーバ232又は流路にある液を、ピエゾ素子を備えた駆動部234により押圧することにより吐出部230から液を吐出する。ピエゾ素子の駆動は、分注制御ユニット6により制御される。リザーバ232のサンプルや試薬が減少してきた場合でも一定の圧力状態を保つように、リザーバ232には圧力制御機構208が接続されている。
【0166】
分注制御ユニット206がピエゾ素子の駆動を制御するパラメータは、ピエゾ素子への印加電圧の大きさ、印加電圧立上がり時間、印加時間、印加電圧立下がり時間の全て、又はそのうちの少なくとも1つである。
【0167】
図28により、この実施例で分注動作開始前の吐出部先端部の液面状態を調製する動作を説明する。この実施例は制御コンピュータ7により自動的に調整を行う場合を説明しているが、この動作を吐出部先端部の画像を見ながらマニュアルで行なうこともできる。
【0168】
分注を開始する前に、まず溶液充填を実行する。分注素子10の先端はCCDカメラ5の画像を取り込むことで確認できる。
制御コンピュータ7により分注素子10への溶液充填を指示すると、制御コンピュータ207はまずCCDカメラ5で充填前の分注素子10の先端の画像を取得し保持する。この画像を画像(a)とする。
【0169】
次に、制御コンピュータ207は、圧力制御機構208を制御し溶液を加圧してピエゾチップ先端方向に押し出す。このとき制御コンピュータ7はCCDカメラ5を用いてピエゾチップ先端の画像を定期的に取り込み、先に取った充填前の画像(a)との差分を取る。その差に変化があれば溶液がピエゾチップ先端から余分に出ていることになるので、その状態を検知すると、圧力制御にフイードバックをかけていく。この間も制御コンピュータ207はCCDカメラ5を用いてピエゾチップ先端の画像を定期的に取り込んでおり、先に取った充填前の画像(a)との差分を取る動作を続けている。圧力制御に定期的にフイードバックをかけていって、余分液量がなくなったことを画像の差分から検知したところでフイードバックを止め、その状態を保持する。
【0170】
図29は図26の一実施例の方法が適用される装置を概略的に表したものであり、ピエゾ方式の分注装置を用い、液滴の大きさを自動的に求め、一定にする制御も自動的に行なう場合を示したものである。
【0171】
分注素子10から吐出される液滴203の画像を取り込むために、撮像装置として、分注素子10から吐出される液滴6に向けたCCDカメラ5が設けられている。322はCCDカメラ5が取り込んだ画像を記憶する画像記憶部である。CCDカメラ5による画像の取込みは、液滴6が吐出されるタイミングと同期させるか又は非同期で取り込む。
【0172】
324は画像処理部であり、画像処理部324は画像記憶部322に記憶されている画像を二値化や輪郭抽出などの画像処理を実施してその液滴の直径や半径などの大きさを求めて、分注量を計算する。画像処理部324が画像処理する液滴の画像は、CCDカメラ5で液滴の吐出と同期させて取り込んだ画像の場合は、それぞれの液滴について吐出から同じ時間での画像である。非同期で取り込んだ場合は、一つの画像についてCCDカメラ5により時系列に複数の画像が取り込まれるが、その内で各液滴について同じ場所を通過する液滴の画像を採用して画像処理部324で画像処理する。
【0173】
326は画像処理された液滴の画像を表示する画像処理部である。また、画像処理部324で画像処理されて求められた分注量はピエゾ分注制御部304aに送られる。ピエゾ分注制御部304aでは次から吐出される分注量(液滴6の大きさ)が予め設定された設定値に等しくなるように分注素子10の駆動を制御していく。
【0174】
分注素子10としては、例えば図30に示されるように、先端の吐出部330の孔につながる液溜め332を、ピエゾ素子を備えた駆動部334により押圧することにより吐出部330から液を吐出する。液貯め332のサンプルや試薬が減少してきた場合でも一定の圧力状態を保つように、液溜め332には加圧部(図示略)が接続されている。
【0175】
ピエゾ分注制御部304aが分注素子10の駆動を制御するパラメータは、図31に示されるように、ピエゾ素子への印加電圧の大きさV0、印加電圧立上がり時間t1、印加時間t2、印加電圧立下がり時間t3の全て、又はそのうちの少なくとも1つである。
【0176】
図32にこの実施例の動作をまとめて示す。
予め設定されたピエゾチップ制御パラメータで分注素子10の駆動を制御し、液滴6を吐出する。その液滴203の画像をCCDカメラ5が液滴の吐出と同期して又は非同期で取り込み、画像記憶部322に記憶する。画像処理部324は画像記憶部322に記憶されている画像を二値化や輪郭抽出などの画像処理を実施してその液滴の直径や半径などの大きさを求めて、分注量を計算する。ピエゾ分注制御部304aはその分注量が所定の値である場合は、ピエゾチップ制御パラメータを変更しないで、分注素子10の駆動を繰り返していく。しかし、その分注量が所定の値でない場合は、ピエゾチップ制御パラメータを変更し、ピエゾ分注制御部304aは次から吐出される分注量が所定の値に等しくなるように分注素子10の駆動を制御する。
【0177】
図33はさらに他の実施例の方法が適用される装置を概略的に表したものであり、シリンジポンプによる分注装置を用い、液滴の大きさを自動的に求め、一定にする制御も自動的に行なう場合を示したものである。
シリンジポンプ310につながるプローブ312からの液滴6の吐出を、シリンジポンプ310を作動させるモータ14をシリンジ分注制御部318aにより制御して駆動することにより行なう。プローブ312の先端にはディスポーザブルチップ316が設けられる。
液滴203の画像を取り込むCCDカメラ5、画像記憶部322、画像処理部324、及び画像表示部326は図29に示されたものと同じである。
【0178】
シリンジ分注制御部318aは、画像処理部324から液滴203の直径や半径などの液滴の大きさに関するデータを取り込み、次から吐出される液滴203の大きさが予め設定された設定値に等しくなるようにモータ314の駆動を制御していく。
シリンジ分注制御部318aがモータ314の駆動を制御するパラメータは、プランジャのストローク、速度、加速度の全て又はそのうちの少なくとも1つである。
【0179】
図34に示されるように、シリンジ方式で数百nL〜数μLの分注量の液滴203を容器340やプレート342に分注する場合は、ディスポーザブルチップ316の先端(ディスポーザブルチップ316を用いない場合はプローブ312の先端)に液滴203が玉状にぶら下がるので、その状態の液滴6をCCDカメラ5により画像として捉え、画像処理部322にて、2値化や輪郭抽出などの画像処理を実施し、液滴の直径又は半径を求めて、分注量を計算する。シリンジ分注制御部318aは、モータ14の駆動を制御する際、求められた液滴203の大きさに該当する液量が目的の分注量より多ければプランジャを戻し、足らなければプランジャを押すことにより、分注量をリアルタイムで制御し、プローブ又はディスポーザブルチップの液滴203を容器340又はプレート342に分注する。
【0180】
本発明をシリンジポンプによる分注方式に適用する場合、チップ316としてディスポーザブルのチップでかつチップの中にフィルターや担体を保持しているチップを用いて分注する場合にも全く同様に適用することができる。
【0181】
図35は、図8の装置の機能を、図4のブロック図に付け加えて示したものである。
メンブレン洗浄ユニット13は分注素子10で分注した後、B/F洗浄を行なうのに使用する。メンブレンを交換するときは、メンブレン供給ユニット17によって新しいメンブレンに交換することができる。
蛍光検出部12はサンプルの蛍光を検出することができ、解析結果を出力する。
洗浄ポイントや蛍光検出ポイントの位置決めは、テーブル駆動機構65の制御によって行なわれる。
【0182】
図5に示された、洗浄ユニットつきの実施例の解析装置を用いて、2次元電気泳動によりタンパク質を分離し、分離した目的タンパク質の解析を行なった用途を図36のフローチャートにより説明する。図で枠Sで囲まれた処理はこの解析装置内で実行されることを意味する。このことは、図38及び図40でも同様である。
目的タンパク質を含むサンプルを電気泳動し、メンブレン52上へ電気的に写し取って固定(ブロッティング法)した後、染色する。染色されたメンブレン52をサンプルプレート50に固定し、テーブル2上に配置する。
【0183】
テーブル2を水平面内で移動させながらスキャナー6でメンブレン52上のスポットの画像を取り込む。スキャナー6で取り込んだ画像をモニタし、解析しようとする目的スポットを指定する。指定されたスポット位置の位置情報は、テーブル2上のマークaとサンプルプレート50上のマークbを基準としてこの解析装置の記憶装置に記憶される。
解析装置はCCDカメラ5によってプリントヘッド4の位置を確認し、記憶装置に記憶しているメンブレン52上の指定スポット位置に対して分注素子10−1〜10〜4によって、1次抗体を分注する。1次抗体は、図37に示すように、目的タンパク質に対して選択的に作用する性質を有している。分注する際には、プリントヘッド4がZ軸方向の調整を行ない、テーブル駆動機構65がX軸、Y軸方向の移動の調整を行なう。
【0184】
メンブレン52上の目的スポットに分注された1次抗体は対応するタンパク質と結合してメンブレン52上に固定される。一方、タンパク質と結合しなかった1次抗体はメンブレン52上に固定されずに浮遊している。メンブレン52上の余分な1次抗体を除去(B/F分離)するために洗浄ユニット13でメンブレン52を洗浄する。このとき、テーブル2をX軸及びY軸に移動させることで、メンブレン52全体の洗浄を行なうことができる。
【0185】
蛍光検出器12で検出するために、蛍光標識された2次抗体を分注する。2次抗体は対応する1次抗体に対してのみ作用する性質をもったものである。2次抗体の分注は、1次抗体を分注したときと同様に、この解析装置が記憶装置に記憶している指定スポット位置に対して行なう。
【0186】
分注された蛍光標識2次抗体は、図37に示すように対応する1次抗体と作用してメンブレン52上に固定される。ここでも、メンブレン52上に固定されなかった余分な2次抗体を除去(B/F分離)するために、洗浄ユニット13でメンブレン52全体を洗浄する。
洗浄後のメンブレン52には、目的タンパク質に1次抗体が結合し、その1次抗体に蛍光標識2次抗体が結合した状態で固定されているので、その標識蛍光体を蛍光検出部12によって検出し、サンプルの定性分析又は定量分析を行なう。
【0187】
その蛍光測定したスポット部分をMALDI−TOF質量分析することができる。
そのために、この装置内において、メンブレン52に対し、タンパク質から1次抗体及び2次抗体を外す試薬を分注する。そのような試薬としては、例えばグリシン−塩酸溶液(pH2.0)などを挙げることができる。その後、タンパク質を質量分析に適した分子量の大きさのペプチドにするために消化酵素を分注する。これらの試薬や消化酵素の分注も、解析装置が記憶装置に記憶しているメンブレン52上の指定スポット位置に対して分注素子10−1〜10〜4によって行なう。
【0188】
消化酵素の分注後、メンブレン52をサンプルプレート50に固定した状態でこの解析装置から取り出して外部の恒温装置に保持し、インキュベーションを行なう。
所定時間のインキュベーションの後、再びメンブレン52をサンプルプレート50に固定した状態でこの解析装置に戻す。解析装置は記憶装置に記憶しているメンブレン52上の目的スポット位置に対してマトリクス分注する。このとき、メンブレン52はサンプルプレート50とともにいったんテーブル2から外されているので、マトリクスを分注する目的スポット位置は、テーブル2上のマークaとサンプルプレート50上のマークbを基準にして修正する。
【0189】
マトリクスが分注された後のメンブレン52はサンプルプレート50に固定した状態でこの解析装置から取り出され、乾燥された後、質量分析装置に装着される。このとき、この解析装置から質量分析装置に対し、質量分析すべき目的スポットの位置情報が供給される。質量分析装置では、その位置情報を基に、サンプルプレート50上のマークbを基準にして目的スポットの位置を求め、レーザ光を照射してMALDI−TOF質量分析を行なう。
【0190】
本実施例では、分注するサンプルや抗体の量が100pLですむため、サンプル量や試薬量を減らすことができ、ランニングコストを低下させることができる。
従来の溶液系ではサンプル量も試薬量も多いために、抗原抗体反応に20〜30分が必要であったが、本実施例では微量の反応系であるため抗原抗体反応時間が数秒レベルですみ、稼動効率が向上する。
また、解析装置内に洗浄ユニットを備えているので、B/F分離や洗浄を自動化することができる。
【0191】
図5に示された、洗浄ユニットつきの実施例の解析装置を用いて、別途用意したタンパク質の解析を行なった用途を図38のフローチャートにより説明する。
メンブレン52をサンプルプレート50に固定した状態で、この解析装置のテーブル2上に配置する。
次に、サンプル数と分析依頼項目をこの解析装置に入力する。
【0192】
解析装置はテーブル2を水平面内で移動させながらサンプルを分注素子10−1〜10〜4によってメンブレン52上に分注していく。このとき、分注位置は、スキャナー6で取り込んだテーブル2上のマークaとサンプルプレート50上のマークbを基準としてこの解析装置の記憶装置に記憶される。
その後、メンブレン52上のサンプルを分注したスポットに、分注素子10−1〜10〜4によって1次抗体を分注する。その分注位置は、サンプル分注の際に記憶した位置である。
【0193】
その後は、図36の操作と同じく、洗浄を行なった後、蛍光標識2次抗体を分注して再び洗浄を行なう。その後、同じく、蛍光検出による定性分析又は定量分析を行なう。必要があればMALDI−TOF質量分析を行なう。
【0194】
図5に示された、洗浄ユニットつきの実施例の解析装置を用いて、別途用意したタンパク質同士の相互作用の解析を行なった用途を図40のフローチャートにより説明する。
メンブレン52をサンプルプレート50に固定した状態で、この解析装置のテーブル2上に配置する。
【0195】
次に、サンプル数と分析依頼項目をこの解析装置に入力する。
解析装置はテーブル2を水平面内で移動させながらサンプルを分注素子10−1〜10〜4によってメンブレン52上に分注していく。このとき、分注位置は、スキャナー6で取り込んだテーブル2上のマークaとサンプルプレート50上のマークbを基準としてこの解析装置の記憶装置に記憶される。
【0196】
その後、メンブレン52上のサンプルを分注したスポットに、分注素子10−1〜10〜4によって相互作用タンパク質を分注する。その分注位置は、サンプル分注の際に記憶した位置である。その後、洗浄を行なって結合していない相互作用タンパク質を除去する。
次に、1次抗体を分注する。1次抗体は相互作用タンパク質と結合する。その後は、図36の操作と同じく、洗浄を行なった後、蛍光標識2次抗体を分注して再び洗浄を行なう。
【0197】
図39は、メンブレン52上のサンプルタンパク質に相互作用タンパク質が結合し、その相互作用タンパク質に1次抗体が結合し、その1次抗体に蛍光標識2次抗体が結合してメンブレン52に固定された状態を示したものであり、結合しなかった相互作用タンパク質、1次抗体及び蛍光標識2次抗体は洗浄によって除去され、メンブレン52上には存在しない。
その後、同じく、蛍光検出による定性分析又は定量分析を行なう。必要があればMALDI−TOF質量分析を行なう。
【産業上の利用可能性】
【0198】
本発明は化学、工業、臨床、バイオ分野などの分野において、タンパク質などのサンプルに試薬やバイオ分子を作用させた後、その作用した状態のものから発生した蛍光を測定することによりプロテオーム解析を行なうのに利用することができる。
【図面の簡単な説明】
【0199】
【図1】一実施例を概略的に示す斜視図である。
【図2】同実施例においてサンプルプレートなどが配置されたテーブルの上面を示す平面図である。
【図3】同実施例における分注機構を示す断面図である。
【図4】同実施例を機能として示すブロック図である。
【図5】他の実施例を概略的に示す斜視図である。
【図6】(A)は同実施例における洗浄ユニットの一例を示す概略構成図、(B)はその動作を示す概略図である。
【図7】同実施例における洗浄ユニットの他の例を示す図であり、(A)は概略構成図、(B)は供給プローブと排出プローブの組を複数組並べたマニーホールド式洗浄ユニットの一例を示す斜視図、(C)は供給プローブと排出プローブの1組の部分を示す断面図である。
【図8】さらに他の実施例を概略的に示す斜視図である。
【図9】メンブレン自動供給ユニットの一例を示す図で、(A)は連続供給されるメンブレンとその駆動機構を概略的に示した斜視図、(B)はこのメンブレン自動供給ユニットをテーブルに組み込んだ状態を示す斜視図である。
【図10】本発明の使用される蛍光検出器の一例を示す概略構成図である。
【図11】同蛍光検出器で使用されるメンブレンの一例を示す平面図である。
【図12】本発明の使用される蛍光検出器の他の例を示す概略構成図である。
【図13】(A)は蛍光検出器で使用するシュワルツシルト鏡を示す概略正面図、(B)はさらに他の蛍光検出器の光学系を示す概略構成図である。
【図14】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図15】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図16】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図17】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図18】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図19】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図20】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図21】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図22】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図23】(A),(B)は本発明の使用される蛍光検出器のさらに他の例を示す概略構成図である。
【図24】さらに他の実施例における分注装置のテーブル駆動機構の一例を示す正面図である。
【図25】さらに他の実施例における分注装置のノズル先端部付近を示す概略正面図である。
【図26】同分注装置図を概略的に示すブロック図である。
【図27】同分注装置における分注素子の一例を概略的に示す断面図である。
【図28】同分注装置の動作を示すフローチャート図である。
【図29】さらに他の実施例における分注装置を概略的に示すブロック図である。
【図30】同分注装置における分注素子の一例を概略的に示す断面図である。
【図31】同分注装置における制御パラメータを示す波形図である。
【図32】同分注装置の動作を示すフローチャート図である。
【図33】さらに他の実施例における分注装置を概略的に示すブロック図である。
【図34】同分注装置における分注様式を示すプローブ先端部の正面図である。
【図35】図8の実施例を示すブロック図である。
【図36】図5の実施例の一用途を示すフローチャート図である。
【図37】同用途における反応の概略図である。
【図38】図5の実施例の他の用途を示すフローチャート図である。
【図39】さらに他の用途における反応の概略図である。
【図40】図5の実施例のさらに他の用途を示すフローチャート図である。
【符号の説明】
【0200】
2 テーブル
4 プリントヘッド
5 CCDカメラ
6 スキャナー(画像読取り装置)
7 圧力制御部
10,10−1〜10−4 分注素子
12 蛍光検出器
13 洗浄ユニット
17 メンブレン供給ユニット
50 サンプルプレート
52 メンブレン(対象物)
60 モニター部
62 分注位置指定部
64 分注制御部
65 テーブル駆動機構
66 分注制御ユニット
68 分注位置情報作成部

【特許請求の範囲】
【請求項1】
サンプル又は試薬を滴下する分注素子を備えた分注機構と、
下方の画像を読みとる画像読み取り装置と、
サンプル又は試薬が分注される対象物を上面に支持し、水平面内で移動して前記対象物を少なくとも前記分注素子の下方の分注位置及び前記画像読取り装置の下方の画像読取り位置に位置決めする可動テーブルと、
前記画像読取り装置が読み取った画像を表示するモニター部と、
前記モニター部に表示された前記対象物の画像に基づいて対象物上の分注位置を指定する分注位置指定部と、
前記分注位置指定部が指定した対象物上の分注位置が前記分注機構の分注素子の下方にくるように前記対象物と分注素子との相対的位置決めを行ない前記分注機構による分注動作を制御する分注制御部と、
前記可動テーブル上に支持された前記対象物に光を照射しその蛍光を検出する蛍光検出部と、
を備えたプロテオーム解析装置。
【請求項2】
前記蛍光検出部は、白色光源、前記白色光源から出た光を分光する励起側分光手段、レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起側分光手段により分光された光を励起光としてサンプルに照射する励起光学系と、
レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起光により励起されたサンプルから発生した蛍光を集光する蛍光光学系と、前記蛍光光学系により集光された蛍光を分光する蛍光側分光手段と、前記蛍光側分光手段により分光された蛍光を検出する検出器とを備えた蛍光検出器と、
サンプルと前記蛍光検出器を相対的に移動させ、前記蛍光検出器をサンプル上の所定の位置に位置決めする移動機構と、
前記移動機構により位置決めされた蛍光検出位置情報と前記蛍光検出器による検出蛍光情報とから蛍光画像を作成する蛍光画像作成部とを備えている請求項1に記載のプロテオーム解析装置。
【請求項3】
前記蛍光検出部は、白色光源、前記白色光源から出た光を分光する励起側分光手段、レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起側分光手段により分光された光を励起光としてサンプルに照射する励起光学系と、
レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起光により励起されたサンプルから発生した蛍光を集光する蛍光光学系と、前記蛍光光学系により集光された蛍光を分光する蛍光側分光手段と、前記蛍光側分光手段により分光された蛍光を検出する検出器とを備えた蛍光検出器と、
サンプルと前記蛍光検出器を相対的に移動させ、前記蛍光検出器をサンプル上の所定の位置に位置決めする移動機構と、
前記励起側分光手段及び前記蛍光側分光手段の少なくとも一方の波長を走査することにより、前記移動機構により位置決めされた蛍光検出位置における蛍光スペクトルを測定するスペクトル作成部とを備えている請求項1に記載のプロテオーム解析装置。
【請求項4】
前記蛍光検出部は、白色光源、前記白色光源から出た光を分光する励起側分光手段、レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起側分光手段により分光された光を励起光としてサンプルに照射する励起光学系と、
レンズを含まず鏡を組み合わせてなる結像光学系を含み前記励起光により励起されたサンプルから発生した蛍光を集光する蛍光光学系と、前記蛍光光学系により集光された蛍光を分光する蛍光側分光手段と、前記蛍光側分光手段により分光された蛍光を検出する検出器とを備えた蛍光検出器と、
サンプルと前記蛍光検出器を相対的に移動させ、前記蛍光検出器をサンプル上の所定の位置に位置決めする移動機構と、
前記移動機構により位置決めされた蛍光検出位置情報と前記蛍光検出器による検出蛍光情報とから蛍光画像を作成する蛍光画像作成部と、
前記励起側分光手段及び前記蛍光側分光手段の少なくとも一方の波長を走査することにより、前記移動機構により位置決めされた蛍光検出位置における蛍光スペクトルを測定するスペクトル作成部とを備えている請求項1に記載のプロテオーム解析装置。
【請求項5】
前記蛍光側分光手段の設定波長を前記励起側分光手段の設定波長と同一波長に設定し、前記移動機構によりサンプルを移動させてサンプル上の特定のマークを検出することによりサンプル位置の基準点を検出する基準位置検出部を備えている請求項2から4のいずれか記載のプロテオーム解析装置。
【請求項6】
前記励起光学系と蛍光光学系は前記結像光学系を共通のものとして備えている請求項21から5のいずれかに記載のプロテオーム解析装置。
【請求項7】
前記励起光学系はサンプル面上に一方の焦点をもつ共焦点光学系を構成している請求項2から6のいずれかに記載のプロテオーム解析装置。
【請求項8】
前記励起光学系で、サンプル面上の焦点と共役な関係にある他方の焦点の位置にサンプル面上での励起光スポットの大きさを制限するピンホールが配置されている請求項6に記載のプロテオーム解析装置。
【請求項9】
前記蛍光光学系はサンプル面上に一方の焦点をもつ共焦点光学系を構成している請求項2から7のいずれかに記載のプロテオーム解析装置。
【請求項10】
前記蛍光光学系で、サンプル面上の焦点と共役な関係にある他方の焦点の位置に蛍光検出の解像度を向上させるピンホールが配置されている請求項8に記載のプロテオーム解析装置。
【請求項11】
前記励起光学系と蛍光光学系はサンプル面上に一方の焦点を共通にもつ共焦点光学系を構成しており、かつサンプル面上の焦点と共役な関係にある他方の焦点を共通の焦点としている請求項2から4のいずれかに記載のプロテオーム解析装置。
【請求項12】
前記共通の焦点の位置にサンプル面上での励起光スポットの大きさを制限するとともに、蛍光検出の解像度を向上させるピンホールが配置されている請求項10に記載のプロテオーム解析装置。
【請求項13】
前記励起光学系は光源からの白色光又分光された励起光を、サンプル面上の焦点と共役な関係にある他方の焦点の位置に結像する第2の光学系を備え、その光学系もレンズを含まず鏡を組み合わせてなる結像光学系である請求項2から11のいずれかに記載のプロテオーム解析装置。
【請求項14】
前記第2の光学系は分光に影響のない小さい角度で光を射出するように配置されている請求項13に記載のプロテオーム解析装置。
【請求項15】
前記結像光学系はシュワルツシルト鏡、ウォルタ鏡、楕円面鏡及び放物線鏡のうちの少なくとも1つを含んでいる請求項2から13のいずれかに記載のプロテオーム解析装置。
【請求項16】
前記励起光学系と蛍光光学系とは一部の光路を共通にしており、その共通の光路とそれぞれの光路との分岐位置に励起光と蛍光を分離するハーフミラー又はダイクロイックミラーを備えている請求項2から14に記載のプロテオーム解析装置。
【請求項17】
前記可動テーブル上に支持された対象物を洗浄する洗浄ユニットをさらに備えた請求項1から15のいずれかに記載のプロテオーム解析装置。
【請求項18】
前記洗浄ユニットは、前記可動テーブル上に支持された対象物上の指定されたサンプル位置にバイオ分子が分注され、前記バイオ分子が反応した後に前記対象物を洗浄するものである請求項17に記載のプロテオーム解析装置。
【請求項19】
前記洗浄ユニットは、対象物上の指定された位置にサンプルが分注され、さらにバイオ分子が分注され、前記バイオ分子が反応した後に前記対象物を洗浄するものである請求項17に記載のプロテオーム解析装置。
【請求項20】
前記洗浄工程の後に、前記蛍光検出部で、指定したスポット位置のサンプルの判定又は分析を行なう請求項18又は19に記載のプロテオーム解析装置。
【請求項21】
前記分注機構は、前記サンプルの判定又は分析の後に、前記バイオ分子を前記サンプルから外す試薬を分注し、さらにその後、マトリックスを分注するものであり、かつ、前記スポット位置の位置情報が質量分析装置へ送り出される請求項20に記載のプロテオーム解析装置。
【請求項22】
前記分注機構は、前記マトリックスの分注に先立ち、消化酵素を分注する請求項21に記載のプロテオーム解析装置。
【請求項23】
前記バイオ分子は、抗体、蛍光標識抗体、相互作用させるタンパク又はペプチドである請求項18から20のいずれかに記載のプロテオーム解析装置。
【請求項24】
前記対象物はサンプルを支持していない支持体、クロマトグラフィーで分離されたサンプルを支持している支持体、又は電気泳動後に転写されたサンプルを支持している支持体である請求項1から23のいずれかに記載のプロテオーム解析装置。
【請求項25】
前記支持体を自動供給する支持体自動供給ユニットをさらに備えた請求項24に記載のプロテオーム解析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate


【公開番号】特開2006−126013(P2006−126013A)
【公開日】平成18年5月18日(2006.5.18)
【国際特許分類】
【出願番号】特願2004−314691(P2004−314691)
【出願日】平成16年10月28日(2004.10.28)
【出願人】(000001993)株式会社島津製作所 (3,708)
【Fターム(参考)】