説明

三次元形状計測装置

【課題】段差部毎に撮像部を設置しなくても、各段差部の三次元形状を精度良く計測する。
【解決手段】受光素子21Pは、サンプルSPからの反射光を受光する。レンズ22Lは、中心線側の段差部WA1からの反射光(光軸がR1)を結像して受光素子21Pに導く。また、レンズ22Lは、段差部WA1よりも外側の段差部WA2からの反射光(光軸がR2)を、ミラー231,232を介して結像して受光素子21Pに導く。撮像部21の光軸LAは、段差部WA1からの反射光の光軸R1の受光素子21Pまでの光学距離と、段差部WA2からの反射光の光軸R2の受光素子21Pまでの光学距離とが等しくなるように、サンプルSPに対する仰角及び方位角が設定されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は複数の段差部を持つ測定対象物の段差部の三次元形状を計測する技術に関するものである。
【背景技術】
【0002】
近年、金属や樹脂等を押し出し加工することで得られた押し出し形成品の3次元形状を計測する試みがなされている。このような、押し出し形成品には、一方向に長い段差を複数持つもの、すなわち、複数の段差部を持つものがある。このような押し出し形成品では、特に段差部の3次元形状を光切断法を用いて詳細に計測したいという要望がある。
【0003】
光切断法では、受光素子の画素数に応じて分解能が決まる為、受光素子の画素数が同じ場合、視野サイズの増大に比例して分解能は低下する。従って、測定対象物の表面において、観察したい箇所が離れて複数存在するような場合、図9に示すように全箇所を観察するために視野を広角に設定すると、観察したい箇所の微細な構造を捉えることができなくなる。逆に微細な構造を捉える為に視野を狭めてしまうと、観察した箇所のうち一部の箇所しか捉えることができなくなる。
【0004】
この為、従来では、観察したい箇所ごとに1台のカメラを設置するのが一般的であった。図10は、複数の段差部WAを持つ押し出し形成品をサンプルSPとしたときに各段差部WAの三次元形状を、光切断法を用いて測定する場合のカメラCMの設置状況を示した図である。
【0005】
図10に示すように測定対象物(以下、サンプルSPと記述する。)は、X方向(長さ方向)を長手方向とする4つの段差部WAを持つ。各段差部WAは、サンプルSPのY方向(幅方向)の中心OYを通り、かつ、X方向に平行な中心線MLを中心として左右対称に形成されている。このようなサンプルSPの各段差部WAの三次元形状を測定する場合、従来の手法では、各段差部WAを撮影する4台のカメラCMを設置し、各段差部WAの三次元形状を個別に測定するのが一般的であった。
【0006】
なお、本願発明に関連する特許文献として特許文献1、2がある。特許文献1では、測定対象物を二軸ステージ上に設置し、サンプル面を平行に走査して各箇所を測定した後、測定データを統合する事で、サンプル面の全体の立体形状を測定する非接触三次元計測方法が開示されている。
【0007】
特許文献2では、対象平面上をレーザ光で走査し、反射光をPSDで受光し、PSDの検知信号から反射光の傾き角を算出し、平面異常を検査する光走査式平面外観検査装置が開示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2009−122066号公報
【特許文献2】特開2008−145162号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、図10に示す従来の手法では、各段差部WAに対してカメラCMを設置する必要があるため、部品点数が増大することに加えてカメラCMが持つ光学系の構成が煩雑化するという問題があった。
【0010】
また、特許文献1の手法では、非接触プローブを水平軸方向及び垂直軸方向との2軸に平行移動させるための平行移動式の2軸ステージが必要となるため、装置構成が煩雑となる。
【0011】
また、特許文献2の手法では、レーザ光を走査することで傾き角が検出されているため、全箇所を測定し終えるまでに一定の時間がかかり、リアルタイムに計測ができない。
【0012】
本発明の目的は、段差部毎に撮像部を設置しなくても、各段差部の三次元形状を精度良く計測することができる三次元形状計測装置を提供することである。
【課題を解決するための手段】
【0013】
(1)本発明による三次元形状計測装置は、一方向に長い段差を複数持つ測定対象物の各段差部の三次元形状を光切断法を用いて計測する三次元形状計測装置であって、前記測定対象物に対して前記一方向と交差する方向に光切断線を照射する光源と、前記光切断線が照射された前記測定対象物を撮像する撮像部とを備え、前記撮像部は、前記測定対象物からの反射光を受光する受光素子と、1つの段差部からの反射光を結像して前記受光素子に導くレンズと、前記1つの段差部以外の他の段差部からの反射光を反射して前記レンズに結像させて前記受光素子に導くミラーとを含み、前記撮像部の光軸は、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、前記測定対象物に対する仰角及び方位角が設定されている。
【0014】
この構成によれば、1つの撮像部によって複数の段差部が撮像される。そして、撮像部は、一つの段差部からの反射光の受光素子までの光学距離と、他方の段差部からの反射光の受光素子までの光学距離とが等しくなるように、仰角及び方位角が設定されている。そのため、段差部毎に撮像部を設けなくても、1つの段差部の反射光による光像と他の段差部の反射光による光像とを受光素子に同時に結像させることができる。その結果、各段差部の三次元形状を精度良く計測することができる。
【0015】
(2)前記仰角α及び方位角βは、2・sinβ−2・sinβ・sinα=1の関係を持つことが好ましい。
【0016】
この構成によれば、上記の関係式を用いることで、光学距離を一定にすることができる撮像部の仰角及び方位角を正確に決定することができる。
【0017】
(3)前記段差部は、前記一方向と直交する幅方向の一端側に斜面が露出した複数の第1段差部と、前記幅方向の他端側に斜面が露出した複数の第2段差部とからなり、前記第1段差部は、前記一端側から複数個ずつ区分されて1又は複数の第1段差群に分けられ、前記第2段差部は、前記他端側から複数個ずつ区分されて1又は複数の第2段差群に分けられ、一対の前記撮像部及び前記光源により構成され計測系を備え、前記計測系は各第1,第2段差群に対応して複数存在することが好ましい。
【0018】
この構成によれば、第1、第2段差群毎に撮像部及び光源からなる計測系が設けられ、各段差部の3次元形状が個別に算出される。
【0019】
(4)前記複数の段差部は、前記測定対象物の前記一方向の中心線に対して対称に配置され、前記計測系は、前記中心線に対して対象に配置されていることが好ましい。
【0020】
この構成によれば、段差群が測定対象物の中心線に対して対称に配置されている場合、計測系が中心線に対して対称に配置されるため、計測系を整然と配列することができる。
【0021】
(5)前記ミラーは、前記他の段差部からの反射光の光軸を45度の反射角で反射する第1ミラーと、前記第1ミラーにより反射された反射光の光軸を45度の反射角で反射する第2ミラーとを含むことが好ましい。
【0022】
この構成によれば、他の段差部からの反射光は第1ミラーにより光軸が90度曲げられて第2ミラーへと導かれ、第1ミラーにより反射された反射光は第2ミラーにより光軸が90度曲げられてレンズへと導かれ、受光素子に結像される。そのため、他の段差部からの反射光を確実に受光素子まで導くことができる。
【0023】
(6)前記第1ミラーは、前記撮像部の光軸に対して直交する面において、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、移動可能に配置されていることが好ましい。
【0024】
この構成によれば、段差部の間隔が異なる種々の測定対象物であっても、他の段差部からの反射光の光軸が直交する位置に第1ミラーを配置することで、他の段差部の3次元形状を精度良く算出することができる。
【0025】
(7)前記第1ミラーは、前記撮像部の光軸に直交する面における前記一方向に対する角度をγ、前記撮像部の光軸の仰角をα、前記撮像部の光軸の方位角をβとすると、tanγ=sinα・sinβ/cosβの関係を満たす角度γの方向に移動可能に配置されていることが好ましい。
【0026】
この構成によれば、第1ミラーを光軸に直交する面内で角度γに沿って移動させるだけで、他の段差部からの反射光と1つの段差部からの反射光との光学距離とを同じにすることができる。したがって、間隔の異なる段差部を持つ種々の測定対象物に対して柔軟に対応することができる。
【0027】
(8)前記撮像部は、前記受光素子、前記レンズ、及び前記ミラーを覆い、前記測定対象物側の面に開口部が設けられたカバーと、前記開口部に配置された開口側フィルタ群と、前記受光素子の直前に配置された受光側フィルタ群とを含み、前記開口側フィルタ群は、前記1つの段差部からの反射光を透過する第1開口側フィルタ及び前記他の段差部からの反射光を透過する第2開口側フィルタを備え、前記受光側フィルタ群は、第1開口側フィルタを透過した反射光を透過する第1受光側フィルタ及び前記第2開口側フィルタを透過した反射光を透過する第2受光側フィルタが配列され、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと異なるフィルタ特性を持ち、前記第1受光側フィルタ及び前記第2受光側フィルタは、対応する第1開口側フィルタ及び第2開口側フィルタと、同じフィルタ特性を持つことが好ましい。
【0028】
この構成によれば、1つの段差部からの反射光は第1開口側フィルタと、第1開口側フィルタと同じフィルタ特性を持つ第1受光側フィルタとを介して受光素子に導かれる。また、他の段差部からの反射光は第2開口側フィルタと、第2開口側フィルタと同じフィルタ特性を持つ第2受光側フィルタとを介して受光素子に導かれる。よって、他の段差部からの反射光が1つの段差部の迷光となって受光素子に導かれることを防止し、かつ、1つの段差部からの反射光が他の段差部の迷光となって受光素子に導かれることを防止することができる。
【0029】
(9)前記フィルタ特性は、偏光特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと偏光方向が直交する偏光フィルタであることが好ましい。
【0030】
この構成によれば、第1開口側フィルタと第2開口側フィルタとは偏光方向が直交しているため、迷光をより確実に防止することができる。
【0031】
(10)前記フィルタ特性は、波長特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと波長特性が異なる波長フィルタであることが好ましい。
【0032】
この構成によれば、第1開口側フィルタ及び第2開口側フィルタは波長特性が異なるフィルタにより構成されているため、迷光を確実に防止することができる。
【発明の効果】
【0033】
本発明によれば、段差部毎に撮像部を設置しなくても、各段差部の三次元形状を精度良く計測することができる。
【図面の簡単な説明】
【0034】
【図1】(A)、(B)は、本発明の実施の形態による三次元形状計測装置の全体構成図であり、(A)は斜視図であり、(B)は上面図である。
【図2】図1(B)に示す三次元形状計測装置をA方向から見たときの左側計測系を示した図である。
【図3】図1(B)に示す三次元形状計測装置をC方向から見たときの左側計測系を示した図である。
【図4】(A)は、図1(B)に示す三次元形状計測装置をB方向から見たときの左側計測系を示した図である。
【図5】(B)は、受光素子の受光面に現れる光像を示した図である。
【図6】本発明の実施の形態による三次元形状計測装置のブロック図である。
【図7】(A)は、本発明の実施の形態による三次元形状計測装置の具体的一例をB方向から見た図である。(B)は、図7(A)の具体的一例における受光素子の受光面に現れる光像を示した図である。
【図8】(A)、(B)は本発明の実施の形態による三次元形状計測装置の変形例2において、受光素子の受光面に結像される光像を示した図である。
【図9】観察したい箇所の全域を視野に含めた場合の従来の三次元形状装置の視野を示した図である。
【図10】複数の段差部を持つ押し出し形成品を測定対象物としたときに各段差部の三次元形状を、光切断法を用いて測定する場合のカメラの設置状況を示した図である。
【発明を実施するための形態】
【0035】
図1(A)、(B)は、本発明の実施の形態による三次元形状計測装置の全体構成図であり、(A)は斜視図であり、(B)は上面図である。本三次元形状計測装置は、光源10、撮像部20、搬送部30、及び制御部40(図5参照)を備えている。そして、本三次元形状計測装置は、一方向(X方向:長さ方向)に長い段差部を複数持つ測定対象物(以下、サンプルSPと記述)の各段差部WAの三次元形状を光切断法を用いて計測する。
【0036】
なお、図1においてY方向はX方向と直交するサンプルSPの幅方向を示している。また、Z方向は、X方向及びY方向にそれぞれ直交する高さ方向を示している。図1の例ではサンプルSPは4つの段差部WAを持つ。ここで、サンプルSPは、金属や樹脂等の平板状の部材を押し出し加工することで得られた押し出し形成品である。各段差部WAは、サンプルSPのY方向の中心OYを通り、かつ、X方向に平行な中心線MLを中心として左右対称に形成されている。段差部WAの傾斜はほぼZ方向と平行、つまり、サンプルSPの主面に対してほぼ直交している。
【0037】
ここで、段差部WAは、Y方向の左側に斜面が露出した複数の段差部WA(第1段差部)と、Y方向の右側に斜面が露出した複数の段差部WA(第2段差部)とからなる。図1の場合、段差部WA1,WA2が第1段差部となり、段差部WA3,WA4が第2段差部となる。
【0038】
段差部WA1は第1段差部のうち中心線ML側に位置する段差部WAであり、段差部WA2は第1段差部のうち左側に位置する段差部WAである。段差部WA3は第2段差部のうち中心線ML側に位置する段差部WAであり、段差部WA4は第2段差部のうち右側に位置する段差部WAである。
【0039】
光源10はサンプルSPに対して光切断線CLを照射する。以下、段差部WA1,WA2の三次元形状を計測するための光源10を光源11と記述する。また、段差部WA3,WA4の三次元形状を計測するための光源10を光源12と記述する。また、段差部WA1〜WA4を示す光切断線CLを区別する場合、光切断線CL1〜CL4と記述する。
【0040】
光切断線CLは、大局的に長手方向がY方向を向く直線であるが、微視的にはサンプルSPの表面形状、つまり、高さに応じた凹凸を持つ線である。
【0041】
光源10は、図略のレーザ光源及びレンズを備えている。レーザ光源は、所定波長のレーザビームをサンプルに向けて照射する。レンズは、光源から照射されたレーザ光を扇状に拡散させ、サンプルSPに光切断線CLを描く。
【0042】
撮像部20は、光切断線CLが照射されたサンプルSPを撮像する。図1の例では、2個の撮像部20が設けられている。以下、段差部WA1,WA2の三次元形状を計測するための撮像部20を撮像部21と記述する。また、段差部WA3,WA4の三次元形状を計測するための撮像部20を撮像部22と記述する。
【0043】
撮像部21は、サンプルSPの搬送方向(X方向)に対し、光源11の上流側に配置され、図1(B)に示すように、上面視において光軸LAが右斜め上方向を向くように配置されている。撮像部22は、サンプルSPの搬送方向に対し、光源12の上流側に配置され、光軸LAが左斜め上方向を向くように配置されている。
【0044】
以下、段差部WA1,WA2の三次元形状を計測するための光源11及び撮像部21を左側計測系LUと記述し、段差部WA3,WA4の三次元形状を計測するための光源12及び撮像部22を右側計測系RUと記述する。左側計測系LUと右側計測系RUとは中心線MLに対して、X方向の位置が上下にずらされて左右対称に設置されている。
【0045】
図1の例では、左側計測系LUは右側計測系RUよりも搬送方向の上流側に配置されている。但し、これは一例であり、右側計測系RUを左側計測系LUよりも搬送方向の上流側に配置してもよいし、右側計測系RUと左側計測系LUとをX方向上の同じ位置にY方向に並べて配置してもよい。後者の場合、一つの光源10をサンプルSPのY方向の中心線ML上に配置し、右側計測系RUと左側計測系LUとで一つの光源10を共用化してもよい。但し、右側計測系RUと左側計測系LUとで個別に光源10を設けると、左側の2個の段差部WA1,WA2と右側の2個の段差部WA3,WA4とに対して好ましい方向から光切断線CLを照射できるため、三次元形状の計測精度を高めるためには、光源10を個別に設ける方が好ましい。
【0046】
搬送部30は、搬送ベルト31及び複数の搬送ローラ32を備え、サンプルSPをX方向に向けて一定速度で搬送する。搬送ベルト31は、例えばX方向を長手方向とする無端ベルトにより構成され、上面にサンプルSPが載置される。搬送ローラ32は、図略のモータからの駆動力を受けて回転し、搬送ベルト31を例えば時計回りに回転させる。
【0047】
以下、説明の煩雑さを避ける為、左側計測系LUのみを抜き出して説明する。図2は、図1(B)に示す三次元形状計測装置をA方向から見たときの左側計測系LUを示した図である。ここで、A方向は、図1(B)に示すようにサンプルSPを真横から見た方向である。
【0048】
図1(B)、図2に示すように、光源11は光軸LBの方位角が中心線MLに対して直交するように配置されている。つまり、光源11は、A方向から見てサンプルSPに対して真上から光を照射する。これにより、サンプルSPの高さの変化によって光切断線CLが照射される位置が計測点からずれることを回避することができる。また、図2に示すように撮像部21は、A方向から見て、光軸LAがサンプルSPに対して右斜め下側を向くように配置されている。
【0049】
図3は、図1(B)に示す三次元形状計測装置をC方向から見たときの左側計測系LUを示した図である。C方向は、図1(B)に示すように撮像部20の光軸LAを真横から見た方向である。光軸LAを真横から見た方向とは、光軸LAのサンプルSPへの投影線と直交する方向である。ここで、光軸LAの方位角をβとする。光軸LAの方位角βは、光軸LAのサンプルSPへの投影線と中心線MLとがなす角度である。光軸LAの仰角をαとする。光軸LAの仰角αは、図3に示すように、光軸LAと光軸LAのサンプルSPへの投影線とがなす角度である。
【0050】
図4(A)は、図1(B)に示す三次元形状計測装置をB方向から見たときの左側計測系LUを示した図である。B方向は、図1(B)に示すようにサンプルSPをX方向から見た方向である。
【0051】
通常の光切断法において、B方向から見て、光源11は光軸LBがサンプルSPと直交する方向に配置され、撮像部21は光軸LAがサンプルSPと直交する方向に配置される。しかしながら、本実施の形態では、段差部WAの傾斜がX−Y平面とほぼ直交するサンプルSPが測定対象である。そのため、光軸LAと光軸LBとが、B方向から見てサンプルSPに対して斜め方向を向くように、光源11及び撮像部21が設置されている。
【0052】
図1に示すように、左側計測系LUが測定対象とする段差部WAが段差部WA1,WA2の2箇所である場合、従来では、この2箇所の段差部WA1,WA2を共に含む測定画像を得る為に、撮像部21の視野が大きく設定されていた。そのため、段差部WA1,WA2の反射光の受光素子21Pに現れる光像の分解能が低下し、段差部WA1,WA2の三次元形状を精度良く測定することができなくなる。
【0053】
そこで、本実施の形態では、図4(A)に示すように撮像部21を構成した。具体的には、撮像部21は、受光素子21P、レンズ22L、及びミラー231(第1ミラーの一例),232(第2ミラーの一例)を備えている。
【0054】
受光素子21Pは、サンプルSPからの反射光を受光する。レンズ22Lは、中心線ML側の段差部WA1からの反射光(光軸がR1)を結像して受光素子21Pに導く。また、レンズ22Lは、段差部WA1よりも外側の段差部WA2からの反射光(光軸がR2)を、ミラー231,232を介して結像して受光素子21Pに導く。
【0055】
ミラー231,232は、段差部WA2からの反射光を順次に反射してレンズ22Lに導く。具体的には、ミラー231は、段差部WA2からの反射光の光軸R2を45度の反射角で反射する。これにより、段差部WA2からの反射光は、光軸R2がミラー231により90度曲げられる。ミラー232は、ミラー231により反射された反射光の光軸R2を45度の反射角で反射し、レンズ22Lに導く。これにより、ミラー231により反射された反射光は、光軸R2がミラー232によって90度曲げられてレンズ22Lに導かれる。
【0056】
また、ミラー231,232は下辺231a,232bがカバー26の下面26aと平行に配置されている。
【0057】
カバー26は直方体形状を有し、受光素子21P、レンズ22L、及びミラー231,232を覆う。カバー26は、サンプルSP側の面である下面26aに、段差部WA1,WA2からの反射光を受光素子21Pに導くための開口部が設けられている。
【0058】
撮像部21の光軸LAは、段差部WA1からの反射光の光軸R1の受光素子21Pまでの光学距離と、段差部WA2からの反射光の光軸R2の受光素子21Pまでの光学距離とが等しくなるように、サンプルSPに対する仰角α及び方位角βが設定されている。
【0059】
具体的には、仰角α及び方位角βは式(1)の関係を持つ。
【0060】
2・sinβ−2・sinβ・sinα=1 (1)
これにより、光軸R1と光軸R2との光学距離が等しくなり、段差部WA1の反射光による光像と段差部WA2の反射光による光像とを受光素子21Pに同時に結像させることができる。したがって、撮像部21の画角を広角に設定しなくても、段差部WA1のみを測定対象とする場合と同じ画角で段差部WA1,WA2を測定することができ、段差部WA1,WA2の三次元形状を精度良く測定することができる。
【0061】
図4(B)は、受光素子21Pの受光面21Aに現れる光像を示した図である。図4(B)に示すように光像は、2分割された2つの領域D1,D2を持つ。領域D1,D2は矩形状であり、面積が同じである。領域D1には、段差部WA1からの反射光による光像が現れる。領域D1の中心O1が光軸R1と受光面21Aとの交点となるようにレンズ22Lが配置されている。そのため、領域D1には、段差部WA1を中心とする一定範囲の光切断線CL1が現れる。
【0062】
領域D2には、段差部WA2からの反射光による光像が現れる。領域D2の中心O2が光軸R2と受光面21Aとの交点となるようにミラー231が配置されている。そのため、領域D2には、段差部WA2を中心とする一定範囲の光切断線CL2が現れる。
【0063】
領域D1,D2に現れる2つの光像は、幾何学的には明確に分離しているが、実際には段差部WA2の反射光の一部が迷光となって領域D1に侵入し、段差部WA1の反射光の一部が迷光となって領域D2に侵入する。
【0064】
迷光の原因は、ミラー231,232のエッジ部での乱反射、段差部WA1,WA2の反射光が光路途中の物体により光学距離が不一致とされて結像されない光が迷光となって侵入する、などである。そこで、本実施の形態では、フィルタ241(第1開口側フィルタの一例)、フィルタ242(第2開口側フィルタの一例)、フィルタ251(第1受光側フィルタの一例)、及びフィルタ252(第2受光側フィルタの一例)を設け、迷光を防止している。
【0065】
フィルタ241は、光軸R1がその中心を通過するように、下面26aに配置され、段差部WA1からの反射光を透過する。フィルタ242は、光軸R2がその中心を通過するように、下面26aに配置され、段差部WA2からの反射光を透過する。フィルタ241,242で開口側フィルタ群をなす。
【0066】
フィルタ251は、その中心に光軸R1が通過するように受光素子21Pの手前に配置され、フィルタ241を透過した段差部WA1からの反射光を透過して受光素子21Pに導く。
【0067】
フィルタ252は、その中心に光軸R2が通過するように受光素子21Pの手間に配置され、フィルタ242を透過した段差部WA2からの反射光を透過して受光素子21Pに導く。フィルタ251,252で受光側フィルタ群をなす。
【0068】
フィルタ241とフィルタ242とは偏光方向が直交するフィルタ特性を持つ偏光フィルタである。フィルタ241とフィルタ251とは偏光方向が同一のフィルタ特性を持つ偏光フィルタである。
【0069】
フィルタ251とフィルタ252とは偏光方向が直交するフィルタ特性を持つ偏光フィルタである。フィルタ252とフィルタ242とは偏光方向が同一のフィルタ特性を持つ偏光フィルタである。
【0070】
したがって、フィルタ241を透過した段差部WA1からの反射光とフィルタ242を透過した段差部WA2からの反射光とは偏光方向が90度ずれる。また、フィルタ251は、フィルタ241により透過された反射光のみを透過して受光素子21Pに導く。また、フィルタ252は、フィルタ242により透過された反射光のみを透過して受光素子21Pに導く。
【0071】
その結果、段差部WA1からの反射光が迷光となって領域D2に侵入することを防止でき、かつ、段差部WA2からの反射光が迷光となって領域D1に侵入することが防止できる。
【0072】
(ミラーの移動)
次に、ミラー231の詳細について説明する。図6は、ミラー231を移動させる様子を示した図であり、(A)は図1の三次元形状計測装置をB方向から見た図であり、(B)は撮像部21を下面26a側から見た図である。
【0073】
実際の測定においては、段差部WA1,WA2の間隔はサンプルSPによって様々である。この場合、段差部WA1,WA2の間隔がサンプルSP毎に異なっても対応できるようにするため、ミラー231の移動条件を考える。
【0074】
ミラー231,232のうち、ミラー232は固定であるが、ミラー231は撮像部21の光軸LAに対して垂直な面に沿って、つまり、下面26aに沿って平行移動する。この時、式(2)で表される条件を満たしていれば、ミラー232が平行移動しても、光軸R1,R2の光学的距離を同じにし、段差部WA1,WA2の反射光を受光素子21Pに同時に結像させることができる。
【0075】
tanγ=sinα・sinβ/cosβ (2)
ここで、角度γは図6(B)に示すように、下面26aにおける、下面26aの下辺26bに対する角度を示している。この角度γの方向にミラー232を平行移動させる。具体的には、段差部WA2の反射光の光軸R2が90度曲げて反射されるように、ミラー231を角度γの方向にスライドさせる。これにより、段差部WA1,WA2の反射光を受光素子21Pに同時に結像させることができる。
【0076】
そこで、ミラー232を平行移動させるための平行移動機構を撮像部21に設ける。ここで、平行移動機構としては、例えば調節つまみと、調節つまみに連動してミラー232を角度γの方向に平行移動させる移動部とを採用すればよい。あるいは、下面26aにおいて、角度γに沿ってミラー232を平行移動させ、所望の位置でミラー232をネジ止めできる構成を採用すればよい。
【0077】
図5は、本発明の実施の形態による三次元形状計測装置のブロック図である。本三次元形状計測装置は、光源11,12、撮像部21,22、搬送部30、及び制御部40を備えている。光源11,12、撮像部21,22、及び搬送部30は上述したため、説明を省く。
【0078】
制御部40は、例えばCPU、ROM、RAM等を備えるマイクロコンピュータ等から構成され、光源制御部41、撮像制御部42、形状算出部43、及び搬送制御部44の機能を備えている。
【0079】
光源制御部41は、光源11,12の点灯制御を行う。具体的には、計測開始の指示が図略の操作部を用いてユーザにより入力されると、光源11,12に電力を供給し、光源11,12を点灯させ、サンプルSPに光切断線CLを照射させる。
【0080】
撮像制御部42は、撮像部21,22を制御し、撮像部21,22に所定のフレームレート(例えば1秒あたり250フレーム)で光切断線CLが照射されたサンプルSPを連続撮像させる。
【0081】
形状算出部43は、撮像部21,22により撮像された各段差部WAの画像データから各段差部WAの3次元形状を個別に算出する。段差部WA1,WA2を例に挙げて説明すると、形状算出部43は、撮像部21により所定のフレームレートで撮像された段差部WA1,WA2の光切断線CL1,CL2が現れた1枚の画像データを順次に取り込む。
【0082】
そして、取り込んだ1枚の画像データにおいて、領域D1の光切断線CL1の各位置の座標と、領域D2の光切断線CL2の各位置の座標とを抽出する。そして、抽出した光切断線CL1,CL2の各位置の垂直方向の座標と、光源11の光軸LBの仰角と、撮像部21の光軸LAの仰角αとを用いて光切断線CL1,CL2の各位置の高さデータを算出する。
【0083】
高さデータZの算出は、例えば式(3)を用いればよい。
【0084】
Z=K・Pv/cosα (3)
但し、Kは受光素子21Pの画素分解能を示し既知である。Pvは光切断線CL1の各位置の垂直方向の座標を示す。ここで、垂直方向の座標は、図4(B)に示す縦方向の座標である。そして、各位置の高さデータを1列に配列し、段差部WA1の1ライン分の高さデータを算出する。
【0085】
形状算出部43は、光切断線CL2についても同様にして段差部WA2の1ライン分の高さデータを算出する。そして、各画像データから得られた段差部WA1,WA2の1ライン分の高さデータを図1に示すX方向に向けて配列していくことで、段差部WA1,WA2の全域の3次元形状を得る。また、形状算出部43は、撮像部22で撮像された画像データについても同じ処理を行い、段差部WA3,WA4の3次元形状を得る。
【0086】
そして、形状算出部43は、例えば、各段差部WAの3次元形状を立体的に示す画像を図略の表示部に表示する。
【0087】
搬送制御部44は、ユーザにより、計測開始の指示が入力されると、搬送部30を構成する搬送ローラ32を駆動させ、サンプルSPを図1に示すX方向に向けて一定の搬送速度で移動させる。光切断線CLのX方向の幅をwXとすると、撮像部20の周期が1/250=0.004sであるため、搬送速度をwX/0.004に設定すると、段差部WAを隙間無く走査することができる。そのため、搬送速度としては、例えばwX/0.004に設定すればよい。なお、サンプルSPは、段差部WAが搬送方向と平行になるように搬送ベルト31に載置されるものとする。したがって、サンプルSPは、段差部WAの長手方向に沿って搬送され、段差部WAの長手方向とほぼ直交する方向に光切断線CLが照射されることになる。
【0088】
(具体例)
次に、本三次元形状計測装置の具体例について説明する。図7(A)は、本発明の実施の形態による三次元形状計測装置の具体例をB方向から見た図である。本具体例は、撮像部21の光軸LAの仰角αが54.7度、方位角βが60度である。これらの値は上記の式(1)の関係を満たしている。
【0089】
そして、搬送ベルト31にサンプルSPを載置し、サンプルSPをX方向に移動させ、撮像部21でサンプルSPの段差部WA1,WA2の光切断線CL1,CL2を連続撮像し、撮像部22でサンプルSPの段差部WA3,WA4の光切断線CL3,CL4を連続撮像する。
【0090】
以下、撮像部21のみについて説明する。段差部WA1の反射光の光像は図7(B)に示すように領域D1に結像される。段差部WA2の反射光の光像はミラー231,232を介して領域D2に結像される。
【0091】
光源11は、偏光方向がP偏光の光を照射する。フィルタ241,251は、偏光方向がP偏光に対して+45度の偏光フィルタである。フィルタ242,252は、偏光方向がP偏光に対して−45度の偏光フィルタである。撮像部22についても同様に構成する。以上により段差部WA1〜WA4の三次元形状が得られる。
【0092】
(変形例1)
次に、本三次元形状計測装置の変形例1について説明する。変形例1は、偏光フィルタに代えて波長フィルタを使用して迷光防止を図ったものである。この場合、フィルタ242,252を第1波長帯域を透過する波長フィルタにより構成し、フィルタ241,251を第1波長帯域とは異なる第2波長帯域を透過する波長フィルタにより構成する。この場合、光源11としては、第1波長帯域及び第2波長帯域を共に含む光を照射するものを採用すればよい。白色光源は、多数の波長帯域の全域を含むため、光源11としては、レーザ光源等の単色光源ではなく、ハロゲンランプ等の白色光源を採用することが好ましい。
【0093】
受光素子21Pの視野を三分割にする場合、下面26a側にフィルタ241〜243の3つのフィルタを配列し、受光素子21P側に3個のフィルタ251〜253を配列すればよい。ここで、視野を三分割する場合とは、受光素子21Pに3つの段差部WAの反射光を結像させる場合である。この場合、フィルタ241〜243を、それぞれ、第1〜第3の波長帯域を透過する波長フィルタにより構成し、かつ、フィルタ251〜253を、それぞれ、第1〜第3の波長帯域を透過する波長フィルタにより構成してもよい。或いは、フィルタ241,243及びフィルタ251,253を第1波長帯域を透過する波長フィルタで構成し、フィルタ242,252を第2波長帯域を透過する波長フィルタで構成するというように、下面26a側及び受光素子21P側のそれぞれにおいて、隣接するフィルタに対して透過する波長帯域が異なる2種類の波長フィルタを交互に配置してもよい。
【0094】
また、受光素子21Pの視野を四分割以上する場合、つまり、受光素子21Pに4つ以上の段差部WAを計測させる場合も同様、3分割した場合と同様に波長フィルタを配置すればよい。具体的には、下面26a側に4つ以上の波長フィルタを配置し、受光素子21P側に4つ以上の波長フィルタを配置すればよい。そして、同一の段差部WAの反射光の光軸上に設けられたフィルタを同一の波長帯域を透過する波長フィルタで構成すればよい。
【0095】
(変形例2)
図8(A)、(B)は本発明の実施の形態の変形例2による三次元形状計測装置において、受光素子21Pの受光面21Aに結像される光像を示した図である。変形例2は、段差部WA1からの反射光と、段差部WA2からの反射光とが、受光素子21Pで結像される際のレイアウトが図7(B)とは異なる点を特徴としている。
【0096】
図8(A)では、光切断線CL1,CL2との垂直方向(上下方向)へのずれ量が図7(B)に比べて増大している。こうすることで、段差部WA1からの反射光の迷光が領域D2に侵入したとしても光切断線CL2に影響を及ぼさず、かつ、段差部WA2からの反射光の迷光が領域D1に侵入したとしても領域D1に現れる光切断線CL1に影響を及ぼさなくなる。これを実現するために、光軸R1が領域D1の中心O1よりも垂直方向に下側の位置PS1に位置するようにレンズ22Lを位置決めすると共に、光軸R2が領域D2の中心O2よりも垂直方向に上側の位置PS2に位置するようにミラー231、レンズ22Lを位置決めすればよい。
【0097】
図8(B)では、領域D1,D2が上下に分割されている。この場合、光軸R1が領域D1の中心PS1´に位置するようにレンズ22Lを配置すると共に、光軸R2が領域D2の中心PS2´に位置するようにミラー231,232を配置すればよい。この場合、領域D1,D2の水平方向の幅が長くなり、光切断線CL1,CL2の幅をより長くすることができ、測定範囲を大きくできる。
【0098】
(変形例3)
変形例3は環境光を除去するためのフィルタを撮像部21に設けたことを特徴としている。撮像部21の周辺の環境光(例えば部屋照明)が撮像部21の内部に侵入すると、計測に悪影響を及ぼす。そこで、図7(A)に示すように、迷光を除去するフィルタ241,242,251,252とは別に、段差部WA1の反射光と段差部WA2の反射光との全域を遮断する位置に環境光の透過を阻止する波長フィルタ27を設置する。これにより、環境光が撮像部21の内部に侵入することを防ぐ事ができる。図7(A)の例では、波長フィルタ27は下面26aの全域に設けられている。但し、これは一例であり、受光素子21Pの全面に設けてもよいし、受光素子21Pとレンズ22Lとの間、又は、下面26aとレンズ22Lとの間に設けてもよい。
【0099】
また、図7(A)に示すようにフィルタ241,242,251,252と波長フィルタ27とを共に配置することで、迷光と環境光との両方を除去することができる。なお、変形例3においては、変形例1と異なり、光源11としてはレーザ光源等の単色光源を採用することが好ましい。
【0100】
(変形例4)
変形例1において、受光素子21Pの視野を三分割する場合、又は4分割以上する場合、透過する波長帯域が交互に異なるようにフィルタを配列することについて記述したが、これは、フィルタとして波長フィルタではなく、偏光フィルタを用いた場合も同様に成り立つ。すなわち、下面26aに3個以上の偏光フィルタを配置する場合、偏光方向が90度異なる偏光フィルタを交互に配列すればよい。また、受光素子21P側の偏光フィルタも偏光方向が90度異なるように交互に配置すると共に、下面26a側の対応する同一光路の偏光フィルタと偏光方向が同じになるように配置すればよい。これにより、3以上の段差部WAの反射光を1つ受光素子21Pに結像させる場合であっても、2種類の偏光フィルタを用いて迷光の侵入を防止することができる。
【0101】
(変形例5)
図1では右側計測系RUと左側計測系LUとの2つの計測系によりサンプルSPを測定したが、3つ以上の計測系でサンプルSPを測定してもよい。例えば、サンプルSPが8つの段差部WAを持ち、斜面が左側に露出している第1段差部が4つ存在し、斜面が右側に露出している第2段差部が4つ存在する場合を考える。この場合、第1段差部を左端から2つずつ区分して2つの第1段差群に分ける。また、第2段差部を右端から2つずつ区分して2つの第2段差群に分ける。そして、2つの第1段差群ごとに2つの左側計測系LUを設け、かつ、2つの第2段差群ごとに2つの右側計測系RUを設ければよい。この場合、2つの左側計測系LUを中心線MLに対して左側に配置し、2つの右側計測系RUを中心線MLに対して右側に配置し、これら4つの計測系を中心線MLに対してX方向の位置をずらして左右対称に配置すればよい。
【0102】
このように、本実施の形態による三次元形状計測装置によれば、段差部WA1,WA2に対して1つの左側計測系LUが設けられている。そして、左側計測系LUを構成する撮像部21は、段差部WA1からの反射光の受光素子21Pまでの光軸R1と、段差部WA1からの反射光の受光素子21Pまでの光軸R2との光学距離が等しくなるように、仰角α及び方位角βが設定されている。そのため、段差部WA1,WA2毎に計測系を設けなくても、段差部WA1の反射光による光像とWA2の反射光による光像とを受光素子21Pに同時に結像させることができ、三次元形状を精度良く計測することができる。
【符号の説明】
【0103】
10,11,12 光源
20,21,22 撮像部
21P 受光素子
21A 受光面
22L レンズ
26 カバー
26b 下辺
26a 下面
231,232 ミラー
241,242,251,252 フィルタ
CL,CL1,CL2,CL3,CL4 光切断線
LA 光軸
LU 左側計測系
ML 中心線
R1,R2 光軸
RU 右側計測系
SP サンプル
WA,WA1,WA2,WA3,WA4 段差部

【特許請求の範囲】
【請求項1】
一方向に長い段差を複数持つ測定対象物の各段差部の三次元形状を光切断法を用いて計測する三次元形状計測装置であって、
前記測定対象物に対して前記一方向と交差する方向に光切断線を照射する光源と、
前記光切断線が照射された前記測定対象物を撮像する撮像部とを備え、
前記撮像部は、
前記測定対象物からの反射光を受光する受光素子と、
1つの段差部からの反射光を結像して前記受光素子に導くレンズと、
前記1つの段差部以外の他の段差部からの反射光を反射して前記レンズに結像させて前記受光素子に導くミラーとを含み、
前記撮像部の光軸は、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、前記測定対象物に対する仰角及び方位角が設定されている三次元形状計測装置。
【請求項2】
前記仰角α及び方位角βは、2・sinβ−2・sinβ・sinα=1の関係を持つ請求項1記載の三次元形状計測装置。
【請求項3】
前記段差部は、前記一方向と直交する幅方向の一端側に斜面が露出した複数の第1段差部と、前記幅方向の他端側に斜面が露出した複数の第2段差部とからなり、
前記第1段差部は、前記一端側から複数個ずつ区分されて1又は複数の第1段差群に分けられ、
前記第2段差部は、前記他端側から複数個ずつ区分されて1又は複数の第2段差群に分けられ、
一対の前記撮像部及び前記光源により構成され計測系を備え、
前記計測系は各第1,第2段差群に対応して複数存在する請求項1又は2記載の三次元形状計測装置。
【請求項4】
前記複数の段差部は、前記測定対象物の前記一方向の中心線に対して対称に配置され、
前記計測系は、前記中心線に対して対象に配置されている請求項3記載の三次元形状計測装置。
【請求項5】
前記ミラーは、
前記他の段差部からの反射光の光軸を45度の反射角で反射する第1ミラーと、
前記第1ミラーにより反射された反射光の光軸を45度の反射角で反射する第2ミラーとを含む請求項1〜4のいずれかに記載の三次元形状計測装置。
【請求項6】
前記第1ミラーは、前記撮像部の光軸に対して直交する面において、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、移動可能に配置されている請求項3記載の三次元形状計測装置。
【請求項7】
前記第1ミラーは、前記撮像部の光軸に直交する面における前記一方向に対する角度をγ、前記撮像部の光軸の仰角をα、前記撮像部の光軸の方位角をβとすると、tanγ=sinα・sinβ/cosβの関係を満たす角度γの方向に移動可能に配置されている請求項6記載の三次元形状計測装置。
【請求項8】
前記撮像部は、前記受光素子、前記レンズ、及び前記ミラーを覆い、前記測定対象物側の面に開口部が設けられたカバーと、
前記開口部に配置された開口側フィルタ群と、
前記受光素子の直前に配置された受光側フィルタ群とを含み、
前記開口側フィルタ群は、前記1つの段差部からの反射光を透過する第1開口側フィルタ及び前記他の段差部からの反射光を透過する第2開口側フィルタを備え、
前記受光側フィルタ群は、第1開口側フィルタを透過した反射光を透過する第1受光側フィルタ及び前記第2開口側フィルタを透過した反射光を透過する第2受光側フィルタを備え、
前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと異なるフィルタ特性を持ち、
前記第1受光側フィルタ及び前記第2受光側フィルタは、対応する第1開口側フィルタ及び第2開口側フィルタと、同じフィルタ特性を持つ請求項1〜7のいずれかに記載の三次元形状計測装置。
【請求項9】
前記フィルタ特性は、偏光特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと偏光方向が直交する偏光フィルタである請求項8記載の三次元形状計測装置。
【請求項10】
前記フィルタ特性は、波長特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと波長特性が波長フィルタである請求項8記載の三次元形状計測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−154709(P2012−154709A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−12579(P2011−12579)
【出願日】平成23年1月25日(2011.1.25)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】