説明

免震構造、及び構造物

【課題】大地震等で大きな外乱が加わっても、免震効果を発揮する。
【解決手段】相対移動方向(揺れ方向)がX方向に沿っているとした場合、X方向に沿って配置されたPC鋼材104Xは、軸方向に伸長し、軸方向の剛性による復元力を発揮する。一方、相対移動方向(揺れ方向)がY方向に沿っているとした場合、X方向に沿って配置されたPC鋼材104Xは、軸方向と直交する方向に変形し、弦の剛性による復元力を発揮する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、免震構造、及び構造物に関する。
【背景技術】
【0002】
構造物と地盤との間に免震支承を配置し、地震時に構造物に伝達される水平方向の揺れを低減させる免震構造が実現されている。
【0003】
特許文献1と特許文献2には、上部構造体が免震支承を介して下部構造体に支持された免震構造において、上部構造体が所定量変位したときに、一端が上部構造体に固定され他端が下部構造体に固定された紐状体やワイヤーで、上部構造体の下部構造体に対する相対変位量を規制する構成(過大変形規制技術)が記載されている。
【0004】
特許文献3には、地盤上に滑り支承で支えられた構造物において、水平方向に直交するようにケーブルを張り、これらのケーブル両端が地盤側に固定されると共に、ケーブル中間部が軸方向にはスライド可能且つ軸方向と直交する方向には反力が伝達されるように構造物に連結することによって、長周期での大変形を許容する免震構造システムが提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002−286090号公報
【特許文献2】特開2003−227245号公報
【特許文献3】特開2006−16888号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
免震構造において復元力を得る手段としては、積造ゴム体を用いることが多い。しかし、積層ゴム体は、一般的に弾性変形する領域が狭いとされている。また、大地震時に上部構造部と下部構造部とが大きく相対移動し、積層ゴムが大変形すると、積層ゴム体が破断する虞がある。
【0007】
また、このような大地震時の積層ゴム体の破断を防止するために過大変形を規制した場合、大地震時(過大変形規制時)の免震効果が十分に発揮されない懼れがある。
【0008】
本発明は、大地震等で大きな外乱が加わっても、免震効果を発揮することができる免震構造及び構造物を提供することが目的である。
【課題を解決するための手段】
【0009】
請求項1の発明は、上部構造部と下部構造部との間に設けられ、前記上部構造部を鉛直方向に支持しつつ、前記下部構造部に対して水平方向に抵抗力を伴って相対移動可能に支持する免震手段と、前記上部構造部に一端が固定され、前記上部構造部以外の第一固定部に他端が固定されると共に、前記上部構造部と前記第一固定部との間の部分が所定方向に沿って配置された弾性を有する一本又は複数本の第一線材と、前記上部構造部に一端が固定され、平面視において前記上部構造部の図心位置を挟んで前記第一固定部の反対側に配置された前記上部構造部以外の第二固定部に他端が固定されると共に、前記上部構造部と前記第二固定部との間の部分が所定方向に沿って配置された弾性を有する一本又は複数本の第二線材と、を備える。
【0010】
したがって、地震等で外乱が加わっても、下部構造部と上部構造部とが相対移動し、免震効果を発揮する。
相対移動方向(揺れ方向)が、所定方向に沿っている場合、第一線材及び第二線材は軸方向の剛性による復元力が発揮される。
一方、相対移動方向(揺れ方向)が所定方向と交差する方向の場合、第一線材及び第二線材は弦の剛性による復元力を発揮する。
【0011】
なお、免震手段の抵抗力がエネルギーを吸収し振動を減衰させる減衰力となる。また、第一線材及び第二線材の弾性変形の限界を超えた相対移動量となった場合は、第一線材及び第二線材が降伏することでエネルギー吸収効果を発揮し、振動を減衰させる。なお、ダンパーなどの減衰手段を別途設けてもよい。
【0012】
第一線材及び第二線材の軸方向の剛性Kは、線材のヤング率をE、線材の断面積をA、線材の長さLとすると、K=EA/Lで求められる。なお、線材の長さLとは、線材が変形可能な軸方向の長さを指す。
【0013】
一般に、第一線材及び第二線材は、軸方向の剛性よりも弦の剛性の方が小さい。よって、同じ外力が加わった場合、所定方向の相対移動方向よりも、所定方向と交差する方向の相対移動方向の方が、相対移動量が大きい。
【0014】
よって、例えば、上部構造部がある方向に対して移動に制限がある場合、移動制限がある方向を所定方向とすることで、所定の方向と交差する方向の免震効果を維持しつつ、上部構造部の所定方向の移動が抑制され、移動制限が満足される。
【0015】
なお、軸方向の剛性は、長さLが長くなれば小さくなる、又は断面積Aが小さくなれば小さくなる。よって、第一線材及び第二線材の軸方向の剛性及び弦の剛性は、設計条件に応じてその値及び大小関係を決定することができる。
【0016】
ここで、免震手段の抵抗力を小さく設定すると、第一線材及び第二線材の剛性が小さくても復元される。そして、第一線材及び第二線材の剛性、特に軸方向の剛性を小さく設定すると、上部構造部と下部構造部とが大きく相対移動するので、免震効果が大きくなる。
【0017】
第一線材及び第二線材は、積層ゴムなどの従来の復元材よりも弾性変形領域を大きくすることが可能である。よって、大地震等で大きな外乱が加わり、上部構造部と下部構造部とが大きく相対移動しても、復元力が発揮される。
【0018】
更に、上述したように第一線材及び第二線材の弾性変形の限界を超えた相対移動量となった場合は、第一線材及び第二線材が降伏することでエネルギー吸収効果を発揮する。したがって、大地震であっても免震効果が発揮される。
【0019】
一方、免震手段の抵抗力を大きく設定すると、上部構造部と下部構造部との相対移動を復元させるためには大きな復元力が必要とされる。しかし、第一線材及び第二線材の剛性を大きく設定することで(例えば、第一線材及び第二線材の断面積Aを大きくし長さLを短くする)、大きな復元力を得ることができる。
【0020】
なお、免震手段の抵抗力を大きく設定すると、大地震でないと(大きな加速度が加わらないと)上部構造部と下部構造部とは相対移動しない(免震効果を発揮しない)。
【0021】
しかし、このことを利用し、大地震に対するフェールセーフ機能として本免震構造を利用することができる。つまり、閾値よりも小さな振動(加速度)の場合は、上部構造部と下部構造部とを相対移動させずに、免震以外の方法、すなわち、耐震構造や制振構造として外力に抵抗する。閾値以上の振動(加速度)の場合は、上部構造部と下部構造部とを相対移動させ、上部構造部に伝達される外力の上限値を規定する。言い替えると、上部構造部が剛体であると仮定すると、閾値以上の振動が上部構造部に伝達されない構造である。
【0022】
また、地震後に上部構造部を原点復帰させることを考慮しない場合は、第一線材及び第二線材が早期に降伏する構成(例えば、第一線材及び第二線材の長さLを短くし歪が集中する構成)とすることで、早期にエネルギー吸収効果を発揮させてもよい。
【0023】
このように、本構造とすることで、大地震等で大きな外乱が加わっても、免震効果が発揮される。
【0024】
請求項2の発明は、前記第一線材及び前記第二線材は、前記上部構造部に形成された貫通孔に挿通され、且つ一端が前記上部構造部の側壁部に固定されている。
【0025】
したがって、第一線材及び第二線材が上部構造部に形成された貫通孔に挿通されない場合に比べて、第一線材及び第二線材の軸方向の長さLを長く設定することができる。これにより、第一線材及び第二線材の断面積Aを小さくすることなく、第一線材及び第二線材の軸方向の剛性を小さく設定することができる。つまり、弾性変形可能な範囲を確保しつつ、剛性を小さく設定することができる。よって、大きな免震効果が得られる。
【0026】
請求項3の発明は、前記貫通孔は、前記所定方向に沿って形成され、且つ前記所定方向と直交する方向に並列に複数形成され、前記第一線材及び前記第二線材は、前記側壁部で折り返され複数の前記貫通孔に挿通されている。
【0027】
したがって、第一線材と第二線材の軸方向の長さLを、より長く設定することができる。
【0028】
請求項4の発明は、平面視において、前記第一線材及び前記第二線材の一端から他端が、前記所定方向に沿って配置され、且つ、前記所定方向と直交する方向に交互に並列に配置されている。
【0029】
したがって、第一線材と第二線材とが複数、所定方向に配置されているので、上部構造部に作用する復元力が確保される。
【0030】
また、第一線材と第二線材が交互に並列に配置されているので、復元力が均等に作用する。
【0031】
請求項5の発明は、前記第一線材及び前記第二線材は、緊張材で構成され、前記緊張材には、緊張力が付与されている。
【0032】
したがって、緊張材(第一線材及び第二線材)が軸方向(所定方向)に沿って縮む方向に上部構造部と下部構造部とが相対移動する際、緊張力が維持される範囲において、緊張材が軸方向に縮み変形するので、緊張材が撓まない。また、緊張材が棒状とされている場合、緊張材の座屈が防止される。
【0033】
また、緊張材の一端が上部構造部の一端側の側壁部に固定され、緊張材によって上部構造部を圧縮する方向に緊張力が付与される構成の場合、上部構造部は引張応力によるひび割れが防止又は抑制される
【0034】
なお、全ての線材を緊張材として緊張力を付与した構成に限定されない。すなわち、複数の線材のうち、一部の線材のみを緊張材として緊張力を付与した構成であってもよい。
【0035】
請求項6の発明は、前記緊張材は、強度が異なる素線が組合わされて構成されている。
【0036】
したがって、強度が小さな素線は早期に降伏してエネルギー吸収作用(減衰作用)を発揮する。一方、強度が大きな素線は降伏せずに弾性変形することで、復元力を発揮する。つまり、一本の線材が異なる作用を発揮する。
【0037】
ここで、緊張材が十分に上記エネルギー吸収作用を発揮するためには、強度が小さな素線は引張側のみでなく圧縮側でも降伏し、座屈せずに繰り返し軸力を負担することが望ましい。そして、強度が小さな素線の中心部に配置し、強度が大きな素線がその周りを囲むように配置することで、線材の座屈が防止又は抑制されるので、エネルギー吸収性能が向上する。
【0038】
なお、全ての線材を、強度が異なる素線が組合わされた緊張材(混合ストランド)とした構成に限定されない。すなわち、複数の線材のうち、一部の線材のみを強度が異なる素線が組合わされた緊張材とした構成であってもよい。
【0039】
大小二つの強度の素線が組合わされた構成に限定されない。三以上の強度の異なる素線が組合わされた構成であってもよい。
【0040】
請求項7の発明は、前記第一固定部及び前記第二固定部は、壁状とされ、前記第一線材及び前記第二線材は、平面視において、前記第一固定部の壁面及び前記第二固定部の壁面に対して斜めに配置されている。
【0041】
したがって、第一線材及び第二線材から入力される引張荷重を、第一固定部及び第二固定部の面内方向の軸力で受けることができる。
【0042】
よって、第一線材及び第二線材が壁面に直交に配置されている構成、すなわち、第一線材及び第二線材から入力される引張荷重を面外方向で受ける構成と比較し、第一線材及び第二線材から入力される引張荷重を受けるために必要な第一固定部及び第二固定部の強度が容易に確保される。
【0043】
請求項8の発明は、前記免震手段は、前記下部構造部の上部に設けられた下側滑り部材と、前記上部構造部の下部に設けられ、前記下滑り部材に支持される上側滑り部材と、を有する。
【0044】
したがって、地震時に上側滑り部材と下側滑り部材との接触面に作用する摩擦係数を超える水平力が作用すると、上側滑り部材(上部構造部)が下側滑り部材上(下部構造部上)を滑り免震効果を発揮する。また、上側滑り部材と下側滑り部材との接触面に作用する摩擦力が水平方向の抵抗力とされる。
【0045】
なお、上側滑り部材と下側滑り部材との接触面に作用する摩擦係数を小さく設定すると、摩擦力(抵抗力)が小さくなり、免震効果が大きくなる。
【0046】
上側滑り部材と下側滑り部材との接触面に作用する摩擦係数を大きく設定すると、摩擦力(抵抗力)が大きくなり、フェールセーフ機能が得られる。また、摩擦係数を大きく設定する場合は、摩擦係数の管理などが簡単でよいので、一般に摩擦係数を小さく設定する場合よりも低コストとなる可能性がある。
【0047】
請求項9の発明は、正面視において、前記第一線材及び前記第二線材は、一端よりも他端の方が鉛直方向下側で固定されている。
【0048】
したがって、一端よりも他端が鉛直方向の同じ位置か上側で固定されている構成と比較し、地震時における上部構造部の鉛直方向上側への浮き上がりが防止又は抑制される。つまり、第一線材と第二線材は、復元力を発揮する機能と、上部構造部の浮き上がり防止機能との、二つの機能を有する。
【0049】
また、上部滑部材と下部滑部材との接触面の摩擦力が水平方向の抵抗力とされる構成の場合、上部構造部の地震時の浮き上がりが防止されるので、摩擦力が確保される。
【0050】
更に、第一線材と第二線材とが上部構造部を下部構造部に押圧するように設定することで、摩擦力を大きくすることが可能である。また、押圧力を調整することで、摩擦力を調整することができる。
【0051】
請求項10の発明は、請求項1〜請求項10のいずれ1項に記載の免震構造が適用された構造物である。
【0052】
したがって、大地震等で大きな外乱が加わっても、免震効果が発揮される構造物が構築される。
【0053】
請求項11の発明は、前記上部構造部は、前記第一線材の一端と前記第二線材の一端とが固定される基礎部と、前記下部構造部から前記基礎部に伝達された前記所定方向の振動に対して免震効果を発揮する免震機構を介して前記基礎部に支持された免震構造部と、を備える。
【0054】
ここで、第一線材及び第二線材は、軸方向の剛性よりも弦の剛性の方が小さい。よって、所定方向は、所定方向と交差する方向よりも免震効果が小さい。このため、上部構造部には、所定方向の振動が所定方向と交差する振動よりも大きく伝達される。
【0055】
しかし、上部構造部は免震構造部と基礎部とで構成され、免震構造部は所定方向の振動に対して免震効果を発揮する免震機構を介して基礎部に支持されている。よって、下部構造部から基礎部に伝達された所定方向の振動の免震構造部への伝達が抑制される。
【0056】
したがって、上部構造部の免震構造部に対して、所定方向と所定方向と交差する方向との両方の耐震性能が同等又は略同等に確保される。
【0057】
請求項12の発明は、前記上部構造部は、前記下部構造部から伝達される前記所定方向の振動に対して制振効果を発揮する制振装置を備える。
【0058】
ここで、第一線材及び第二線材は、軸方向の剛性よりも弦の剛性の方が小さい。よって、所定方向は、所定方向と交差する方向よりも免震効果が小さい。よって、上部構造部には、所定方向の振動が所定方向と交差する振動よりも大きく伝達される。
【0059】
しかし、下部構造部から上部構造部に伝達された所定方向の振動に対して、上部構造部に設けられた制振装置が制振効果を発揮する。
【0060】
したがって、上部構造部に対して、所定方向と所定方向と交差する方向との両方の耐震性能を同等又は略同等に確保することができる。
【0061】
請求項13に記載の発明は、前記上部構造部は、前記所定方向の水平耐力が、他の方向の水平耐力よりも大きく設定されている。
【0062】
ここで、第一線材及び第二線材は、軸方向の剛性よりも弦の剛性の方が小さい。よって、所定方向は、所定方向と交差する方向よりも免震効果が小さい。よって、上部構造部には、所定方向の振動が所定方向と交差する振動よりも大きく伝達される。
【0063】
しかし、上部構造部は、所定方向の水平耐力が、他の方向の水平耐力よりも大きく設定されているので、所定方向と所定方向と交差する方向との両方の耐震性能を同等又は略同等に確保される。
【0064】
また、所定方向と交差する方向は免震効果が大きいので、上部構造部における所定方向と交差する方向に求められる水平耐力を低く設定できる。よって、所定方向と交差する方向に沿った壁面の開口部を大きくすることができ、開放性が確保される。
【発明の効果】
【0065】
請求項1に記載の発明によれば、相対移動方向(揺れ方向)が、所定方向に沿っている場合、第一線材及び第二線材は軸方向の剛性による復元力が発揮され、所定方向と交差する方向の場合、第一線材及び第二線材は弦の剛性による復元力を発揮することで、地震等で大きな外乱が加わっても、免震効果を発揮することができる。
【0066】
請求項2に記載の発明によれば、第一線材及び第二線材が上部構造部に形成された貫通孔に挿通されない構成に比べて、第一線材及び第二線材の軸方向の長さLを長く設定することができるので、弾性変形可能な範囲を確保しつつ、剛性を小さく設定することができる。
【0067】
請求項3に記載の発明によれば、第一線材及び第二線材の軸方向の長さLを、より長く設定することができる。
【0068】
請求項4に記載の発明によれば、第一線材と第二線材とが複数、所定方向に配置されているので、上部構造部に作用する復元力を確保することができる。
【0069】
請求項5に記載の発明によれば、第一線材及び第二線材に緊張力を付与しない場合と比較し、上部構造部と下部構造部との相対移動量を小さくすることができる。
【0070】
なお、ここでの緊張力とは、緊張材(第一線材及び第二線材)の緩みを取る程度の緊張力でもよいし、より積極的に、後述する緊張材の弦の復元力を向上させる緊張力でもよい。
【0071】
請求項6に記載の発明によれば、強度が小さな素線が早期に降伏してエネルギー吸収作用(減衰作用)を発揮すると共に、強度が大きな素線は降伏せずに弾性変形することで、復元力を発揮する。
【0072】
請求項7に記載の発明によれば、第一線材及び第二線材が壁面に直交又は略直交に配置されている構成、すなわち、第一線材及び第二線材から入力される引張荷重を面外方向で受ける構成と比較し、第一線材及び第二線材から入力される引張荷重を受けるために必要な第一固定部及び第二固定部の強度を容易に確保することができる。
【0073】
請求項8に記載の発明によれば、地震時に上側滑り部材と下側滑り部材との接触面に作用する摩擦係数を超える水平力が作用すると、上側滑り部材(上部構造部)が下側滑り部材上(下部構造部上)を滑り免震効果を発揮する。
【0074】
請求項9に記載の発明によれば、一端よりも他端が鉛直方向の同じ位置か上側で固定されている構成と比較し、地震時における上部構造部の鉛直方向上側への浮き上がりを防止又は抑制することができる。
【0075】
請求項10に記載の発明によれば、大地震等で大きな外乱が加わっても、免震効果を発揮する構造物を構築することができる。
【0076】
請求項11に記載の発明によれば、上部構造部の免震構造部に対して、所定方向と所定方向と交差する方向との両方の耐震性能を同等又は略同等に確保することができる。
【0077】
請求項12に記載の発明によれば、上部構造部に対して、所定方向と所定方向と交差する方向との両方の耐震性能を同等又は略同等に確保することができる。
【0078】
請求項13に記載の発明によれば、上部構造部に対して、所定方向と所定方向と交差する方向との両方の耐震性能を同等又は略同等に確保することができる。
【図面の簡単な説明】
【0079】
【図1】本発明の第一実施形態に係る免震構造が適用された構造物を模式的に示す一部断面を含む正面図である。
【図2】本発明の第一実施形態に係る免震構造の要部を模式的に示す断面斜視図である。
【図3】本発明の第一実施形態に係る免震構造の要部を模式的に示す一部断面を含む平面図である。
【図4】(A)は本発明の第一実施形態に係る免震構造の要部における一方のPC鋼材が挿通された部位のX方向に沿った縦断面図であり、(B)は逆方向に配置された他方のPC鋼材が挿通された部位のX方向に沿った縦断面図である。
【図5】滑り免震装置を模式的に示す一部断面を含む正面図である。
【図6】PC鋼材を示す断面斜視図である。
【図7−1】PC鋼材に緊張力を付与する工程(A)〜(B)を示す工程図である。
【図7−2】PC鋼材に緊張力を付与する工程(C)〜(D)を示す工程図である。
【図8−1】外乱によって上部構造部が(A)の状態から(B)のように免震ピットに対してX方向に移動した場合の、PC鋼材の伸長を説明するための説明図である。
【図8−2】外乱によって上部構造部が図8−1の(A)の状態から(C)のように免震ピットに対してY方向に移動した場合の、PC鋼材の伸長を説明するための説明図である。
【図9】(A)は本発明の第一実施形態に係る免震構造の第一変形例が適用された構造物を模式的に示す一部断面を含む正面図であり、(B)は基礎と固定部とを模式的に示す平面図である。
【図10】(A)は本発明の第一実施形態に係る免震構造の第二変形例が適用された構造物を模式的に示す一部断面を含む正面図であり、(B)は(A)のB部の拡大図である。
【図11】本発明の第一実施形態に係る免震構造の第三変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図12】本発明の第一実施形態に係る免震構造の第四変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図13】本発明の第一実施形態に係る免震構造の第五変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図14】本発明の第一実施形態に係る免震構造の第六変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図15】本発明の第一実施形態に係る免震構造の第七変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図16】本発明の第一実施形態に係る免震構造の第八変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図17】本発明の第一実施形態に係る免震構造の第九変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図18】本発明の第一実施形態に係る免震構造の第十変形例が適用された構造物を模式的に示す一部断面を含む正面図である。
【図19】滑り免震装置の他の例を示す図1に対応した一部断面を含む正面図である。
【図20】転がり免震装置を示す斜視図である。
【図21】本発明の第一実施形態に係る免震構造の第十一変形例の要部を模式的に示す一部断面を含む平面図である。
【図22】(A)は本発明の第一実施形態に係る免震構造の第十二変形例の要部を模式的に示す一部断面を含む平面図であり、(B)はPC鋼材の長さLを説明するための説明図である。
【図23】図22の第十二変形例の基礎部における貫通孔の開口部を拡大した模式図である。
【図24】(A)は第十二変形例の基礎部における貫通孔の開口部に設ける回転ローラ装置を示す平面図であり、(B)は(A)のB−B線に沿った断面図である。
【図25】(A)本発明の第一実施形態に係る免震構造の第十三変形例の要部を模式的に示す平面図であり、(B)は基礎部の側壁部近傍を模式的に示す図である。
【図26】本発明の第一実施形態に係る免震構造が適用された構造物のX方向両隣に近接して敷地がある場合のクリアランスを説明するための説明図である。
【図27】本発明の第一実施形態に係る免震構造の第十四変形例の要部を模式的に示す正面図である。
【図28】本発明の第六実施形態に係る免震構造が適用された床免震を模式的に示す一部断面を含む正面図である。
【図29】本発明の第六実施形態に係る免震構造の変形例が適用された床免震を模式的に示す一部断面を含む正面図である。
【図30】(A)は本発明の第七実施形態に係る免震構造が適用された免震台を模式的に示す一部断面を含む正面図であり、(B)は斜視図である。
【図31】「弦の剛性」を説明する説明図である。
【図32】本発明の第一実施形態に係る免震構造の他の例を模式的に示す一部断面を含む平面図である。
【図33】(A)はPC鋼材の間隔を調整し、剛心位置を調整する例を説明する説明図であり、(B)はPC鋼材の断面積(太さ)を調整し、剛心位置を調整する例を説明する説明図である。
【図34】本発明の第二実施形態に係る免震構造が適用された構造物を模式的に示す一部断面を含む正面図である。
【図35】図35の転がり免震支承を模式的に示す斜視図である。
【図36】本発明の第三実施形態に係る免震構造が適用された構造物を模式的に示す一部断面を含む正面図である。
【図37】本発明の第四実施形態に係る免震構造が適用された構造物を模式的に示す、(A)はY方向に見た正面図であり、(B)は基礎部の平面図であり、(C)はX方向に見た側面図である。
【図38】本発明の第五実施形態に係る免震構造が適用された構造物を模式的に示す、(A)はY方向に見た正面図であり、(B)は基礎部の平面図であり、(C)はX方向に見た側面図である。
【図39】参考例としての第八実施形態に係る免震構造が適用された構造物を構成する基礎部を模式的に示す平面図である。
【発明を実施するための形態】
【0080】
<第一実施形態>
図1〜図8を用いて、本発明の第一実施形態に係る免震構造が適用された構造物について説明する。なお、図1の左右方向をX方向とし、鉛直方向をZ方向とし、X方向とZ方向とに直交する左右方向をY方向とする。また、Y方向に見る場合を正面視、X方向に見る場合を側面視、Z方向に見る場合を平面視とする。
【0081】
図1と図2とに示すように、第一実施形態の免震構造100が適用された構造物10は、上部構造部20と下部構造部としての免震ピット50とで構成されている。上部構造部20は、盤状の基礎部30と、基礎部30の上に構築された建物部22と、で構成されている。なお、各図において、基礎部30が実際よりも厚く図示されている等、模式的に図示されている。
【0082】
免震ピット50は、地盤12を掘削されて形成された凹部に設けられている。また、免震ピット50は、底盤60と擁壁72、74、76、78とで構成されている。
図1〜図3に示すように、底盤60は底部に設けられ、底盤60の側面を囲むように擁壁72、74、76、78が設けられている。なお、擁壁72、74、76、78と底盤60とは、構造的に一体とされている。また、本実施形態では、底盤60は、平面視略矩形状(本実施形態では略正方形)とされている。
【0083】
図1に示すように、底盤60は、地盤12中に打ち込まれた杭14で支持されている。底盤60の上には、複数の滑り免震装置80(図5も参照)が設けられている。なお、各滑り免震装置80は、杭14の直上に設けられている。そして、滑り免震装置80の上に上部構造部20が設けられている。
【0084】
図5に示すように、滑り免震装置80は、上部構造部20の基礎部30と一体に構成された滑り材81と、免震ピット50の底盤60と一体に構成された支持材86と、で構成されている。滑り材81は、上部構造部20の基礎部30の下面に形成された下側凸の凸部31に設けられている。支持材86は免震ピット50の底盤60の上面に形成された上側凸の免震基礎部61に設けられている。
【0085】
本実施形態においては、滑り材81は、支持材86に接する面から順に、ふっ素樹脂層82、鋼板83、天然ゴムシート84、及び鋼板85の4層で構成されている。また、支持材86は、滑り材81に接する面から順に樹脂コーティング層87、ステンレス88、鋼板89の3層で構成されている。
【0086】
このように、滑り材81と支持材86との接触面は、ふっ素樹脂層82と樹脂コーティング層87とされている。よって、接触面の摩擦係数が極めて低く、μ=0.02〜0.04程度が実現されている(100kgの物体を2〜4kgの力で押すことができる)。そして、地震等で、構造物10に外乱が加わり、この摩擦係数を超える水平力が作用すると、滑り材81が支持材86上を滑る。すなわち、上部構造部20と免震ピット50とが水平方向に相対移動し、免震効果を発揮する。
【0087】
なお、ここで説明した滑り免震装置80は、一例であって、他の構成の免震装置であってもよい。
【0088】
図2と図3とに示すように、本実施形態においては、上部構造部20の基礎部30は平面視矩形状の盤状とされている。
なお、図3に示すように、基礎部30における、擁壁72に対向した面を側壁部32、擁壁74に対向した面を側壁部34、擁壁76に対向した面を側壁部36、擁壁78に対向した面を側壁部38とする。
【0089】
図3に示すように、第一固定部としての擁壁72と第二固定部としての擁壁76とは、平面視おいて、上部構造部20の図心位置Gを挟んで互いに反対側に配置されている。
【0090】
図4に示すように、基礎部30には、複数の貫通孔102が、X方向に沿って形成されている。また、貫通孔102は正面視において、略水平に形成されている(図2を参照)。
【0091】
なお、以降X方向に沿って配置されて部材には符号の後にXを付し、Y方向に沿って配置された部材には符号の後にYを付す。なお、XYを区別する必要がない場合は、XYは省略する。なお、符号XYの後のA及びB、F及びRの意味は後述する。
【0092】
各貫通孔102には、アンボンド型のPC鋼材104(詳細は後述する)が挿通されている。つまり、図3に示すように、平面視において、PC鋼材104XがX方向に沿って配置されている。なお、貫通孔102を図示すると、煩雑になり見辛くなるので、図2以外の図では、貫通孔102の図示は省略しPC鋼材104のみを図示する。
【0093】
図1〜図4に示すように、PC鋼材104の一端104Aは、基礎部30の側壁部32、36に定着具99によって固定され、他端104Bは、免震ピット50の擁壁72、76の中に定着具99によって固定されている(図2、図3、図4参照)。なお、PC鋼材104は、他端104Bが固定される擁壁72、76の壁面72A,76Aに対して略直交する方向に沿って配置されている。
【0094】
PC鋼材104の他端104Bの固定位置は、貫通孔102の軸線上とされている。よって、PC鋼材104の一端104Aと他端104Bとは直線(本実施形態では略水平)とされている。
【0095】
ここで、図2と図3に示すように、PC鋼材104Xは、平面視において、X方向沿って配置され且つX方向と直交するY方向に並んで配置されている。そして、図2〜図4に示すように、並列に配置された複数のPC鋼材104Xは、交互に逆方向に配置されている。つまり、一端104XAが側壁部36に固定され他端104XBが擁壁72に固定された第一線材としてのPC鋼材104XFと、一端104XAが側壁部32に固定され他端104XBが擁壁76に固定された第二線材としてのPC鋼材104XRと、が交互に配置されている。
【0096】
別の言い方をすると、第一線材としてのPC鋼材104XFは一端104XAが側壁部36に固定され他端104XBが第一固定部としての擁壁72に固定されている。一方、第二線材としてのPC鋼材104XRは一端104XAが側壁部32に固定され他端104XBが、平面視おいて上部構造部20の図心位置G(図3参照)を挟んで反対側に配置された第二固定部としての擁壁76に固定されている。
【0097】
図6に示すように、本実施形態のPC鋼材104は、素線(PC鋼より線)を複数束ねて構成された線状の材料とされると共に、強度が異なる素線が組合わされて構成された「混合ストランド」とされている。また、本実施形態では、強度が小さな素線107を中心部に配置し、強度が大きな素線103がその周りを囲むように配置されている。そして、外周にはポリエチレン等で構成されたシース106が被覆されている。
【0098】
また、各PC鋼材104には、緊張力が付与され、基礎部30にはX方向にプレストレス(圧縮力)が付与されている。
【0099】
つぎに、各PC鋼材104に緊張力を付与する方法について、図7を用いて説明する。なお、ここで説明する各PC鋼材104に緊張力を付与する方法は、あくまでも一例であり、他の方法で各PC鋼材104に緊張力を付与してもよい。
【0100】
まず、図7−1(A)に示すように、X方向に沿って配置されたPC鋼材104Xを貫通孔102(図4参照)に通し、PC鋼材104Xの一端104XAを側壁部32、36に固定すると共に、PC鋼材104Xの他端端104XBを擁壁72、76に固定する。このとき、基礎部30はX方向の設計位置(原点位置)よりも擁壁76側に位置している。
【0101】
図7−1(B)に示すように、基礎部30(上部構造部20)をX1方向(擁壁72側)にジャッキ90でずらす(矢印X1参照)。このとき、基礎部30はX方向の設計位置(原点位置)よりも擁壁72側に位置している。
基礎部30がずれると、PC鋼材104XRには緊張力が付与される。一方、PC鋼材104XFは、弛みが生じる。
【0102】
図7−2(C)に示すように、PC鋼材104XFの一端を引っ張り、弛みを取って側壁部36に固定しなおす。
【0103】
図7−2(D)に示すように、ジャッキ90を外し基礎部30がX2方向に移動することによって、PC鋼材104XRの緊張力が低減すると共に、PC鋼材104XFに緊張力が付与される。なお、このときの基礎部30の移動量は、PC鋼材104Rの緊張力とPC鋼材104XFが吊り合う位置まで移動する。
【0104】
なお、ジャッキを外した後に基礎部30が、X方向の設計位置(X方向の原点位置)に移動するように、基礎部30の最初の位置(図7−1(A)の位置)やX1方向移動量等が設定されている。
【0105】
このようにして、X方向に沿って配置されたPC鋼材104Xに緊張力が付与され、この結果、基礎部30にX方向にプレストレス(圧縮力)が付与される。
【0106】
つぎに、本実施形態の作用及び効果について説明する。
地震等で外乱が加わり、滑り免震装置80の滑り材81と支持材86との接触面の摩擦係数を超える水平力が作用すると、免震ピット50と上部構造部20(基礎部30)とが水平方向に相対移動し、免震効果が発揮される。
【0107】
図8−1(A)と図8−1(B)とで示すように、相対移動方向(揺れ方向)が矢印SXで示すように、X方向に沿っているとした場合、X方向に沿って配置されたPC鋼材104Xは、軸方向に伸長し、軸方向の剛性による復元力を発揮する。
【0108】
図8−1(A)と図8−2(C)とで示すように、相対移動方向(揺れ方向)が矢印SYで示すように、Y方向に沿っているとした場合、X方向に沿って配置されたPC鋼材104Xは軸方向と直交する方向に変形し弦の剛性による復元力を発揮する。
【0109】
ここで、上述した「弦の剛性」について説明する。
相対移動方向(揺れ方向)が、X方向と交差する方向に沿って移動した場合、図31における左右のPC鋼材104XFとPC鋼材104XRの軸剛性のうち、それぞれ軸方向と直交する成分が「弦の剛性」として復元力を発揮する。すなわち、弦の剛性に、軸方向と直交する変位を乗じたものが、弦の復元力となる。
なお、X方向と交差する方向に沿って移動した場合には、PC鋼材104XF及びPC鋼材104XRにおける軸方向の剛性による復元力は、逆向きに配置されたPC鋼材104XFとPC鋼材104XRとで打ち消しあうので復元力を発揮しない。
【0110】
そして、図31に示すように、Y方向に移動し、PC鋼材104XのX方向となす角度がαとなった場合、矢印FF,FRで示すように、弦の剛性はEA/L・sinαとなる(PC鋼材104の、Eはヤング率、Aは断面積、Lは長さ、を表す)。
なお、矢印FRと矢印FFとで示すように、図における左右のPC鋼材104XRとPC鋼材104XFとは同じ方向に弦の復元力が生じる。
【0111】
これにより、基礎部30には、PC鋼材104XF及びPC鋼材104XRによって、移動方向とは逆向きにY方向に沿った復元力が生じる。そして、これを「弦の復元力」と称する。
【0112】
なお、PC鋼材104に予め緊張力が加えられていると、復元力として、
(EA/L・sinα)×(軸方向と直交する変位):のびによる復元力
に加えて、
緊張力×sinαの復元力:緊張力(プレテンション)による復元力
が加えられる。
よって、PC鋼材104の弦の復元力が、緊張力を付与することによって大きくなる。
【0113】
また、PC鋼材104に付与する緊張力を調整することによって、予め定めた大きさの外乱が加わった際の相対移動量を調整することも可能である。
【0114】
なお、PC鋼線104の長さLとは、PC鋼線104が変形可能な軸方向の長さを指す。本実施形態の場合は、図3に示すように、PC鋼線104の一端104Aから擁壁72、76までの長さとなる。
【0115】
また、PC鋼線104の軸方向(X方向)の剛性は、長さLが長くなれば小さくなる、又は断面積Aが小さくなれば小さくなる。よって、PC鋼線104の軸方向の剛性及び弦の剛性は、設計条件に応じてその値及び大小関係を決定することができる。
【0116】
ここで、一般に、PC鋼材104は、軸方向の剛性よりも弦の剛性の方が小さい。よって、同じ外力が加わった場合、X方向の相対移動方向よりも、X方向と交差する方向の相対移動方向の方が、相対移動量が大きい。
【0117】
よって、例えば、上部構造部20がX方向に対して移動に制限がある場合、移動制限があるX方向に沿ってPC鋼線104を配置する構成とすることで、X方向と交差する方向の免震効果を維持しつつ、上部構造部20のX方向の移動が抑制され、移動制限が満足される。
【0118】
例えば、図26に示すように、構造物10のX方向両隣に近接して敷地Mと敷地Nとがある場合、免震ピット50のY方向のクリアランスKYは大きく確保(設定)できるが、X方向のクリアランスKXは十分に大きく確保(設定)できない場合がある。つまり、上部構造部20のX方向の幅の確保と、X方向のクリアランスKXの確保と、の両立をさせることが困難となる場合がある。
【0119】
このような場合、本実施形態のように(図1〜図3を参照)、PC鋼材104をX方向に沿って配置し、X方向の相対移動量を小さくすることで、必要とするX方向のクリアランスKXが小さくなる。つまり、必要とするX方向のクリアランスKXが確保される。
【0120】
また、滑り免震装置80の滑り材81と支持材86との接触面に作用する摩擦力(抵抗力)が、エネルギーを吸収し振動を減衰させる減衰力となる。更に、PC鋼材104の弾性変形の限界を超えた相対移動量となった場合は、PC鋼材104が降伏することでエネルギー吸収効果を発揮し、振動を減衰させる。なお、ダンパーなどの減衰手段を別途設けてもよい。
【0121】
例えば、図32に示すように、側壁部32と擁壁72との間、側壁部34と擁壁74との間、側壁部36と擁壁76との間、側壁部38と擁壁78との間に、それぞれオイルダンパー57を配置してもよい。
【0122】
また、図6に示すように、本実施形態のPC鋼材104は、強度が異なる素線103と素線107とが組合わされて構成されている。したがって、強度が小さな素線107は早期に降伏してエネルギー吸収作用(減衰作用)を発揮する。一方、強度が大きな素線103は降伏せずに弾性変形することで、復元力を発揮する。つまり、一本のPC鋼材104が異なる作用を発揮する。
【0123】
なお、PC鋼材104を構成する強度が小さな素線107が、十分にエネルギー吸収作用を発揮するためには、引張側(図8(B)ではPC鋼材104XR)のみでなく圧縮側(図8(B)ではPC鋼材104XF)でも降伏し、座屈せずに繰り返し軸力を負担することが望ましい。よって、本実施形態のように、強度が小さな素線107を中心部に配置し、強度が大きな素線103がその周りを囲むように配置することで、素線107の座屈が防止又は抑制されるので、エネルギー吸収性能が向上する。
【0124】
なお、全てのPC鋼材104を、図6に示すような、強度が異なる素線が組合わされた混合ストランドとする構成に限定されない。すなわち、複数のPC鋼材104のうち、一部のPC鋼材104のみを強度が異なる素線が組合わされた混合ストランドとした構成であってもよい。
【0125】
また、本実施形態のように、大小二つの強度の素線103、104が組合わされた構成に限定されない。三以上の強度の異なる素線が組合わされた構成であってもよい。
【0126】
PC鋼材104の軸方向の剛性Kは、PC鋼材104のヤング率をE、断面積をA、長さLとすると、K=EA/Lで求められる。なお、PC鋼材104の長さLとは、PC鋼材104が変形可能な軸方向の長さを指す。
【0127】
本実施形態では、PC鋼材104が、上部構造部20の基礎部30に形成された貫通孔102に挿通され、PC鋼材104の一端104Aが、基礎部30の側壁部32、36に固定されている。
【0128】
したがって、貫通孔102に挿通されている長さ分、PC鋼材104の軸方向の長さLを長く設定することができる。これにより、PC鋼材104の断面積Aを小さくすることなく、剛性を小さく設定することができる。つまり、PC鋼材104の弾性変形可能な範囲を確保しつつ、剛性を小さく設定することができる。よって、大きな免震効果が得られる。
【0129】
また、前述したように、PC鋼材104には、緊張力が付与されることによって、緊張力による復元力が加わるので、その分復元力が大きくなる。よって、PC鋼材104に緊張力が付与されていない場合と比較し、基礎部30の移動量が小さくなる。
【0130】
また、PC鋼材104に付与する緊張力を調整することによって、基礎部30の移動量を調整することができる。
【0131】
また、PC鋼材104が軸方向に沿って縮む方向に上部構造部20と免震ピット50とが相対移動する際、緊張力が維持される範囲において、PC鋼材104が軸方向に縮み変形するので、PC鋼材104が撓まない(剛性が保持される)。
【0132】
なお、全てのPC鋼材104に緊張力を付与した構成に限定されない。すなわち、複数のPC鋼材104のうち、一部のPC鋼材104のみに緊張力を付与した構成であってもよい。
【0133】
また、PC鋼材104XFとPC鋼材104XRとは逆方向に配置されているので、基礎部30をX方向に圧縮するプレストレスが付与される。よって、基礎部30はPC鋼材104による引張応力によるひび割れが防止又は抑制される。
【0134】
なお、逆方向とはPC鋼材104の一端104Aから他端104Bに向かう方向が、逆方向(逆向き)であることを指す。
【0135】
ここで、前述したように、地震等で外乱が加わり、滑り免震装置80の滑り材81と支持材86との接触面の摩擦係数を超える水平力が作用すると、免震ピット50と上部構造部20(基礎部30)とが水平方向に相対移動し、免震効果が発揮される。
【0136】
よって、滑り免震装置80の滑り材81と支持材86との接触面の摩擦係数(接触面に作用する摩擦力)を小さく設定すると、復元力が小さくても、すなわち、PC鋼材104の剛性が小さくても基礎部30は復元される。そして、PC鋼材104の剛性、特に軸方向の剛性を小さく設定すると、上部構造部20(基礎部30)と免震ピット50とが大きく相対移動するので、免震効果が大きくなる。
【0137】
PC鋼材104は、積層ゴムなどの従来の復元材よりも弾性変形領域を大きくすることが可能である。よって、大地震等で大きな外乱が加わり、上部構造部20(基礎部30)と免震ピット50とが大きく相対移動しても、復元力が発揮される。
【0138】
更に、上述したようにPC鋼材104の弾性変形の限界を超えた相対移動量となった場合は、PC鋼材104が降伏することでエネルギー吸収効果を発揮する。したがって、大地震等で大きな外乱が加わっても免震効果が発揮される。
【0139】
一方、滑り免震装置80の滑り材81と支持材86との摩擦係数(接触面に作用する摩擦力)を大きく設定すると、大地震等で大きな外乱が加わらないと、すなわち、大きく設定された摩擦係数を超える水平力が作用しないと、上部構造部20(基礎部30)と免震ピット50とが相対移動しない(免震効果を発揮しない)。
【0140】
しかし、このことを利用し、大地震に対するフェールセーフ機能として本免震構造100を利用することができる。つまり、閾値よりも小さな振動(加速度)の場合は、上部構造部20(基礎部30)と免震ピット50とを相対移動させずに、免震以外の方法、すなわち、上部構造部20を耐震構造や制振構造として外力に抵抗する。
【0141】
閾値以上の振動(加速度)の場合は、上部構造部20(基礎部30)と免震ピット50とを相対移動させ、上部構造部20に伝達される外力の上限値を規定する。言い替えると、上部構造部20が剛体であると仮定すると、閾値以上の振動が上部構造部20に伝達されない構造である。
【0142】
また、地震後に上部構造部20を原点復帰させることを考慮しない場合は、PC鋼材104が早期に降伏する構成(例えば、PC鋼材の長さLを短くし歪が集中する構成)とすることで、早期にエネルギー吸収効果を発揮させてもよい。
【0143】
このように、本実施形態の免震構造とすることで、大地震等で大きな外乱が加わっても、免震効果が発揮される。
【0144】
なお、本実施形態の滑り免震装置80では、滑り材81と支持材86との摩擦係数が非常に小さく設定することを目的として構成されている。よって、滑り免震装置80の滑り材81と支持材86との摩擦係数を大きく設定する場合は、本構成以外の構成とすることが望ましい。
【0145】
例えば、表面の樹脂コーティング層の材質を変更、表面に樹脂コーティングせずに部材(鉄板)素地のまま用いる、部材の表面粗度を変更、部材表面に赤さびを発生させる等によって、適宜、摩擦係数を調整するとよい。
【0146】
ここで、滑り免震装置80の滑り材81と支持材86との摩擦係数を大きく設定する場合は、摩擦係数の管理などが簡単でよいので、一般に摩擦係数を小さく設定する場合よりも低コストとなる可能性がある。
【0147】
なお、弾性を有する線材としてのPC鋼材104は、本実施形態では、強度が異なる素線で構成された混合ストランドであったがこれに限定されない。混合ストランド以外のPC鋼線やPC鋼より線、或いは、PC鋼棒であってもよい。更に、PC鋼材以外の弾性を有する線材であってもよい。例えば、形鋼であってもよいし、炭素繊維やビニロン繊維などの繊維材料であってもよい。要は、復元力を発揮する剛性と弾性を有する線状(棒状を含む)の部材であればよい
【0148】
ここで、地震等の外乱は上部構造部20の重心に作用する。このため、上部構造部20は水平方向に変形する他に、剛心周りに回転するように捩れ変形する。
【0149】
しかし、平面視における上部構造部20の基礎部の重心位置(又は図心位置)と、PC鋼材104の剛性から計算される剛心位置と、一致又は略一致するように、或いは出来るだけ近くなるように、設定すれば、上部構造部20の捩れが防止又は抑制される。
【0150】
そして、PC鋼材104の剛性を調整することで、剛心位置を調整することができる。よって、つぎに、PC鋼材104の剛性を調整する例について説明する。
【0151】
図33(A)は、PC鋼材104の配置の間隔を調整することで、つまり、PC鋼材104XHを追加することで、剛性を調整し、重心位置(又は図心位置)Gに剛心位置を近づける例を示している。
【0152】
図33(B)は、PC鋼材104の太さを調整することで、つまり、PC鋼材104XKを太くすることで、剛性を調整し、重心位置(又は図心位置)Gに剛心位置を近づける例を示している。
【0153】
なお、図示は省略するが、所定のPC鋼材104の種別(ヤング係数)を調整してもよいし、長さL(PC鋼材104の一端104Aの定着位置(後述する第十三変形の図25を参照))を調整してもよい。
【0154】
<免震手段の他の例>
ここで、本実施形態では、図1等に示すように、滑り免震装置80で上部構造部20を水平方向に移動可能に支持したが、これに限定されない。よって、滑り免震装置80以外の免震手段の例について説明する。
【0155】
図19に示す免震構造110のように、免震ピット50の底盤60の上面60Uに板状の下側滑り部材115を接合し、上部構造部20の基礎部30の下面30Dに板状の上側滑り部材111を接合し、底盤60(下側滑り部材115)の上を基礎部30(上側滑り部材111)が水平方向に滑り免震としてもよい。
【0156】
なお、下側滑り部材111と上側滑り部材115とのいずれか一方のみを備える滑り免震であってもよい。
【0157】
更に、免震ピット50の底盤60の上面60Uと上部構造部20の基礎部30の下面30Dとが直接接触する滑り免震であってもよい。
【0158】
また、滑り免震以外の免震手段で、上部構造部20を鉛直方向に支持しつつ、免震ピット50に対して水平方向に抵抗力を伴って相対移動可能に支持する構造としてもよい。
【0159】
例えば、図20に示すような水平方向に移動自在に構成された転がり免震装置120であってもよい。
【0160】
転がり免震装置120は、下側フランジ123に設けられたX方向に沿って配置されたレール124に支承部122の下部のボールベアリング122Aが転がり移動可能に設けられている。また、支承部122の上側に配置された上側フランジ125に設けられたY方向に沿って配置されたレール126に支承部122の上部のボールベアリング122Bが転がり移動可能に設けられている。
【0161】
そして、免震ピット50の底盤60の上面60U(図19参照)に下側フランジ123を固定し、上部構造部20の基礎部30の下面30D(図19参照)に上側フランジ125を固定することで、滑り免震装置120が上部構造部20(図19参照)を鉛直方向に支持しつつ、免震ピット50(図19参照)に対して水平方向(X方向及びY方向)に抵抗力を伴って相対移動可能に支持する。なお、ボールベアリング122A、122Bの転がり抵抗が、水平方向の抵抗力となる。
【0162】
なお、図20に示す装置構成以外の、転がり免震装置であってもよい。例えば、図示は省略するが、上下2枚の対をなす免震皿と、対をなす免震皿間に挟まれたボールと、で構成される転がり免震装置であってもよい。
【0163】
免震手段としては、積層ゴム体を用いた免震装置であってもよい。また、積層ゴム体を用いた免震装置を併用してもよい。なお、この場合、積層ゴム体の弾性変形が復元力として作用する場合がある。
【0164】
<下部構造部及び固定手段の他の例>
つぎに、下部構造部及び固定手段の他の例を変形例として説明する。なお、貫通孔102についての説明及び図示は省略されている。
【0165】
「第一変形例」
図9に示す第一変形例は、地盤12に設けられた下部構造部としての基礎110の上に上部構造部20が構築されている。基礎110のX方向の外側の地盤12に、壁状の固定部119、116が設けられている。固定部119と固定部116とは、平面視おいて、上部構造部20の図心位置Gを挟んで互いに反対側に配置されている(図9(B)を参照)。そして、PC鋼材104の他端104Bが固定部119、116に固定されている。
【0166】
言い換えると、下部構造物としての基礎110と、PC鋼材104の他端104Bが固定される固定部119、116が別体とされている構成である。
【0167】
「第二変形例」
図10に示す第二変形例は、X方向に沿ったPC鋼材104Xが上下に4本並んで配置さている。つまり、上からPC鋼材104XF,104XR,104XF,104XRの順番で並んで配置されている。
【0168】
「第三変形例」
図11に示す第三変形例は、基礎部と建物部とが、明確に分かれていない上部構造部21とされている。よって、PC鋼材104は、上部構造部21の最下部23に形成された貫通孔102に挿通され、最下部23の側壁部に一端104Aが固定されている。
【0169】
<PC鋼線が水平配置以外の例>
第一実施形態では、PC鋼材104は、略水平方向に沿って配置されていた。つまり、PC鋼材104の一端104Aと他端104Bとが略同じ高さとされていた。よって、PC鋼材104が水平方向に沿って配置されていない構成について、変形例として説明する。
【0170】
より具体的に説明すると、「PC鋼材104の一端104Aよりも他端104Bが鉛直方向下側に配置されている変形例」と、「PC鋼材104の一端104Aよりも他端104Bが鉛直方向上側に配置されている変形例」と、について説明する。
なお、第一実施形態の免震構造と同一の部材には同一の符号を付し、重複する説明は省略する。
【0171】
「第四変形例」
図12に示すように、第四変形例の免震構造は、PC鋼材104の他端104Bの擁壁72の固定位置は、貫通孔102(図4参照)の軸線上よりも鉛直方向下側とされている。よって、PC鋼材104における基礎部30から露出した部分は、斜め下側に向かって延出されている。つまり、PC鋼材104は、一端104Aよりも他端104Bが下側となるように配置されている。
【0172】
つぎに本変形例の作用について説明する。
PC鋼材104の一端104Aよりも他端104Bが鉛直方向下側に固定されているので、地震時における上部構造部20の鉛直方向上側への浮き上がりが抑制又は防止される。つまり、PC鋼材104は、復元力を発揮する機能と、上部構造部20の浮き上がり防止機能との、二つの機能を有する。
【0173】
また、上部構造部20の地震時の浮き上がりが防止又は抑制されるので、滑り免震装置80の滑り材81と支持材86との接触面の摩擦力が確保される。
【0174】
更に、PC鋼材104が上部構造部20を下側に押圧するように設定することで、滑り免震装置80の滑り材81と支持材86との接触面の摩擦力を大きくすることも可能である。また、押圧力を調整することで、摩擦力を調整することもできる。
【0175】
「第五変形例」
図13に示す第五変形例のように、地盤12に設けられた基礎110の上に上部構造部20が構築され、この基礎110にPC鋼材104の他端104Bが固定されていてもよい。
本変形例の作用及び効果は、第四変形例と同様である。
【0176】
「第六変形例」
図14に示す第三実施形態の免震構造は、貫通孔が正面視において、外側に向かって下り勾配とされている。よって、PC鋼材104は、外側に向かって下側に斜めに配置されている。言い換えると、PC鋼材104の一端104Aよりも他端104Bの方が鉛直方向に配置されている。
本変形例の作用及び効果は、第四変形例と同様である。
【0177】
「第七変形例」
図15に示す第七変形例の免震構造は、貫通孔が正面視において、外側に向かって下り勾配とされている。更に、貫通孔は、基礎部30の底面に開口されている。よって、PC鋼材104は、外側に向かって下側に斜めに配置され、PC鋼材104の他端は底盤60に固定されている。
本変形例の作用及び効果は、第四変形例と同様である。
【0178】
「第八変形例」
図16に示す第八変形例のように、地盤12に設けられた基礎110の上に上部構造部20が構築され、この基礎110にPC鋼材104の他端104Bが固定されていてもよい。
本変形例の作用及び効果は、第四変形例と同様である。
【0179】
「第九変形例」
図17に示すように、第九変形例の免震構造は、PC鋼材104の他端104Bの擁壁72の固定位置は、貫通孔102(図4参照)の軸線上よりも鉛直方向上側とされている。よって、PC鋼材104における基礎部30から露出した部分は、斜め上側に向かって延出されている。つまり、PC鋼材104は、一端104Aよりも他端104Bが上側となるように配置されている。
【0180】
つぎに本変形例の作用について説明する。
PC鋼材104が上部構造部20を上側に引張上げるように設定することで、滑り免震装置80の滑り材81と支持材86との接触面に加わる荷重を小さくし、摩擦力を小さくすることが可能である。また、引張力を調整することで、摩擦力を調整することもできる。
【0181】
「第十変形例」
図18に示す第十変形例の免震構造は、貫通孔が正面視において、外側に向かって上り勾配とされている。よって、PC鋼材104は、外側に向かって上側に斜めに配置されている。言い換えると、PC鋼材104の一端104Aよりも他端104Bの方が鉛直方向の上側に配置されている。
本変形例の作用及び効果は、第九変形例と同様である。
【0182】
<PC鋼線がX方向に沿って配置されていない例>
第一実施形態では、図2及び図3に示すように、PC鋼線104は、X方向に沿って配置されたが、これに限定されない。よって、PC鋼線104がX方向と交差する方向に沿って配置された例について、変形例として説明する。なお、以降の説明では貫通孔102が省略されている場合があるが、実際は、各PC鋼材は基礎部に形成された貫通孔に挿通されている。
【0183】
「第十一変形例」
図21に示すように、第十一変形例においては、底盤には、複数の貫通孔が、平面視において、X方向に交差する方向(本変形例では略45°)に沿って形成されている。
【0184】
各貫通孔には、PC鋼材104が挿通されている。すなわち、平面視において、PC鋼材104がX方向に交差する方向(本実施形態では略45°)に沿って配置されている。別の言い方をすると、平面視において、PC鋼材104は、擁壁72、74、76、78の壁面72A,74A,76A,78Aに対して斜めに配置されている。
【0185】
X方向と交差する方向に配置された複数のPC鋼材104Nは、平面視において、交互に逆方向に配置されている。つまり、一端104NAが側壁部36、38に固定され他端104NBが擁壁72、74に固定されたPC鋼材104NFと、一端104NAが側壁部24、34に固定され他端104NBが擁壁76、78に固定されたPC鋼材104NRと、が交互に配置されている。
【0186】
これ以外の構造は、第一実施形態と同様であるので、説明を省略する。
【0187】
つぎに、本変形例態の作用及び効果について説明する。
PC鋼材104から入力される引張荷重の一部を、擁壁72、74、76、78の面内方向の軸力で受けることができる。
【0188】
よって、PC鋼材104が、例えば、壁面72A、76Aに対して直交に配置されている構成、すなわち、PC鋼材104から入力される引張荷重を面外方向で受ける構成と比較し、PC鋼材から入力される引張荷重を受けるために必要な擁壁72、74、76、78の強度が容易に確保される。
【0189】
ここで、図21に示すように、平面視において、壁面72A、74A、76A、78Aに対するPC鋼材104の角度をθとすると、上述した擁壁72、74、76、78の面内方向の軸力で受ける点から、θの範囲は30°〜60°程度が望ましい。更にθが45°の場合、直交2する方向の壁面に対して、それぞれ面内方向の軸力が略同となる点で更に望ましい。
なお、θ=90°が第一実施形態の図1となる。
【0190】
「第十二変形例」
図22(A)に示すように、貫通孔102は、X方向に沿って形成され、且つY方向に並列に複数形成されている。なお、本実施形態では、貫通孔102は八ヶ所形成され、図20(A)における上から順番に貫通孔102H,貫通孔102I,貫通孔102J,貫通孔102K,貫通孔102L,貫通孔102M,貫通孔102N、貫通孔102Oとする。また、図22(A)では判りやすくするため、各貫通孔102は実線で図示している。
【0191】
PC鋼線111XF、112XR、113XF、114XRは、基礎部30の側壁部32、36で折り返され複数の貫通孔102に挿通されている。なお、図22(A)では、PC鋼線111XF、112XR、113XF、114XRは、判りやすくするため線種を変えて図示されている。
【0192】
つぎに、PC鋼線111XF、112XR、113XF、114XRの配置について、それぞれ詳しく説明する。
PC鋼材111XFの一端111XAは、貫通孔102Mの側壁部32の開口部近傍に固定されている。PC鋼材111XFは、貫通孔102Mに挿通されたのち、側壁部36で折り返し、側壁部36に沿っては配置されたのち、貫通102Hに挿通されている。そして、PC鋼材111XFの他端111XBが、擁壁72の図における上側部分に固定されている。
【0193】
PC鋼材113XFの一端113XAは、貫通孔102Jの側壁部32の開口部近傍に固定されている。PC鋼材113XFは、貫通孔102Jに挿通されたのち、側壁部36で折り返し、側壁部36に沿っては配置されたのち、貫通102Oに挿通されている。そして、PC鋼材113XFの他端113XBが、擁壁72の図における下側部分に固定されている。
【0194】
また、PC鋼材112XFの一端112XAは、貫通孔102Lの側壁部36の開口部近傍に固定されている。PC鋼材112XFは、貫通孔102Lに挿通されたのち、側壁部32で折り返し、側壁部32に沿っては配置されたのち、貫通102Iに挿通されている。そして、PC鋼材112XFの他端112XBが、擁壁76の図における上側部分に固定されている。
【0195】
PC鋼材114XFの一端114XAは、貫通孔102Kの側壁部36の開口部近傍に固定されている。PC鋼材114XFは、貫通孔102Kに挿通されたのち、側壁部32で折り返し、側壁部32に沿っては配置されたのち、貫通102Nに挿通されている。そして、PC鋼材114XFの他端114XBが、擁壁76の図における下側部分に固定されている。
【0196】
図23に示すように、貫通孔102Nの開口部はR面取りされ、テーパー215が形成されている。同様に貫通孔102H,102I,102J,102K,102L,102M,102Oの開口部もR面取りされ、テーパー215が形成されている(図示は省略)。
【0197】
図22(B)に示すように、PC鋼材112XRの変形可能な軸方向の長さLは、基礎部30のY方向の幅Wの2倍と、側壁部32に沿って配置された長さUと、側壁部32と擁壁72の壁面72Aとの距離Vと、を足したものである。つまり、L=2W+U+Vである。
【0198】
なお、図示は省略するが、他のPC鋼材111、113、114の長さLも、同様である。
【0199】
つぎに、本変形例の作用及び効果について説明する。
本変形例の作用及び効果は、第一実施形態と同様である。しかし、各PC鋼線111XF、112XR、113XF、114XRにおける変形可能な軸方向の長さLは、前述したように、L=2W+U+Vである(図22(B)を参照)。これに対して、第一実施形態のPC鋼材104のLは、図3に示すように、L=W+Vである。
このように各PC鋼材111XF、112XR、113XF、114XRにおける変形可能な軸方向の長さLは、第一実施形態のPC鋼材104のLと比較すると、格段に長い(本実施形態では、「W+U」長い)。
【0200】
よって、各PC鋼材111XF、112XR、113XF、114XRの軸方向の弾性変形量が大きくなる。つまり、X方向の免震効果が大きくなる。
また、X方向の免震効果を大きくしたい場合は、このように長さLを長く、つまり軸方向の弾性変形量を大きくすることは有効である。
【0201】
なお、各貫通孔102H,102I,102J,102K,102L,102N,102M,102Oの開口部はR面取りされ、テーパーが形成されている(図23参照)。よって、面取りされていない構成と比較し、PC鋼材111、112、113、114が軸方向の伸長する際の抵抗が低減され、スムーズに伸長する。
【0202】
また、PC鋼材111、112、113、114が軸方向の伸長する際の側壁部32、36等との摩擦抵抗が、振動を減衰させる減衰力となる。
【0203】
なお、テーパーのR半径、つまり、PC鋼材111、112、113、114の曲げ半径は、PC鋼材111、112、113、114が局所的に曲げられることによる影響がない程度に、大きくすることが望ましい。
【0204】
また、基礎部30がコンクリート製の場合、基礎部30のコンクリートボリュームが小さい側(側壁部34、38の近傍側)は、PC鋼材111、112、113、114からの圧力によってひび割れなどが生じないように、かぶり厚さを十分に確保することが望ましい。或いは、側壁部34、38近傍に補強を行ない、コンクリートのひび割れを防止してもよい。
【0205】
ここで、図24に示すように、各貫通孔102H,102I,102J,102K,102L,102N,102M,102Oの開口部に回転ローラ装置500を設けて、PC鋼材111、112、113、114が軸方向の伸長する際の抵抗をより低減するようにしてもよい。なお、図24では、貫通孔102Nの開口部を代表して図示している。
【0206】
図24に示すように、回転ローラ装置500は、Z方向に沿って配置された対をなす回転軸502と、回転軸502に回転可能に設けられた対をなす回転ロール504と、を有している。回転ロール504は、Z方向両外側の直径が大きく中央部分の直径が小さい形状とされている。そして、対をなす回転ロール504の間にPC鋼材114が配置されている。
【0207】
なお、回転軸502と回転ロール504との間に、オイルなどの粘性体を挿入し、回転ロール504が回転抵抗を持つようにしてもよい。このような構成とすると、回転ロール504の回転抵抗がオイルダンパーと同様の効果を果たし、振動を減衰させる減衰力となる。
【0208】
<PC鋼線が貫通孔に挿通されていない例>
第一実施形態では、図4に示すように、PC鋼材104は、貫通孔102に挿通され、基礎部30の側壁部に固定されていたが、これに限定されない。よって、PC鋼材104が貫通孔102に挿通されていない例を変形例として説明する。
【0209】
「第十三変形例」
第十三変形例では、図25(B)に示すように、基礎部30の側壁部32にはX方向に沿って短い固定穴180が形成されている。固定穴180は、Y方向に並んで複数形成されている。各固定穴180の端部には作業穴182が形成されている。作業穴182は基礎部30の上面に開口されている。
【0210】
なお、図示は省略するが、基礎部30の側壁部36にもX方向に沿って且つY方向に並んで配置された複数の短い固定穴180が形成され、各固定穴180の端部には基礎部30の上面に開口された作業穴182が形成されている。
【0211】
これらの固定穴180の端部にPC鋼材105XF、105XRの一端105XAが固定されている。また、PC鋼材105XFの他端105Bは擁壁72に固定され、PC鋼材105XRの他端105Bは擁壁76に固定されている。なお、作業穴182からPC鋼材105の一端105Aを固定する作業を行なう。この作業穴182は、固定作業が終了後にモルタルやグラウト等を充填する。
【0212】
つぎに、本変形例の作用及び効果について説明する。
本変形例の作用及び効果は、第一実施形態と同様である。しかし、PC鋼材105における変形可能な軸方向の長さLは、PC鋼材104と比較すると、格段に短い(図25(A)と図3とを比較参照)。よって、PC鋼材105の弾性変形量は小さいが、大きな復元力を発揮する。
【0213】
なお、固定穴180にもグラウト等を充填する場合は、側壁部32、36と擁壁72、76との間の距離がPC鋼材105の変形可能な軸方向の長さLとなる。
【0214】
<基礎免震構造以外の適用例>
第一実施形態では、基礎免震構造に本発明を適用したがこれに限定されない。よって、つぎに中間免震構造に本発明を適用した例を第十七変形例として説明する。
【0215】
「第十四変形例」
図27に示す第十四変形例は、地盤12に設けられた基礎110の上に建物150が構築されている。建物150は、下部構造部154の上に上部構造部152が設けられ、下部構造部154と上部構造部152との間に免震構造100が設けられている。
【0216】
下部構造部154の上部156は凹状とされ、底盤部160と、この底盤部160の周囲に立設されている擁壁部162、163と、で構成されている(なお、実際には擁壁部は四面ある)。上部構造部152の下部には基礎部30が設けられている。なお、免震構造100の構造は、上記実施形態と同様であるので、詳しい説明を省略する。
【0217】
また、配管、階段、及びエレベータなどの縦動線は、基礎部30のPC鋼材104が貫通していない箇所にクリアランスを確保しつつ上下方向に孔をあけ、この孔に配置されている。また、配管、階段、及びエレベータなどの縦動線は、地震時の上部構造部152と下部構造部154との水平変位に追従するような機構を備えている。なお、このような追従機構は既存の中間免震層を有する構造物で適用されている機構を適用することができるので、説明は省略する。
【0218】
なお、第十四変形例は、第一実施形態の免震構造を適用したが、これに限定されない。第一変形例から第十五変形例の免震構造を適用してもよい。
【0219】
<第二実施形態>
前述したように、図1に示す第一実施形態では、PC鋼材104は、軸方向の剛性よりも弦の剛性の方が小さい。よって、同じ外力が加わった場合、X方向の相対移動方向は、X方向と交差するY方向の相対移動方向の相対移動量よりも小さい。よって、X方向の免震効果は、X方向と交差するY方向の免震効果よりも小さい。
【0220】
したがって、第二実施形態では、第一実施形態で説明した免震構造100に加え、X方向に免震効果を発揮する免震機構を備える構造物11について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。
【0221】
図34に示すように、第二実施形態の構造物11は、上部構造部21と下部構造部としての免震ピット50とで構成されている。上部構造部21は、基礎部30と免震構造部19とを有し、基礎部30と免震構造部19との間に転がり免震支承400(図35参照)が設けられている。転がり免震支承400は、X方向に間隔をあけて複数設けられている。
【0222】
図35に示すように、各転がり免震支承400は、Y方向を軸方向として配置されたローラ420と上下一対の二枚の免震皿410とが主要な構成要素されている。
【0223】
上下一対の二枚の免震皿410は、Y方向に沿って凹部412が形成され、この凹部412が対向するように配置されている。これら2つの免震皿410の凹部412の間にローラ420が挟まれている。よって、転がり免震支承400は、X方向の揺れに対して免震効果を発揮する。
【0224】
したがって、上部構造部21の免震構造部はX方向の振動に対して免震効果を発揮する転がり免震支承400を介して基礎部30に支持されている。
【0225】
つぎに本実施形態の作用及び効果について説明する。
PC鋼材104は、軸方向(X方向)の剛性よりも弦の剛性の方が小さい。よって、X方向は、X方向と交差するY方向よりも免震効果が小さい。このため、上部構造部21には、X方向の振動がY方向の振動よりも大きく伝達される。
【0226】
しかし、上述したように、上部構造部21の免震構造部はX方向向の振動に対して免震効果を発揮する転がり免震支承400を介して基礎部30に支持されている。よって、免震ピット50から基礎部30に伝達されたX方向の振動の免震構造部19への伝達が抑制される。
【0227】
したがって、上部構造部21の免震構造部19に対して、X方向(PC鋼材104の軸方向)とX方向と交差する方向との両方の耐震性能が同等又は略同等に確保される。
【0228】
また、転がり免震支承400は、X方向にのみ免震効果を発揮すればよいので、X方向とY方向との両方に免震効果を発揮する免震装置よりも構造が簡単でよい。
【0229】
なお、免震構造部19のX方向の振動を減衰させるダンパーなどの減衰手段を、免震構造部19と基礎部40との間に設けてもよい。
【0230】
<第三実施形態>
第三実施形態でも、第一実施形態で説明した免震構造100に加え、X方向に免震効果を発揮する免震機構を備える構造物13について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。
【0231】
図36に示すように、第三実施形態の構造物13は、上部構造部25と下部構造部としての免震ピット50とで構成されている。上部構造部25は、基礎部30と建物部35を有している。建物部35は、架台部27と、架台部27の中の天井部27Aに吊免震装置450によって吊り下げられた免震構造部29とで構成されている。
【0232】
吊免震装置450は、吊り材452にて、免震構造部29を懸架している。また、吊り材452の両端部は、X方向を軸方向とする回転軸454で回転可能に天井部27Aと免震構造部29とに連結されている。
【0233】
このように、上部構造部25の建物部35を構成する免震構造部29はX方向の振動に対して免震効果を発揮する吊免震装置450を介して、基礎部30に固定された架台部27に支持されている。
【0234】
つぎに本実施形態の作用及び効果について説明する。
PC鋼材104は、軸方向(X方向)の剛性よりも弦の剛性の方が小さい。よって、X方向は、X方向と交差するY方向よりも免震効果が小さい。このため、上部構造部25には、X方向の振動がY方向の振動よりも大きく伝達される。
【0235】
しかし、上述したように、建物部35は、架台部27と免震構造部29とで構成され、免震構造部29は架台部27の天井部27Aに吊免震装置450で吊り下げられている。よって、免震ピット50から基礎部30に伝達されたX方向の振動の免震構造部29への伝達が抑制される。
【0236】
したがって、上部構造部25の免震構造部29に対して、X方向(PC鋼材104の軸方向)とX方向と交差する方向との両方の耐震性能が同等又は略同等に確保される。
【0237】
なお、免震構造部29のX方向の振動を減衰させえるダンパーなどの減衰手段を、架台部27と免震構造部29との間に設けてもよい。
【0238】
<第四実施形態>
前述したように、PC鋼材104は、軸方向の剛性よりも弦の剛性の方が小さい。よって、同じ外力が加わった場合、X方向の相対移動方向は、X方向と交差するY方向の相対移動方向の相対移動量よりも小さい。よって、X方向の免震効果は、X方向と交差するY方向の免震効果よりも小さい。
【0239】
したがって、第四実施形態では、第一実施形態で説明した免震構造100に加え、建物部520にX方向に制振効果を発揮する制振装置や制振機構を備える構造物510について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する
【0240】
図37に示すように、第四実施形態の構造物510は、上部構造部520と下部構造部としての免震ピット50とで構成されている。上部構造部520は、盤状の基礎部30と、基礎部30の上に構築された建物部522と、で構成されている。
【0241】
図37(A)に示すように、建物部522におけるY方向側が開口された複数の架構530には、制振装置としてのダンパー532A,532Bが設けられている。ダンパー532A,532Bは、架構530における対向する隅部間に接続され、且つ交差するように一対設けられている。つまり、ダンパー532A,532Bは、建物部522のX方向の振動に対して、エネルギーを吸収し、制振効果を発揮する。
【0242】
図37(C)に示すように、本実施形態においては、X方向側に開口された複数の架構540には、耐震壁542が設けられている。
【0243】
つぎに本実施形態の作用及び効果について説明する。
PC鋼材104は、軸方向(X方向)の剛性よりも弦の剛性の方が小さい。よって、X方向は、X方向と交差するY方向よりも免震効果が小さい。このため、上部構造部520には、X方向の振動がY方向の振動よりも大きく伝達される。
【0244】
しかし、免震ピット50から上部構造部520に伝達されたX方向の振動は、建物部522に設けられたダンパー532A,532Bによって制振される。
【0245】
したがって、建物部522は、X方向とY方向との両方の耐震性能を同等又は略同等に確保することができる。
【0246】
なお、ダンパー522A,522は、どのようなダンパーであってもよい。例えば、オイルダンパーであってもよいし、粘弾性体ダンパーであってもよい。更に、ダンパー以外の免震装置であってもよい。例えば、アンボンドブレース、波形鋼板制振壁等であってもよい。つまり、X方向に制振効果を発揮する制振装置であればよい。
【0247】
また、Y方向の振動に対して十分な耐力が確保されていれば、X方向側に開口された複数の架構540に耐震壁542が設けられていなくてもよい。
【0248】
<第五実施形態>
前述したように、PC鋼材104は、軸方向の剛性よりも弦の剛性の方が小さい。よって、同じ外力が加わった場合、X方向の相対移動方向は、X方向と交差するY方向の相対移動方向の相対移動量よりも小さい。よって、X方向の免震効果は、X方向と交差するY方向の免震効果よりも小さい。
【0249】
したがって、第五実施形態では、第一実施形態で説明した免震構造100に加え、建物部622のX方向の水平耐力をY方向の水平耐力よりも高くした構造物610について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する
【0250】
図38に示すように、第五実施形態の構造物610は、上部構造部620と下部構造部としての免震ピット50とで構成されている。上部構造部620は、盤状の基礎部30と、基礎部30の上に構築された建物部622と、で構成されている。
【0251】
図38(A)に示すように、Y方向側に開口された架構630には、耐震壁632が設けられている。
図38(C)に示すように、X方向側に開口された架構640は、長期設計が行われ開口部分が大きく、且つガラスファサードとされ、開放性が確保されている。
したがって、上部構造部620は、X方向の水平耐力が他の方向の水平耐力よりも大きい。
【0252】
つぎに本実施形態の作用及び効果について説明する。
PC鋼材104は、軸方向(X方向)の剛性よりも弦の剛性の方が小さい。よって、X方向は、X方向と交差するY方向よりも免震効果が小さい。このため、上部構造部620には、X方向の振動がY方向の振動よりも大きく伝達される。しかし、建物部622に設けられた耐震壁632によってX方向の水平耐力が向上されている。
【0253】
したがって、建物部622は、X方向とY方向との両方の耐震性能を同等又は略同等に確保することができる。
【0254】
なお、Y方向はX方向よりも免震効果が大きいので、X方向側に開口する架構640を大きくしても耐力が確保されている。
【0255】
ここまでは、ビルなどの構造物に本発明を適用した例を説明したが、本発明はビルなどの構造物以外に適用できる。よって、つぎにビルなどの構造物以外に適用した例を説明する。なお、以降の実施形態で、第一実施形態と略同様の構成を代表して説明するが、ここまで説明した変形例及び第二から第五実施形態の構成も適用が可能である。
【0256】
<第六実施形態>
つぎに、本発明の免震構造が床免震に適用された第六実施形態について説明する。
【0257】
図28に示すように、建物内部の部屋202は、コンクリート製の躯体床(床スラブ)に設けられた支持柱214によってフリーアクセスパネル(床板)216が支持された二重床構造とされている。
【0258】
そして、部屋202の床の一部が免震床220とされている。なお、二重床構造部分は既存の構造と同様であるので詳しい説明を省略する。
【0259】
免震床220の下側のスラブ212には下部構造部としての上面が開口された箱形状の台部250が設けられている。この台部250の底盤252に滑り免震装置280を介して基礎部230が設けられている。そして、この基礎部230の上に免震床220が設けられている。この免震床220の上には、コンピュータサーバー等の精密機器209が設置されている。
【0260】
なお、台部250及び滑り免震装置280は、第一実施形態の免震ピット50及び滑り免震装置280より各部材が小さいだけで、基本的な構造は同様であるので、詳しい説明は省略する。
【0261】
基礎部230は、第一実施形態と同様にX方向に沿って配置され且つY方向に並んで配置された複数のPC鋼材204XF,XR、が貫通孔(図示略)に挿通されている。そして、各PC鋼材204の一端が基礎部230の側壁部に固定され、他端が台部250の擁壁部に固定されている。
【0262】
なお、PC鋼材204の長さは第一実施形態のPC鋼材104よりも短く且つ細いだけで、固定や配置は同様である。また、PC鋼材204には緊張力が付与されている。
【0263】
また、本実施形態の作用効果は第一実施形態と同様であるので、説明を省略する。また、第一実施形態の変形例も本実施形態に適用可能である。
【0264】
また、部屋の床の一部を免震床とするのでなく、部屋の床全体が免震床とされていてもよい。
【0265】
「変形例」
つぎに、第六実施形態の変形例について説明する。
【0266】
図29に示すように変形例では、免震床220の下側のスラブ212に滑り免震装置280を介して基礎部230が設けられている。そして、この基礎部230の上に免震床220が設けられている。この免震床220の上には、コンピュータサーバー等の精密機器209が設置されている。同様に、PC鋼材205XF,XRの他端205XBは部屋202の壁(図示略)に固定されている。
【0267】
つぎに本実施形態の作用効果について説明する。
PC鋼材205は、PC鋼材206よりも長いので、その分、弾性変形量を大きくすることができる。
【0268】
<第七実施形態>
つぎに、本発明の免震構造が免震台に適用された第七実施形態について説明する。
【0269】
図30に示すように、第七実施形態の免震台300は、柱部310の上に台部350が設けられている。この台部350の底盤352に滑り免震装置380を介して展示部320が免震支持されている。展示部320は、免震板部322とガラスケース部305とで構成されている。
【0270】
そして、展示部320のガラスケース部305の中(板部330の上)に、陶器、土器、彫刻、骨董品などの展示物306が設置されている(展示されている)。
【0271】
なお、台部350及び滑り免震装置380は、第一実施形態の免震ピット50及び滑り免震装置80よりも各部材が小さいだけで、基本的な構造は同様である。
【0272】
板部330は、第一実施形態と同様にX方向に沿って配置され、Y方向に並んで配置された複数の弾性を有する線材304XF,XRが貫通孔(図示略)に挿通されている。そして、各線材304の一端が板部330の側壁部に固定され、他端が台部350の擁壁部に固定されている。線材304は、第一実施形態のPC鋼材104と同様の固定及び配置とされている。
【0273】
なお、免震台300は、展示物306の保護以外の目的で使用してもよい。例えば、劇物や薬を保護する目的で使用してもよい。
【0274】
尚、本発明は上記実施形態に限定されない。本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない
【0275】
<参考例>
つぎに、参考例としての免震構造について説明する。
【0276】
参考例の免震構造は、
上部構造部と下部構造部との間に設けられ、前記上部構造部を鉛直方向に支持しつつ、前記下部構造部に対して水平方向に抵抗力を伴って相対移動可能に支持する免震手段と、
前記上部構造部に一端が固定され、前記上部構造部以外の第一固定部に他端が固定された弾性を有する一本又は複数本の第一線材と、
前記上部構造部に一端が固定され、平面視において前記上部構造部の図心位置を挟んで前記第一固定部の反対側に配置された前記上部構造部以外の第二固定部に他端が固定された弾性を有する一本又は複数本の第二線材と、
を有し、
前記第一線材は、平面視において、前記上部構造部内を一周し、前記一端が前記上部構造部の前記第一固定部側の側壁部に固定され、
前記第二線材は、平面視において、前記上部構造部内を一周し、前記一端が前記上部構造部の前記第二固定部側の側壁部に固定されている。
【0277】
このように参考例の免震構造は、第一線材が平面視において上部構造部内を一周し一端が上部構造部の一固定部側の側壁部に固定され、第二線材が平面視において上部構造部内を一周し一端が上部構造部の第二固定部側の側壁部に固定されている。よって、第一線材と第二線材の軸方向の長さLを、長く設定することができる。つまり、第一線材と第二線材の軸方向の変形量を大きくすることができる。これより免震効果が向上する。
【0278】
更に、第一線材と第二線材とに緊張力を付与することで、平面視におけるX方向と、X方向と交差するY方向と、の両方に上部構造部にプレストレスを導入することができる。
【0279】
つぎに参考例としての免震構造が適用された第八実施形態の免震構造物について説明する。なお、本免震構造が適用された構造物全体の構造は、第一実施形態と同様であるので、詳しい説明は省略する。また、その他、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。
【0280】
図39に示すように、参考例の免震構造700を構成する基礎部30には、貫通孔710、712、714、716が形成されている。各貫通孔710、712、714、716は、平面視において、基礎部30内を一周するように形成されている。また、各貫通孔710、712、714、716は上下方向に間隔をあけて形成されている。
【0281】
なお、本実施形態では、貫通孔710、712、714、716は、基礎部30の側壁部32、34、36、38にそれぞれ二箇所開口しており、実際にはそれぞれ四つの貫通孔から構成されている。しかし、ここでは四つの貫通孔を組み合わせて一つの貫通孔として説明する。
【0282】
貫通孔710、712、714、716に、アンボンド型のPC鋼より線720、722、724、726が挿通されている。また、PC鋼より線720、722、724、726は、強度が異なる複数の素線で構成された混合ストランドとされている。
【0283】
PC鋼より線720は、貫通孔710に挿通され、一端720Aが基礎部30の側壁部36に固定され、他端720Bが擁壁76に固定されている。また、一端720Aから他端720Bに向けて基礎部30内を図における反時計回りに一周する。
【0284】
PC鋼より線726は、貫通孔716に挿通され、一端726Aが基礎部30の側壁部32に固定され、他端726Bが擁壁72に固定されている。また、一端726Aから他端726Bに向けて基礎部30内を図における時計回りに一周する。
【0285】
PC鋼より線722は、貫通孔712に挿通され、一端722Aが基礎部30の側壁部36に固定され、他端722Bが擁壁76に固定されている。また、一端722Aから他端722Bに向けて基礎部30内を図における反時計回りに一周する。
【0286】
PC鋼より線724は、貫通孔714に挿通され、一端724Aが基礎部30の側壁部32に固定され、他端724Bが擁壁72に固定されている。また、一端724Aから他端724Bに向けて基礎部30内を図における時計回りに一周する。
【0287】
PC鋼より線720、722、724、726には緊張力が付与されている。しかし、PC鋼より線720とPC鋼より線740とが逆回転方向に一周し、PC鋼より線722とPC鋼より線726とが逆回転方向に一周しているので、基礎部30の回転が防止されている。
【0288】
つぎに本実施形態の作用及び効果について説明する。
PC鋼より線720、722、724、726は、基礎部30内を一周する。よって、PC鋼より線720、722、724、726の軸方向の長さLを、長く設定することができる。つまり、PC鋼より線720、722、724、726の軸方向の変形量を大きくすることができ、免震効果が向上する。
【0289】
更に、PC鋼より線720、722、724、726に緊張力を付与することで、平面視におけるX方向と、X方向と交差するY方向と、の両方に基礎部30にプレストレスを導入することができる。
【0290】
なお、弾性を有する線材として、本参考例では、PC鋼より線720、722、724、726は強度が異なる素線で構成された混合ストランドであったがこれに限定されない。混合ストランド以外のPC鋼線やPC鋼より線であってもよい。更に、PC鋼材以外の弾性を有する線材であってもよい。例えば、炭素繊維やビニロン繊維などの繊維材料であってもよい。要は、復元力を発揮する剛性と弾性を有する線状(棒状を含む)の部材であればよい。
【0291】
更に、上記第一実施形態〜第七実施形態、及び各変形例の構造も本参考例に適用可能であれば、適用した構成としてもよい。
【符号の説明】
【0292】
10 構造物
11 構造物
13 構造物
19 免震構造部
20 上部構造部
21 上部構造部
29 免震構造部
30D 下面(上側滑り部材、免震手段)
32 側壁部
34 側壁部
36 側壁部
38 側壁部
50 免震ピット(下部構造部)
60 底盤(固定部)
60U 上面(下側滑り部材、免震手段)
72 擁壁(第一固定部)
74 擁壁(第一固定部)
76 擁壁(第二固定部)
78 擁壁(第二固定部)
72A 壁面
74A 壁面
76A 壁面
78A 壁面
80 滑り免震装置(免震手段)
81 滑り材(上側滑り部材)
86 支持材(下側滑り部材)
102 貫通孔
104XF PC鋼材(緊張材、第一線材)
104XR PC鋼材(緊張材、第二線材)
105XF PC鋼材(緊張材、第一線材)
105XR PC鋼材(緊張材、第二線材)
110 基礎(下部構造部、固定部)
111 上側滑り部材(免震手段)
111XF PC鋼材(緊張材、第一線材)
112XR PC鋼材(緊張材、第二線材)
113XF PC鋼材(緊張材、第一線材)
114XR PC鋼材(緊張材、第二線材)
115 下側滑り部材(免震手段)
116 固定部(第二固定部)
119 固定部(第一固定部)
120 転がり免震装置(免震手段)
152 上部構造部
154 下部構造部
162 擁壁部(第一固定部)
163 擁壁部(第二固定部)
204XF PC鋼材(緊張材、第一線材)
204XR PC鋼材(緊張材、第二線材)
205XF PC鋼材(緊張材、第一線材)
205XR PC鋼材(緊張材、第二線材)
212 スラブ(下部構造部)
220 免震床(上部構造部)
230 基礎部(上部構造部)
250 台部(下部構造部)
300 免震台(構造物)
304XF 線材(緊張材、第一線材)
304XR 線材(緊張材、第二線材)
320 展示部(上部構造部)
330 基礎部(上部構造部)
350 台部(下部構造部)
400 転がり免震支承(免震機構)
450 吊免震装置(免震機構)
510 構造物
520 建物物
532 ダンパー(制振装置)

【特許請求の範囲】
【請求項1】
上部構造部と下部構造部との間に設けられ、前記上部構造部を鉛直方向に支持しつつ、前記下部構造部に対して水平方向に抵抗力を伴って相対移動可能に支持する免震手段と、
前記上部構造部に一端が固定され、前記上部構造部以外の第一固定部に他端が固定されると共に、前記上部構造部と前記第一固定部との間の部分が所定方向に沿って配置された弾性を有する一本又は複数本の第一線材と、
前記上部構造部に一端が固定され、平面視において前記上部構造部の図心位置を挟んで前記第一固定部の反対側に配置された前記上部構造部以外の第二固定部に他端が固定されると共に、前記上部構造部と前記第二固定部との間の部分が所定方向に沿って配置された弾性を有する一本又は複数本の第二線材と、
を備える免震構造。
【請求項2】
前記第一線材及び前記第二線材は、前記上部構造部に形成された貫通孔に挿通され、且つ一端が前記上部構造部の側壁部に固定されている、
請求項1に記載の免震構造。
【請求項3】
前記貫通孔は、前記所定方向に沿って形成され、且つ前記所定方向と直交する方向に並列に複数形成され、
前記第一線材及び前記第二線材は、前記側壁部で折り返され複数の前記貫通孔に挿通されている、
請求項2に記載の免震構造。
【請求項4】
平面視において、前記第一線材及び前記第二線材の一端から他端が、前記所定方向に沿って配置され、且つ、前記所定方向と直交する方向に交互に並列に配置されている、
請求項1〜請求項3のいずれか1項に記載の免震構造。
【請求項5】
前記第一線材及び前記第二線材は、緊張材で構成され、
前記緊張材には、緊張力が付与されている、
請求項1〜請求項4のいずれか1項に記載の免震構造。
【請求項6】
前記緊張材は、強度が異なる素線が組合わされて構成されている、
請求項5に記載の免震構造。
【請求項7】
前記第一固定部及び前記第二固定部は、壁状とされ、
前記第一線材及び前記第二線材は、平面視において、前記第一固定部の壁面及び前記第二固定部の壁面に対して斜めに配置されている、
請求項1〜請求項6のいずれか1項に記載の免震構造。
【請求項8】
前記免震手段は、
前記下部構造部の上部に設けられた下側滑り部材と、
前記上部構造部の下部に設けられ、前記下滑り部材に支持される上側滑り部材と、
を有する、
請求項1〜請求項7のいずれか1項に記載の免震構造。
【請求項9】
正面視において、前記第一線材及び前記第二線材は、一端よりも他端の方が鉛直方向下側で固定されている、
請求項1〜請求項8のいずれか1項に記載の免震構造。
【請求項10】
請求項1〜請求項9のいずれ1項に記載の免震構造が適用された構造物。
【請求項11】
前記上部構造部は、
前記第一線材の一端と前記第二線材の一端とが固定される基礎部と、
前記下部構造部から前記基礎部に伝達された前記所定方向の振動に対して免震効果を発揮する免震機構を介して前記基礎部に支持された免震構造部と、
を備える請求項10に記載の構造物。
【請求項12】
前記上部構造部は、前記下部構造部から伝達される前記所定方向の振動に対して制振効果を発揮する制振装置を備える請求項10に記載の構造物。
【請求項13】
前記上部構造部は、前記所定方向の水平耐力が他の方向の水平耐力よりも大きく設定されている請求項10〜請求項12のいずれか1項に記載の構造物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7−1】
image rotate

【図7−2】
image rotate

【図8−1】
image rotate

【図8−2】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate


【公開番号】特開2011−140970(P2011−140970A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2010−702(P2010−702)
【出願日】平成22年1月5日(2010.1.5)
【出願人】(000003621)株式会社竹中工務店 (1,669)
【Fターム(参考)】