説明

一度に1つのみの供給源が放射線を発光することを確実にすることによって、複数の供給源を備える門形の後方散乱検査器におけるクロストークを排除すること

【課題】透過性放射線を用いて物体を検査するためのシステムおよび方法を提供すること。
【解決手段】複数の透過性放射線の供給源を用いて、物体を検査するための、検査および方法。上記供給源による、検査される物体の照射は、検出される散乱放射線の供給源が明白であるように、時間的に順序付けられる。こうして、ビームが、実質的に同一平面上にあるような、コンパクトな幾何学においてさえ、検査される物体の複数の視野が得られ得、そして、画像の品質が、向上され得る。本発明の検査システムは、物体の動きの方向に関して実質的に横断方向の第1ビーム方向に方向付けられた、特定の断面の透過性放射線の第1ビームを提供するための、第1の供給源を有する。この検査システムは、第2ビームの方向の透過性放射線の第2ビームを提供するための第2の供給源も有し、そして、この検査システムは、さらなるビームのさらなる供給源もまた有し得る。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の分野)
本発明は、透過性放射線(penetrating radiation)を用いて物体を検査するためのシステムおよび方法に関し、より具体的には、本発明は、複数の放射線源を採用する検査システムに関する。
【背景技術】
【0002】
(発明の背景)
検査される物体が、透過性放射線を用いて物体の内容物を画像化する1つ以上のシステムを通って動く間に、例えば、移動する車両もしくは人、または、あらゆる検査される物体内に隠された物体(例えば、密輸品、兵器、または、爆発物)の存在を決定することが望ましい。この決定は、検査される物体が動いている間か、または、検査システムが、検査される人物もしくは物体に関して動いている間になされ得るべきである。実際、検査速度、そして、従って、時間あたりのスループットが重要であるので、車両は、例えば、運転者もしくは乗客が降車することを必要とすることなく駆動されることが望ましい。検出がなされた場合、視覚的な像が、検査のために利用可能となるはずである。
【0003】
照射された物体、容器または車両から散乱される透過性放射線の検出および分析によって生成される像の使用は、例えば、2002年10月1日に発行された、Chalmersらに対する特許文献1(「Chalmersの特許」)の主題である。Chalmersの特許は、移動する車両の上または下から、ならびに横から、この車両をX線で照射することによる、移動する車両の後方散乱による検査を教示する。
【0004】
X線供給源およびX線検出器(ともに、門形に配置される)の、人員をスクリーニングする目的のための使用は、例えば、2000年7月25日に発行された、Smithに対する特許文献2の主題である。
【0005】
X線は、物体からあらゆる方向に散乱し、それゆえ、この散乱は、散乱物質(scattering material)を、照射する放射線が入射する方向に関して、あらゆる角度に並べるX線検出器によって検出され得る。それゆえ、「飛点(flying−spot)」照射検査が代表的に使用され、これによって、検査される物体上の一点が、任意の所定のモーメントで透過性放射線により照射され、その結果、散乱の位置は、少なくとも、透過性放射線のビームの方向に対して横断する平面に関して、明白に決定され得る。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第6,459,764号明細書
【特許文献2】米国特許第6,094,072号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
検査される物体の複数の像を得るために、複数の後方散乱画像化システムが、単一の検査トンネル内で用いられ得る。このことにより、それぞれの画像化検査の間の干渉またはクロストークが生じ得、像の劣化をもたらし得る。これは、飛点画像化装置(imager)の各々が、各画像化装置の供給源から散乱された放射線の起源を識別する能力を欠くことに起因するものである。今日、この問題は、クロストークを最小限にするために、ある程度の距離を空けて画像化装置を配置することによって、対処されている。このアプローチは、システム全体のサイズを大きくする。空間が制限された用途において、このことは、しばしば、望ましくない。
【課題を解決するための手段】
【0008】
(発明の要旨)
本発明の1つの実施形態において、物体、検査システムまたはこの両方に関するローカルフレーム(local frame)に関する動きに基づいて、この検査システムに関して特定の方向の動きにより特徴付けられる物体を検査するための検査システムが提供される。この検査システムは、物体の動きの方向に関して実質的に横断方向の第1ビーム方向に方向付けられた、特定の断面の透過性放射線の第1ビームを提供するための、第1の供給源を有する。この検査システムは、第2ビームの方向の透過性放射線の第2ビームを提供するための第2の供給源も有し、そして、この検査システムは、さらなるビームのさらなる供給源もまた有し得る。透過性放射線のビームは、時間的に散在している(interspersed)。さらに、このシステムは、検査される物体内のあらゆる散乱物質によって、第1ビームおよび他のビームの少なくとも1つから散乱される放射線を検出して、散乱された放射線シグナルを生成するための、複数の散乱検出器を有する。このシステムはまた、物体を通って透過する透過性放射線を検出するための、1つ以上の透過検出器を有し得る。さらに、システムは、少なくとも散乱される放射線シグナルに基づいて、散乱物質の像を生成するか、または、他の方法で、散乱物質を特徴付けるためのコントローラを有する。
【0009】
本発明の代替的な実施形態によれば、透過性放射線の第1の供給源は、X線供給源であり得、透過性放射線の他の供給源もまた、同様であり得る。第1ビーム方向および任意の他のビーム方向は、実質的に、同一平面上にあり得る。種々の供給源は、ビーム散乱機構(例えば、回転チョッパーホイール(rotating chopper wheel)、または、電磁スキャナ(electromagnetic scanner))を備え得、そして、ビームの1つ以上は、ペンシルビームであり得る。
【0010】
本発明のなおさらなる実施形態によれば、第1ビームにおける透過性放射線の発光は、第1の時間周期(temporal period)により特徴付けられ得、そして、第2ビームにおける透過性放射線の発光は、第2の時間周期により特徴付けられ得、そして、第1の時間周期および第2の時間周期は、固定された位相の関係により補正される。供給源の各々の時間周期は、デューティサイクル(duty cycle)により特徴付けられ得、そして、隣接する供給源の発光は、隣接する供給源に関する、ある位相の関係によって特徴付けられ得る。ここで、上記位相の関係は、デューティサイクルの2π倍に等しくあり得る。
【0011】
本発明のなおさらなる実施形態によれば、検査システムは、さらに、検査される物体内に配置される物質の散乱像を表示するためのディスプレイを備え得る。
【0012】
本発明の上記の特徴は、添付の図面を参照しながら、以下の詳細な説明を参照することによって、より容易に理解される。
例えば、本発明は以下の項目を提供する。
(項目1)
物体を検査するための検査システムであって、該物体は、該検査システムに関してある方向の動きにより特徴付けられ、該システムは、以下:
a.該物体の移動方向に対して実質的に横断方向の第1ビーム方向に方向付けられた、特定の断面の透過性放射線の第1ビームを提供するための、第1の供給源;
b.第2ビーム方向に方向付けられ、時間的に、該透過性放射線の第1ビームの間に散在する、特定の断面の透過性放射線の第2ビームを提供するための、第2の供給源;
c.検査される物体内の任意の散乱物質によって、該第1ビームおよび該第2ビームのうちの少なくとも1つからの散乱放射線を検出するため、そして、散乱放射線シグナルを生成するための、複数の散乱検出器;ならびに
d.該散乱放射線シグナルのうちの少なくとも1つに基づいて、該散乱物質の像を生成するための、コントローラ
を備える、検査システム。
(項目2)
項目1に記載の検査システムであって、該検査システムは、参照のローカルフレームに関して固定されている、検査システム。
(項目3)
項目1に記載の検査システムであって、該検査システムは、検査の過程において、参照のローカルフレームに関して動いている、検査システム。
(項目4)
上記透過性放射線の第1の供給源が、X線供給源である、項目1に記載の検査システム。
(項目5)
上記第1ビーム方向と、上記第2ビーム方向とが、実質的に同一平面上にある、項目1に記載の検査システム。
(項目6)
上記透過性放射線の第1の供給源が、ビーム走査機構を備える、項目1に記載の検査システム。
(項目7)
上記ビーム走査機構が、回転チョッパーホイールである、項目6に記載の検査システム。
(項目8)
上記ビーム走査機構が、電磁スキャナを備える、項目6に記載の検査システム。
(項目9)
上記透過性放射線の第1ビームが、ペンシルビームである、項目1に記載の検査システム。
(項目10)
上記第1ビームにおける透過性放射線の発光が、第1の時間周期により特徴付けられ、そして、上記第2ビームにおける透過性放射線の発光が、第2の時間周期により特徴付けられ、そして、該第1の時間周期および該第2の時間周期は、固定された位相の関係により補正される、項目1に記載の検査システム。
(項目11)
上記供給源の各々の時間周期が、デューティサイクルによって特徴付けられる、項目10に記載の検査システム。
(項目12)
上記供給源の各々の時間周期が、隣接する供給源に対して、デューティサイクルの2π倍に等しい位相の関係によって特徴付けられる、項目11に記載の検査システム。
(項目13)
上記物体内に配置された物質の散乱像を表示するためのディスプレイをさらに備える、請求項1に記載の検査システム。
(項目14)
上記第1ビームおよび上記第2ビームのうちの少なくとも一方が、上記検出される物体を透過する際に、該第1ビームおよび該第2ビームのうちの少なくとも一方を検出するため、そして、透過放射線シグナルを生成するための、少なくとも1つの透過検出器をさらに備える、項目1に記載の検査システム。
(項目15)
物体を検査するための方法であって、該方法は、以下:
a.第1ビームを形作るようにされた透過性放射線によって、該物体を照射する工程;
b.第2ビームを形作るようにされた透過性放射線によって、車両を照射する工程であって、該第2ビームは、該第1ビームに関して時間的に散在される、工程;
c.該物体によって散乱された該第1ビームおよび該第2ビームからの放射線を検出して、散乱放射線シグナルを生成する工程;ならびに
d.該散乱放射線シグナルに基づいて、該物体を特徴付ける工程
を包含する、方法。
(項目16)
項目15に記載の方法であって、さらに:
e.上記第1ビームの方向を、上記車両に対して変更する工程
を包含する、方法。
(項目17)
項目15に記載の方法であって、さらに:
e.上記散乱放射線シグナルの散乱像を表示する工程
を包含する、方法。
(項目18)
上記車両内に配置された上記物質を特徴付ける工程が、第1のスペクトル成分による照射の間に得られた散乱放射線シグナルと、第2のスペクトル成分による照射の間に得られた散乱放射線シグナルとを組み合せる工程を包含する、項目15に記載の方法。
【図面の簡単な説明】
【0013】
【図1】図1は、本発明の実施形態に従う、複数の後方散乱画像化システムを使用する、X線検査システムの模式的な断面図である。
【図2】図2は、図1のX線検査システムの実施形態の側面図を示す。
【発明を実施するための形態】
【0014】
(特定の実施形態の詳細な説明)
本発明の実施形態によれば、ビームのクロストークは、マルチビュー後方散乱検査システム(multi−view backscatter inspection system)として構成される、複数の飛点後方散乱画像化システムの間で最小限にされ、個々の画像化システムの間の距離には、制限はない。言い換えると、各視野のための個々の後方散乱画像化システムから構成されるマルチビューシステムにおいて、個々の画像化システムは、物理的に可能な限り互いに近接して配置され得、他方、クロストークは、有利に減少もしくは排除される。
【0015】
移動する車両の上もしくは下のいずれかからのX線を用いて、車両を照射することによって、移動する車両を後方散乱検査する方法および利点は、2001年6月19日に発行された米国特許第6,249,567号(本明細書中に参考として援用される)に記載されている。本発明の好ましい実施形態によれば、車両の側壁に近接して隠された物質に起因して生じる、後方散乱が増強された領域は、検査の過程において、透過性放射線が車両を横切ることを必要とすることなく、明らかにされる。
【0016】
図1は、検査システム(全体が、数字10によって示される)の要素の模式的な断面図を示す。検査される物体18(生物または無生物であり得る)は、紙面を上から下に向かう方向にか、または、紙面を下から上に向かう方向に、動くか、または動かされ、従って、門形12を行き来する。門形12は、複数の透過性放射線の供給源13、15および17を支持する。供給源13、15および17は、代表的には、当該分野で公知のビームを形成し、かつ、ある方向に向ける機構を有する、X線管である。例えば、供給源13は、特定の形状の断面を有するビーム23で透過性放射線を発光する。散乱画像化の用途について、代表的に、狭いペンシルビームが使用される。透過性放射線のビーム23は、例えば、多色性のX線ビームのようなX線のビームであり得る。透過性放射線の供給源13は、好ましくは、例えば、X線管であるが、ライナック(線形加速器)のような他の透過性放射線の供給源も、本発明の範囲内であり、そして、実際に、透過性放射線は、X線照射に限定されず、γ線照射を包含し得る。
【0017】
走査機構は、ビーム23を、実質的に垂直軸に沿って走査するために提供され、その結果、デューティサイクルの一部の間に、ビーム23は、24のような一連の方向に方向付けられる。検査されるべき物体18は、図1の図において、紙面を上から下に向かう、実質的に水平な方向に動いてビーム23を通過する。本発明の代替的な実施形態において、検査システムの供給源および/または他の部分は、それ自体が動いていても、静止していてもよい、物体18に関して動かされ得る。
【0018】
供給源13は、当業者に公知であるような、飛点回転チョッパーホイールのような、走査機構を備え得る。あるいは、2002年7月23日に発行された、発明の名称「Method and Apparatus for Generating Sequential Beams of Penetrating Radiation」の米国特許第6,421,420号(本明細書中に参考として援用される)に記載されるような、電磁スキャナが、使用され得る。
【0019】
供給源15および17のビームは、そのそれぞれの走査の代表的な外側の位置で示され、そして、25、26、27および28と標識される。議論されたような検査される物体18は、例えば、車両、容器もしくは人を指し得、そして、ビーム23〜28を通って自ら進み得るか、または、機械式のコンベヤによって運ばれ得るか、もしくは、トラクターによって引っ張られ得るか、などであり得る。本発明の代替的な実施形態において、例えば、門形として構成される検査システムは、それ自体が、動いていても、静止されていてもよい、車両のような物体の上を、動くか、または動かされ得る。
【0020】
ビーム23〜28は、本発明において、X線ビームなどを指すが、これに限定はされない。本発明の好ましい実施形態によれば、回転チョッパーホイールは、ペンシルビーム23〜28を発生させるために使用され、これらのビームは、紙面に対して実質的に平行な平面に掃引され得る。ペンシルビーム23の断面は、各寸法が類似する大きさであり、そして、代表的には、実質的に円形であるが、多くの形状をとり得る。ペンシルビーム23〜28の寸法は、代表的に、システムにより得られ得る、散乱像の解像度を規定する。ビームの断面の他の形状は、特定の用途において、有利に使用され得る。
【0021】
散乱検出器31によって代表される、検出器の配列は、走査の過程において、物体18の動きの方向に対して平行な平面内に配置される。本質的に逆方向のビーム24からのコンプトン散乱によって散乱されたX線30は、供給源13と物体18との間に配置される1つ以上の後方散乱検出器31によって検出される。さらなる検出器の配列32、33、34、35および36は、ビーム24からコンプトン散乱されたX線を、そして、同様に、本明細書中に記載されるように、他のビームの入射の各々を、次に、検査される物体18を検出するために、補助的に使用され得る。
【0022】
さらに、発光供給源に関して、検査される物体18から遠位に配置された透過検出器は、散乱像を、透過したX線において得られるような物体の像により増強するために使用され得る(例えば、35および36と示される検出器の要素は、検査される物体を通って透過された、供給源13の発光を検出する)。本発明の別の実施形態において、一つの離れた検出器は、一対の散乱検出器35と、一対の散乱検出器36との間に配置され、そして、物体18を通って透過する、透過性放射線の検出のために使用される。
【0023】
本発明の範囲内で、当該分野で公知の任意のX線検出技術が、検出器の配列31〜36のために使用され得る。この検出器は、光電子増倍管または半導体検出器のような感光性検出器によって見られる、シンチレーション物質(固体または液体または気体のいずれか)であり得る。液体シンチレーターは、スズまたは原子番号の大きい他の元素を用いてドープ処理され得る。散乱検出器31〜36からのそれぞれの出力シグナルは、プロセッサ40へと送信されて、検査される物体18内の形状42の像を得るように処理される。入射するX線の光子は、物体18内の散乱供給源によってあらゆる方向へと散乱されるので、散乱された光子の回収を最大にするために、面積の大きな検出器が使用される。本発明の特定の実施形態によれば、プロセッサ40(他に、本明細書中で、「コントローラ」とも呼ばれる)はまた、散乱物体の他の特徴(例えば、その質量、質量密度、有効原子番号など、当該分野で公知の全てのもの)を導き出すために使用され得る。
【0024】
複数の方向からの検査される物体を見ることを可能にするために、複数の供給源13〜17が、検査される物体を照射するために使用される。しかし、各供給源から発光された光子は、あらゆる方向に散乱されるので、クロストーク(すなわち、照射源の誤認)を排除するために、注意を払わなければならない。本発明の実施形態によれば、クロストークは、一度に1つのみの画像化装置が放射線を発光することを確実にすることによって、有利に減少もしくは排除される。第一に、画像化システムから発光されるビームのデューティサイクルは、マルチビューシステムにおける、画像化システムまたは視野の数の逆数未満もしくはそれに等しく設定される。例えば、所望される視野の数が6である場合、画像化システムの各々は、1/6以下のデューティサイクルに設定される。
【0025】
次に、隣接する供給源の各対の間での位相の関係は、デューティサイクルの2π倍に設定される。このことは、画像化装置からの順序付けられた放射線の発光を生じ、1つ以上の画像化装置からの同時の発光の可能性を排除する。例えば、6つの供給源を備えるマルチビュー検査システムは、同じ周波数において作動すること、そのデューティサイクルが1/6であること、そして、その位相の関係が、2π/6すなわち60°であることを必要とする。
【0026】
飛点システムが、回転フープおよびチョッパーホイールのような機械的手段によって認識される場合、この上述の基準は、位相の補正によって偏らされた、機械的なチョッパー要素の動きの同期化によって満たされ得る。こうして、例えば、コリメータが回転されて、急なX線ビーム23の経路を規定する場合、当該分野で公知の閉ループ型動作制御システムが、コリメータの回転を駆動するために使用され得る。デューティサイクルは、ファンの開口部(ビームの総掃引角度、すなわち、単一の供給源の、外側ビーム23と24との間の角度)をデューティサイクルの2π倍に等しく設定することによって制御される。発光された放射線が、電子的に制御され得るシステムにおいて、照射の任意の所望の順序または掃引の範囲の任意の所望される順序は、完全に、電子的な制御もしくはソフトウェアによる制御によって設定され得るが、これに制限はされない。
【0027】
クロストークを減少もしくは排除する、時間的な順序によって、供給源は、他の方法で可能な距離よりもより近位に配置され得る。特に、供給源13〜17は、単一平面内に配置され得、このことにより、有利に、物体が画像化装置により通過される速度とは無関係に、X線の実質的に同時のオン/オフ制御が可能となる。
【0028】
記載されるシステムは、有利に、連続した供給源13〜17の各々の視野から導かれる像を提供し得る。図1は、ビーム23、25などを備える、例示的な3視野システムを示し、この各々が、同一平面上にある軌道を掃引する。
【0029】
各画像化装置からのビームは、順番に掃引し、その結果、一度に、1つの画像化装置しか、放射線を発光しない。こうして、供給源(または「画像化装置」)13は、まず、そのビームを掃引する。線44として表される、物体から散乱される放射線は、全ての検出器によって受容される。各検出器からのシグナルは、捕捉システムにより、別個のチャネルとして捕捉される。このプロセスは、3つの画像化装置の各々について繰り返され、物体がそばを動く度に、物体の「スライス」を生成する。
【0030】
ここで、図2を参照して、対応する数で示された要素を備える、図1の配列の側面図が示される。スロット50が示され、物体18が、横方向16に動く間に走査されるときに、供給源13のビームが、このスロット50を通って、検出器31のセグメント52および54を通過する。
【0031】
検出器からのシグナルは、物体の像を再構築するために選択的に使用され得る。供給源13から、検出器33および34によって検出された、散乱された光子44は、供給源17からの散乱された光子と同様に有用であるので、これらの同じ検出器が、全ての供給源の間で共有され得、そして、検出器ハードウェアを効率的に使用することによって、改善された散乱の収集がもたらされる。
【0032】
本発明の実施形態は、さらに、クロストークを排除することによって、そして、各視野のための個々の画像化装置のより近接した位置決めを可能にすることによって、有利に、より小さな操作上のフットプリントにおいて実施される、マルチビュー飛点X線散乱画像化を可能にし得る。これらの画像化装置の近接な位置決め(ここで、「画像化装置」は、供給源、少なくとも1つの検出器、ならびに、付随する電子部品およびシグナルプロセシングを指す)はまた、画像化装置の間で、散乱検出器を共有することを可能にし得、そして、検出器ハードウェアを効率的に使用することにより、改善された画像品質のために、より多くの散乱の収集を可能にする。
【0033】
物体の選択的な領域の走査が所望される用途において、画像化装置の同一平面上の位置決めは、物体が画像化装置により通過される速度とは無関係に、X線の同時のオン/オフ制御を可能にする。このことは、マルチビュー検査システムにおいて、各画像化装置からのX線発光の制御の設計を非常に単純にし、従って、X線発光の個々の順序は、発光が同一平面上でないシステムにおいて代表的に実施されるようには、実施される必要はない。
【0034】
本発明の実施形態が記載される観点から、中身を隠す囲いの内容物を画像化することに加え、検査される物体の他の特徴が、本発明の範囲において得られ得る。例えば、後方散乱技術は、当該分野で公知であるように、質量、質量密度、質量分布、平均原子番号、または、標的とされる脅威物質を含む可能性を導き出すために、適用され得る。
【0035】
本発明の特定の実施形態によれば、160keVと300keVとの間の範囲の最大エネルギーを有するX線が使用される。このエネルギーにおいて、X線は、車両内に透過し、そして、車両の内側の有機物が検出され得る。こうして、より低い線量のX線照射が可能であるので、自動車は、本発明を用いて走査され得る。走査される車両が、人員を含み得る用途について、300keVを下回る終点エネルギーが好ましい。しかし、本発明の範囲は、使用される透過性光子(penetrating photon)によって制限されない。
【0036】
本発明の記載される実施形態は、単に例示的であることが意図されており、そして、多数のバリエーションおよび修正が、当業者に明らかである。全てのこのようなバリエーションおよび修正は、添付の特許請求の範囲に規定される、本発明の範囲内であることが意図される。

【特許請求の範囲】
【請求項1】
明細書に記載の方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−133977(P2010−133977A)
【公開日】平成22年6月17日(2010.6.17)
【国際特許分類】
【出願番号】特願2010−40967(P2010−40967)
【出願日】平成22年2月25日(2010.2.25)
【分割の表示】特願2007−507407(P2007−507407)の分割
【原出願日】平成17年4月1日(2005.4.1)
【出願人】(500530904)アメリカン・サイエンス・アンド・エンジニアリング・インク (3)
【Fターム(参考)】