説明

光ゲート素子

【課題】任意の偏波方向の光入力信号に対するサンプリングを可能とするとともに、光ファイバや光導波路素子との結合効率が良好な光ゲート素子を提供する。
【解決手段】半導体基板上に、下部クラッド層、活性層13、および、上部クラッド層が順次積層された導波路構造を備え、該導波路構造は、ハイメサ導波路構造Iと、光入射端面10aおよび光出射端面10bのうちの少なくとも一方の端面とハイメサ導波路構造Iとの間に形成され、ハイメサ導波路構造Iと光の導波方向に連続する埋込み導波路構造IIa、IIbと、を含み、埋込み導波路構造IIa、IIbは、活性層13の光の導波方向に直交する幅が、前記少なくとも一方の端面に向かって狭くなる幅減少領域を有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ゲート素子に係り、特に、相互吸収飽和特性を利用して光信号のサンプリングを行うために用いられる光ゲート素子に関する。
【背景技術】
【0002】
従来から、光サンプリング装置においては、光信号のサンプリングを行う光ゲート素子として、電界吸収効果を利用した電界吸収型半導体光変調器(以下、EA光変調器と記す)が用いられている。
【0003】
電界吸収効果とは、電界の印加により半導体材料のバンド構造が変化し、それに伴って光の吸収係数が変化する効果である。具体的には、図9に示すように、EA光変調器に逆バイアス電圧が印加されていない状態では、ある波長域における吸収係数が十分小さく、一方、EA光変調器に逆バイアス電圧が印加されている状態では、吸収スペクトラムが長波長側に移動して該波長域における吸収係数が増加する。
【0004】
従って、上記の波長域にEA光変調器の動作波長が含まれるようにEA光変調器を設計することにより、EA光変調器は、逆バイアス電圧非印加時に光信号を透過させ、逆バイアス電圧印加時に光信号を遮断する光ゲート素子として機能する。このような光ゲート機能を実現できる素子としては、例えば、特許文献1に開示されたようなハイメサ導波路構造を有する半導体デバイスが公知である。
【0005】
図10に示すように、特許文献1に開示された従来のハイメサ型EA光変調器100においては、n+−InP基板61上に、n−InP下部クラッド層62が形成され、n−InP下部クラッド層62上に、バンドギャップエネルギーが異なるi−InGaAsPバリアを複数組み合わせて構成した多重量子井戸(MQW)コア層であるi−MQWコア層63が形成されている。n−InP下部クラッド層62とi−MQWコア層63との幅方向の各側面とn+−InP基板61の上面との間にp−InP埋込み層64およびn−InP埋込み層65が形成されている。
【0006】
i−MQWコア層63およびn−InP埋込み層65の上面には、p−InP上部クラッド層66、p+−InGaAsコンタクト層67が形成されている。このp+−InGaAsコンタクト層67の上面にp電極68が取付けられ、n+−InP基板61の下面にn電極69が取付けられている。さらに、ハイメサ導波路の側面には、電極間の電気的キャパシタンスを減らすためにポリイミド70が形成されている。p電極68はこのポリイミド70の上面とp+−InGaAsコンタクト層67の上面とを共通に覆う。p電極68には、電気信号を入出力するためのボンディングワイヤ71が接続される。
【0007】
p−InP上部クラッド層66、i−MQWコア層63およびn−InP下部クラッド層62は光を導波する光導波路を構成している。ここで、i−MQWコア層63は、その屈折率がp−InP上部クラッド層66とn−InP下部クラッド層62よりも高く、光を導波する中心的な役割を有している。
【0008】
p−InP埋込み層64およびn−InP埋込み層65の光の伝播方向に直交する方向の幅は、光入射端面に向かって連続的に広がっている。なお、i−MQWコア層63の幅は、光入射端面から光出射端面に亘って一定である。p−InP埋込み層64およびn−InP埋込み層65を上記の形状とするのは、光入射端面から入射して光導波路を伝播する光がi−MQWコア層63で吸収されることに起因して発生するジュール熱を効率的にn+−InP基板61に逃がすためである。
【0009】
上記の構成により、ハイメサ型EA光変調器100は、ハイメサ導波路の側面に埋込み層を備える構造とすることにより、耐入力パワーを改善している。
【0010】
なお、EA光変調器は、上述のように、印加される逆バイアス電圧に応じて吸収係数が変化する電界吸収効果を利用して光信号を強度変調するだけでなく、ポンプ光として入力される光パルスの光強度に応じて吸収係数が変化する相互吸収飽和特性を利用して光信号を強度変調することもできる。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2004−163753号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
通常、光通信システムを構成する光ファイバや各種光素子の状態は、外的要因(環境温度や外力等)によって時々刻々変化し、これに起因して光通信システムから送出される光信号の偏波方向も時々刻々変化する。このため、光通信システムからの光信号を測定する装置に適用される光ゲート素子には、任意の偏波方向の光信号に対して常に一定の光ゲート機能を発揮するために偏波無依存性が求められる。
【0013】
既に述べたハイメサ導波路構造で偏波無依存化を実現するためには、ハイメサ導波路の活性層がある程度広い幅を有する必要があることが経験的に分かっている。また、ハイメサ導波路の活性層の幅が狭すぎると、ハイメサ導波路の側面の平坦度の乱れの影響をより強く受けることになり、それに伴う光散乱が増えるため透過損失が増えるという問題も生じる。
【0014】
しかしながら、特許文献1に開示されたような従来のハイメサ型EA光変調器において偏波無依存化および透過損失の低減を実現するために活性層幅を広げると、光入出射端面近傍の光導波路がシングルモード導波路とならず、光ファイバとの結合損失が悪化するという問題があった。
【0015】
本発明は、このような従来の課題を解決するためになされたものであって、任意の偏波方向の光入力信号に対するサンプリングを可能とするとともに、光ファイバや光導波路素子との結合効率が良好な光ゲート素子を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記課題を解決するために、本発明の請求項1の光ゲート素子は、半導体基板上に、下部クラッド層、活性層、および、上部クラッド層が順次積層された導波路構造を備え、相互吸収飽和特性を利用して光信号のサンプリングを行うために用いられる光ゲート素子であって、前記導波路構造は、ハイメサ導波路構造と、光入射端面および光出射端面のうちの少なくとも一方の端面と前記ハイメサ導波路構造との間に形成され、前記ハイメサ導波路構造と光の導波方向に連続する埋込み導波路構造と、を含み、前記埋込み導波路構造における前記活性層は、前記導波方向に直交する幅が、前記少なくとも一方の端面に向かって狭くなる幅減少領域を有することを特徴とする構成を有している。
【0017】
この構成により、ハイメサ導波路構造において活性層幅を広く、埋込み導波路構造において活性層幅を狭くすることにより、任意の偏波方向の光入力信号に対するサンプリングを可能とするとともに、光ファイバや光導波路素子との結合効率が良好な光ゲート素子を実現できる。
【0018】
また、本発明の請求項2の光ゲート素子は、前記埋込み導波路構造における前記活性層が、前記少なくとも一方の端面と前記幅減少領域との間に、前記幅減少領域と前記導波方向に連続し、かつ、前記導波方向に直交する幅が一定である幅一定領域をさらに有することを特徴とする構成を有している。
【0019】
この構成により、光ゲート素子の製造工程における劈開位置のずれの許容範囲が広くなり、素子端面における活性層の幅が劈開により変動することを防止できる。
【0020】
また、本発明の請求項3の光ゲート素子は、前記活性層がバルク材料からなることを特徴とする構成を有している。
この構成により、偏波無依存化を容易に実現できる。
【発明の効果】
【0021】
本発明は、偏波無依存のハイメサ導波路構造と、素子端面に向かって活性層幅が徐々に狭くなる埋込み導波路構造と、を具備することにより、任意の偏波方向の光入力信号に対するサンプリングを可能とするとともに、光ファイバや光導波路素子との結合効率が良好な光ゲート素子を提供するものである。
【図面の簡単な説明】
【0022】
【図1】本発明に係る光ゲート素子の概略構成を示す斜視図
【図2】本発明に係る光ゲート素子の概略構成を示す上面図
【図3】本発明に係る光ゲート素子の概略構成を示す正面図、A−A'線断面図、B−B'線断面図
【図4】本発明に係る光ゲート素子の他の構成を示す上面図
【図5】本発明に係る光ゲート素子の製造方法を示す工程図
【図6】本発明に係る光ゲート素子の製造方法を示す工程図
【図7】本発明に係る光ゲート素子を適用したサンプリング波形測定装置の要部の構成を示す概略図
【図8】本発明に係る光ゲート素子を適用したサンプリング波形測定装置の測定原理を説明する説明図
【図9】従来のEA光変調器における光の吸収特性を示すグラフ
【図10】従来のEA光変調器の概略構成を示す斜視図
【発明を実施するための形態】
【0023】
以下、本発明に係る光ゲート素子の実施形態について図面を用いて説明する。本発明に係る光ゲート素子は、相互吸収飽和特性を利用して光入力信号のサンプリングを行うものである。
【0024】
図1は本実施形態に係る光ゲート素子1の概略構成を示す斜視図であり、図2は上面図、図3は正面図(a)、図2のA−A'線断面図(b)、および図2のB−B'線断面図(c)である。なお、各図面上の各構成の寸法比は、実際の寸法比と必ずしも一致していない。
【0025】
図2に示すように、光ゲート素子1は、劈開によって形成された光入射端面10aと光出射端面10bとの間に形成された導波路構造を備える。この導波路構造は、さらに、ハイメサ導波路構造Iと、光入射端面10aおよび光出射端面10bのうちの少なくとも一方の端面とハイメサ導波路構造Iとの間に形成され、ハイメサ導波路構造Iと光の導波方向に連続する埋込み導波路構造IIa、IIbと、を含む。ここで、IIaは光入射端面10a側の埋込み導波路構造を、IIbは光出射端面10b側の埋込み導波路構造を指している。なお、以降では、単に導波路構造と記述する場合は、ハイメサ導波路構造Iと埋込み導波路構造IIa、IIbの両方を指すものとする。
【0026】
図1、図3に示すように、導波路構造I、IIa、IIbは、n−InPからなる半導体基板11と、半導体基板11上に形成されたn−InPからなる下部クラッド層12と、下部クラッド層12の上方に形成されたバルクのInGaAsPからなる活性層13と、活性層13の上方に形成されたp−InPからなる上部クラッド層14と、を有する。なお、活性層13は、SCH層(光閉じ込め層)15a、15bに上下を挟まれていてもよいが、これらのSCH層15a、15bは必須の構成要件ではない。
【0027】
下部クラッド層12、活性層13、SCH層15a、15b、および上部クラッド層14は、光入射端面10aから入射した光入力信号を導波させ、導波の過程でこの光入力信号を活性層13で吸収する光導波路を構成する。
【0028】
埋込み導波路構造IIa、IIbにおいては、光導波路の光の導波方向に直交する幅方向の側面に、p−InPからなる下部埋込み層16およびn−InPからなる上部埋込み層17が形成されている。
【0029】
逆バイアス電圧非印加時には、n−InPからなる上部埋込み層17およびp−InPからなる下部埋込み層16は、逆バイアスの方向となり、電流ブロック層として機能する。一方、逆バイアス電圧印加時には、n−InPからなる下部クラッド層12およびp−InPからなる下部埋込み層16、ならびに、n−InPからなる上部埋込み層17およびp−InPからなる上部クラッド層14が、それぞれ逆バイアスの方向となり、電流ブロック層として機能する。
【0030】
導波路構造I、IIa、IIbに含まれる上部クラッド層14上には、p−InGaAsからなるコンタクト層18が形成されている。一方、図2、図3に符号19a、19b、19cを付して示す溝部によって導波路構造I、IIa、IIbと隔てられた上部クラッド層14の上面、ならびに、溝部19a〜19cの側面および底面には、例えばSiNx膜またはSiO2膜からなる絶縁層20が形成されている。
【0031】
さらに、上部クラッド層14上には、コンタクト層18または絶縁層20を介して、p型の上部電極21が取付られている。一方、半導体基板11の下面にはn型の下部電極22が取付けられている。
【0032】
上部電極21は、導波路構造I、IIa、IIbの上部にコンタクト層18を介して形成される主電極部21aと、溝部19b、19cによって導波路構造I、IIa、IIbと隔てられた領域の下部埋込み層16および上部埋込み層17の上部に絶縁層20を介して形成される電極パッド部21bと、からなる。なお、図2の上面図において、間隔の広い斜線を施した部分は上部電極21を示しており、間隔の狭い斜線を施した部分は活性層13を示している。
【0033】
コンタクト層18は、図3(c)などに示したように、主電極部21aの直下に形成されるが、電極パッド部21bの直下、かつ、下部埋込み層16および上部埋込み層17の直上には形成されないことが好ましい。これは、上部電極21および下部電極22間の下部埋込み層16および上部埋込み層17を介したリーク電流を低減するためである。
【0034】
埋込み導波路構造IIa、IIbにおける活性層13は、光の導波方向に直交する幅が、光入射端面10aおよび光出射端面10bのうちの少なくとも一方の端面に向かって狭くなる幅減少領域(図2中のテーパ部)を有する。
【0035】
さらに、埋込み導波路構造IIa、IIbにおける活性層13は、光入射端面10aおよび光出射端面10bのうちの少なくとも一方の端面との間に、幅減少領域と光の導波方向に連続し、かつ、光の導波方向に直交する幅が一定である幅一定領域(図2中の平行部)をさらに有していてもよい。
【0036】
なお、図1〜図3には、光入射端面10aおよび光出射端面10bの両端面とハイメサ導波路構造Iとの間に埋込み導波路構造IIa、IIbが形成される構成を示した。光入射端面10aおよび光出射端面10bにおける活性層13の幅Wa、Wbは、光入射端面10aおよび光出射端面10bのそれぞれを介して光結合する光ファイバや光導波路素子との結合効率が適切な値となるように設定すればよい。
【0037】
どちらか一方の端面を介した光結合のみで高い結合効率を得られればよい場合には、図4に示すように、埋込み導波路構造IIa、IIbが該一方の端面とハイメサ導波路構造Iとの間のみに形成されてもよい。なお、図4(a)は一方の端面が光入射端面10aである場合、図4(b)は一方の端面が光出射端面10bである場合の光ゲート素子1の上面をそれぞれ示している。
【0038】
なお、ハイメサ導波路構造Iにおける活性層13の幅は、発明の概要の項で述べた光散乱の影響を避けるため3μm以上とする。また、光入射端面10aおよび光出射端面10bにおける活性層13の幅Wa、Wbは、ハイメサ導波路構造Iにおける活性層13の幅よりも1μm以上細くすることが望ましい。
【0039】
また、光入射端面10aおよび光出射端面10bにおける活性層13の幅Wa、Wbが適切な値でありさえすれば、活性層13の幅減少領域の幅は、図2や図4に示したテーパ状に限らず、例えば、階段状などの任意の形状に従って減少してもよい。
【0040】
なお、下部埋込み層16および上部埋込み層17は、上述のp型およびn型のInPの代わりに、例えばFeドープの半絶縁性InPやノンドープInPを用いて形成してもよい。また、半導体基板11としてn−InP材料を採用したが、p−InP基板や半絶縁性InP基板などを採用してもよい。また、活性層13を構成するバルク材料としてInGaAsPを採用したが、InGaAsやInGaAlAsを採用してもよい。
【0041】
以下、本実施形態に係る光ゲート素子1の製造方法の一例を図5、図6を用いて説明する。まず、(100)結晶面を上面とし、長尺方向が<011>方向、短尺方向が<0−11>方向である長方形に形成され、n型の不純物がドープされたn−InPからなる半導体基板11を準備する。
【0042】
図5(a)に示すように、半導体基板11の上面に、有機金属気相成長(MOVPE)法を用いて、層厚が0.5μmでn型不純物の濃度が1.0×1018cm−3であるn−InPからなる下部クラッド層12を形成する。この下部クラッド層12の上面に、層厚が100nm程度のSCH層15aを形成した後、SCH層15aの上面に、層厚が0.1〜0.3μm程度でノンドープのInGaAsPからなるバルクの活性層13を形成し、これに引き続き層厚が100nm程度のSCH層15bを形成する。
【0043】
次に、プラズマCVD法を用いて、層厚が80nmのSiNx膜(またはSiO2膜)をSCH層15bの上面に積層した後、レジスト(不図示)を塗布し、フォトリソグラフィによって光導波路を形成するための形状を有したマスクパターンを露光して現像する。そして、フッ酸によるエッチングでマスクパターンをSiNx膜(またはSiO2膜)に転写して、絶縁性のエッチングマスク27を形成する。
【0044】
なお、図5(a)にはマスクパターン27として1つの素子に相当する部分のみを示しているが、同様のマスクパターンが素子の長尺方向である<011>方向に繰り返し形成されていてもよい。
【0045】
次に、図5(b)に示すように、上記により形成されたエッチングマスク27を用いて、SCH層15b、活性層13、SCH層15a、および下部クラッド層12の途中までをウェットエッチングまたはドライエッチングする。ウェットエッチングの場合は、エッチング液として塩酸系あるいは塩酸/リン酸系のエッチング液を使用することにより、<0−11>方向にほぼ垂直のエッチング面を形成することができる。
【0046】
次に、図5(c)に示すように、エッチングで除去された部分にMOVPE法を用い、エッチングマスク27を成長阻害マスクとして利用して、p−InPからなる下部埋込み層16およびn−InPからなる上部埋込み層17を順次積層する。
【0047】
具体的には、層厚が0.7μmでZnを不純物とし、不純物の濃度が1×1018cm−3である下部埋込み層16と、この下部埋込み層16の上側に、層厚が1.15μmでSiを不純物とし、不純物の濃度が2×1018cm−3である上部埋込み層17を形成する。
【0048】
次に、エッチングマスク27をフッ酸で除去して、図6(d)に示すように、層厚が数μm程度でp型不純物の濃度が5〜7×1017cm−3であるp−InPからなる上部クラッド層14を積層して、上部埋込み層17の上面を覆う。
【0049】
さらに、図6(d)に示すように、プラズマCVD法を用いて、層厚が80nmのSiNx膜(またはSiO2膜)を上部クラッド層14の上面に積層した後、レジスト(不図示)を塗布し、フォトリソグラフィによって導波路構造I、IIa、IIbを形成するための形状を有したマスクパターンを露光して現像する。そして、フッ酸によるエッチングでマスクパターンをSiNx膜(またはSiO2膜)に転写して、絶縁性のエッチングマスク28を形成する。
【0050】
次に、上記により形成されたエッチングマスク28を用いて、上部クラッド層14、上部埋込み層17、下部埋込み層16、および下部クラッド層12をウェットエッチングまたはドライエッチングする。なお、このエッチングは、下部クラッド層12の底面まで行ってもよいし、下部クラッド層12の途中まで行ってもよい。既に述べたように、ウェットエッチングの場合は、<0−11>方向に垂直な面を形成するために、エッチング液として塩酸系あるいは塩酸/リン酸系のエッチング液を使用する。そして、図6(e)に示すように、エッチングマスク28をフッ酸で除去して、上部クラッド層14の上面を露出させる。
【0051】
次に、図6(f)に示すように、導波路構造I、IIa、IIbにおける上部クラッド層14の上面に、層厚が1μm未満のp−InGaAsからなるコンタクト層18をMOVPE法によって積層する。
【0052】
さらに、コンタクト層18が形成されていない上部クラッド層14の上面と、エッチングマスク28を用いたエッチングによって形成された上部クラッド層14、上部埋込み層17、下部埋込み層16、および下部クラッド層12の各側面と、下部クラッド層12(または半導体基板11)の上面に、SiNx膜(またはSiO2膜)からなる絶縁層20を形成する。
【0053】
最後に、図1に示したように、コンタクト層18の上面および絶縁層20の上面の一部にp型の上部電極21を蒸着形成し、さらに、半導体基板11の下面にn型の下部電極22を蒸着形成する。
【0054】
なお、以上の説明では1つの素子に相当する部分のみを示したが、実際には図5、図6に示した工程において、素子の長尺方向や短尺方向に複数の素子が連なった半導体ウエハを形成し、最後に劈開を行って個々の光ゲート素子に分離する。
【0055】
なお、埋込み導波路構造IIa、IIbにおける活性層13が既に述べた幅一定領域(活性層13の幅が一定)を有する場合には、劈開位置が多少前後しても光入射端面10aおよび光出射端面10bにおける活性層13の幅Wa、Wbが変化しないため好ましい。
【0056】
以上のように製造される本実施形態の光ゲート素子1の動作を、光ゲート素子1をサンプリング波形測定装置に適用した場合を例に取って説明する。ここでは、光ゲート素子1は、ポンプ光として入力される光パルスPsの光強度に応じて吸収係数が変化する相互吸収飽和特性を利用して、光入力信号の強度変調を行うとする。
【0057】
図7は、本実施形態の光ゲート素子1を適用したサンプリング波形測定装置の要部の構成を示す概略図である。光ゲート素子1の活性層13を含む光導波路に、光入射端面10a側から光通信システム(不図示)からの光入力信号(例えば、40Gbps)が入力される。光ゲート素子1には、光入力信号の波長に対して高い吸収係数を示す逆バイアス電圧Vbが、直流電源40から上部電極21および下部電極22を介して加えられている。
【0058】
この状態で、光パルス発生器(不図示)からの光パルスPsが光サーキュレータ50を介して光出射端面10b側から光導波路に入力される。光パルスPsがオンとなる期間では、活性層13内でキャリアが励起される。この励起キャリアが活性層13内に蓄積されることにより、活性層13における光吸収が飽和し、吸収係数(光損失)が小さい状態(即ち、ゲートが開いた状態)となる。
【0059】
一方、光パルスPsがオフとなる期間では、光パルスPsがオンとなる期間に励起されたキャリアが速やかに活性層13に吸収され、吸収係数(光損失)が大きい状態(即ち、ゲートが閉じている状態)となる。
【0060】
これにより、光パルスPsがオンとなるタイミングで光入力信号がサンプリングされて光出射端面10b側から出力される。サンプリングされた光入力信号は光サーキュレータ50を介して受光器(不図示)に入力される。
【0061】
図8は、サンプリング波形測定装置のサンプリング波形の測定原理を説明する説明図である。光パルスPs(図8(b))の繰返し周期は光入力信号(図8(a))の繰返し周期の整数倍よりも僅かに長く設定されており、光入力信号のパルス波形上の相対的なサンプリング位置は、その一つ前のサンプリング位置よりも僅かに後方となる。
【0062】
この相対的なサンプリング位置の差をΔtとすると、光入力信号が繰返し波形の場合、光入力信号を0、Δt、2Δt、3Δt・・・の位置でサンプリングしたものと等価な信号が光ゲート素子1から出力される。
【0063】
光ゲート素子1の出力信号(図8(c))からは、光入力信号のパルス波形を時間軸方向に拡大した包絡線が得られる。従って、低速の受光器(不図示)やAD変換回路(不図示)を用いて高速の光入力信号の波形を観測することが可能になる。
【0064】
以上説明したように、本発明に係る光ゲート素子は、任意の偏波方向の光入力信号に対するサンプリングを可能とするとともに、光ファイバや光導波路素子との結合効率を良好にすることができる。
【産業上の利用可能性】
【0065】
本発明に係る光ゲート素子は、サンプリング波形測定装置や、サンプリング波形測定装置に光入力信号の品質を表す値を算出する信号品質算出回路を追加した信号品質モニタに適用可能な光ゲート素子として有用である。
【符号の説明】
【0066】
1 光ゲート素子
10a 光入射端面
10b 光出射端面
11 半導体基板
12 下部クラッド層
13 活性層
14 上部クラッド層
15a、15b SCH層
16 下部埋込み層
17 上部埋込み層
18 コンタクト層
19a〜19c 溝部
20 絶縁層
21 上部電極
21a 主電極部
21b 電極パッド部
22 下部電極
27、28 エッチングマスク
40 直流電源
50 光サーキュレータ

【特許請求の範囲】
【請求項1】
半導体基板(11)上に、下部クラッド層(12)、活性層(13)、および、上部クラッド層(14)が順次積層された導波路構造を備え、相互吸収飽和特性を利用して光信号のサンプリングを行うために用いられる光ゲート素子であって、
前記導波路構造は、ハイメサ導波路構造と、
光入射端面(10a)および光出射端面(10b)のうちの少なくとも一方の端面と前記ハイメサ導波路構造との間に形成され、前記ハイメサ導波路構造と光の導波方向に連続する埋込み導波路構造と、を含み、
前記埋込み導波路構造における前記活性層は、前記導波方向に直交する幅が、前記少なくとも一方の端面に向かって狭くなる幅減少領域を有することを特徴とする光ゲート素子。
【請求項2】
前記埋込み導波路構造における前記活性層が、前記少なくとも一方の端面と前記幅減少領域との間に、前記幅減少領域と前記導波方向に連続し、かつ、前記導波方向に直交する幅が一定である幅一定領域をさらに有することを特徴とする請求項1に記載の光ゲート素子。
【請求項3】
前記活性層がバルク材料からなることを特徴とする請求項1または請求項2に記載の光ゲート素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−83473(P2012−83473A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2010−228583(P2010−228583)
【出願日】平成22年10月8日(2010.10.8)
【出願人】(000000572)アンリツ株式会社 (838)
【Fターム(参考)】