説明

冷間溶射を用いたタービンローターの製作

【課題】タービン部品の製造、より具体的には、冷間溶射法によるタービンローターの製造方法を提供する。
【解決手段】ローター10を製造する方法は、(a)コアシャフト12を準備し、(b)コアシャフト上に合金粉末粒子を冷間溶射し、(c)冷間溶射を制御して、コアシャフトに沿って少なくとも異なる形状のセクション14、16、18を形成することによりニアネットシェイプローターを形成し、(d)ニアネットシェイプローターを熱処理して、応力を軽減すると共に個々の粉末粒子とコアシャフトとの界面を横切って拡散接合を形成し、前記ニアネットシェイプローターを仕上げ成形することを含んでいる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タービン部品の製造、より具体的には、冷間溶射法によるタービンローターの製造に関する。
【背景技術】
【0002】
蒸気タービン、ガスタービン及びジェットエンジンに使用するローターは通例その長さに沿って様々な作動条件を受ける。1つの作動条件を満足するように最適化された材料が別の作動条件を満たすのに最適でないことがあるので、異なる作動条件によってローター材料とローターの製造方法の両者の選択が複雑になる。例えば、蒸気タービンローターの入口及び排出領域は異なる材料特性要件を有する。高温の入口領域は通例、高いクリープ破断強さを有するが中程度の強靱性でよい材料を必要とする。これに対して、排出領域は同じレベルの高温クリープ強度を要求しないが、排出領域に使用される長いタービンブレードにより課される大きい負荷のため、適切な材料は通例非常に高い強靱性をもたなければならない。単一の化学のモノリシックローターは、上記の理由から、低圧、中圧、及び高圧段の各々における特性要件を満足することができない。
【0003】
その結果、ローターは、異なる化学のセグメントを組み立てることによって構築されることが多い。例えば、大きい蒸気タービンは通例、タービンの異なるセクションに使用される別個のシェル又はフードに収容された別個のローターで構成されたボルト留めされた構造を有する。小さめの蒸気タービンは、1つのシェル内に高圧及び低圧温度の構成要素の両方に結合するミッドスパン結合(mid-spun coupling)を使用し得る。これに対して、ガスタービン及びジェットエンジンのローターは、一連のディスクとシャフトを一緒にボルト留めすることにより構築されることが多い。ボルト留めされた構造を有するローターが広く使用されているが、これらには部品の数の増大、組立要件の増大、ローターアセンブリの長さの増大及びバランスの複雑さの増大を始めとする幾つかの不都合を蒙る。
【0004】
単一のローターで異なる材料を組み合わせる別の方法は、多元合金ローターと呼ぶことができるものを形成する異なる材料から形成されたローターセグメントを一緒に溶接することである。しかし、溶接されたローター構造もまた、溶接設備のための高い投資コスト、溶接の準備及び溶接のための追加の生産コスト、並びに溶接部を検査しアップグレードするのに必要とされる長い生産時間及び溶接後熱処理の必要性のような不都合を有する。また、溶接された構造を有するローターの強度は、溶接部の低い炭素含有率を維持する必要性及び負荷担持能力を低下させる多数の小さい非金属介在物の傾向のために制限される可能性もある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第7546685号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
従って、材料の消耗を低減し、異なる材料をローター構造中に組み込むことができ、かつローターの製造に伴う生産時間とコストを低減する、タービンローターを製造するための新規な方法を提供する必要性が存在している。
【課題を解決するための手段】
【0007】
本発明の代表的であるが非限定的な実施形態によると、ローター全体又はローターの幾つかの部品が冷間溶射法によって製造される。冷間溶射は、粉末化された供給原料が高速で基材に衝突することにより緻密で充分接着した堆積物が形成される技術である。形成される堆積物は飛行中に相変態又は酸化を受けない。また、高速衝突のため、粉末粒子は非常に高い歪み速度で高い歪みを受ける。このため、堆積物中で細粒化及び極めて細粒の組織が生じる。また、この細粒化により、従来の方法で形成される材料より高い強度を有するナノ結晶粒組織が形成される。
【0008】
従って、1つの態様では、本発明は、(a)コアシャフトを準備し、(b)コアシャフト上に合金粉末粒子を冷間溶射し、(c)冷間溶射を制御してコアシャフトに沿って異なる形状のセクションを形成することにより、ニアネットシェイプローターを形成し、(d)ニアネットシェイプローターを処理して、応力を除去すると共に、個々の粉末粒子とコアシャフトの間の界面を横切って拡散接合を形成することを含む、タービンローターを製造する方法に関する。
【0009】
別の態様では、本発明は、(a)ローターの局部的に損傷した部分を準備(下処理)し、(b)局部的に損傷した部分上に合金粉末粒子を冷間溶射し、(c)工程(b)における冷間溶射を制御して、局部的に損傷した部分を修復して、最初に製造されたときと実質的に同じ性質及び形状を有する修復された部分を形成し、(d)少なくともその修復された部分を熱処理することを含む、損傷したローターを修復する方法に関する。
【0010】
さらに別の態様では、本発明は、(a)コアシャフトを準備し、(b)コアシャフト上に合金粉末粒子を冷間溶射し、(c)冷間溶射を制御して、コアシャフトの長さ次元に沿って異なる形状のコアシャフトセクションを形成し、(d)冷間溶射して、コアシャフト上における組立に適合した1以上のローターディスクを形成し、(e)1以上のローターディスクをローター上に固定してニアネットシェイプローターを形成し、(f)前記ニアネットシェイプローターを処理して、応力を除去すると共に、個々の粉末粒子とコアシャフトの間の界面を横切って拡散接合を形成し、(g)ニアネットシェイプローターを仕上げ成形することを含む、ローターを製造する方法に関する。
【図面の簡単な説明】
【0011】
【図1】図1は、本発明の第1の代表的であるが非限定的な実施形態に従って製造される部分的に形成されたローターを概略的に示す。
【図2】図2は、本発明の第1の代表的であるが非限定的な実施形態によるローター製造方法を図解する流れ図である。
【図3】図3は、本発明の第2の代表的であるが非限定的な実施形態によるローター修復方法の流れ図である。
【発明を実施するための形態】
【0012】
図1は、コアシャフト又はマンドレル12上に冷間溶射されて部分的に形成されたローター10を示す。このローター10は、以下にさらに詳細に記載する冷間溶射法を用いて形成された、幾何学的中心線又は回転軸20に沿ってそれぞれ高圧(HP)、中圧(IP)及び低圧(LP)セクション14、16、18を画成する堆積部分と共に示されている。
【0013】
図2に示した工程図を参照して、本発明の第1の代表的であるが非限定的な実施形態において、全体のローター10は、基本的に他の点では公知の冷間溶射法を用いて製造される。第1の工程1ではコアシャフト又はマンドレル12を調製する。具体的には、コアシャフト又はマンドレル12を清浄化し、表面仕上げ処理し、所要の輪郭と形状に機械加工する。術語の統一上、以下では、コアシャフトが仕上げ処理されたローターの一部として残る実施形態に関連して「コアシャフト」を参照する。しかし、コアシャフトは、本明細書中でさらに記載するように、ローターの製造又はその完了後除去される除去可能な「マンドレル」の形態で提供することもできる。
【0014】
第1の代表的であるが非限定的な実施形態における工程2では、コアシャフト12上への冷間溶射堆積によりニアネットシェイプローターを形成する。1以上のロボット、CNC又はその他の適切な自動機械に取り付けられた1以上の冷間溶射銃/ノズルを用いて、図1に示したニアネットシェイプのローター10を形成する。溶射の間のノズル高さは通常10mm〜100mmである。溶射銃/ノズルは、例えばノズルの出口の面積を広くすることによって広い面積に溶射するように設計することができる。また、1より多くの銃を同時に使用して、より速い溶射速度を実現したり、又は異なる速度で溶射し、若しくは異なる材料を溶射する必要性に合わせたりすることも可能である。銃は通常上記種類の横行手段に備え付けられており、これらの横行手段はローターの異なる部分に必要とされ得る特定の輪郭を(溶射により)実現するようにプログラムすることができる。この種の自動機械は当技術分野で広く知られており、詳細に記載する必要はない。
【0015】
選択された組成の粉末材料をコアシャフト12上に溶射して、ローターを堆積させ、セクション14、16及び18並びに場合によりタービンバケット又はブレードを支持するホイール又はディスク(図示してない)において様々な厚さを形成する。この点について、1以上の溶射銃により、ローターの長さに沿って異なる領域に異なる材料を使用し、機械制御プログラムによる指示に従って溶射プロセス中に実行されるように粉末材料組成と厚さを変化させることで、複雑な形状の製作が可能になる。例えば、機械の圧縮機セクションにおいて必要とされるローターの形体を形成する際、650Fまでの適用ではNiCrMoV粉末を使用できるが、810Fまでの適用にはCrMoV粉末を使用できる。加えて、ローターの圧縮機セクションと、1100Fまでの温度のローターのタービンセクションとの間の遷移領域では、CrMoVとパーセントで次の公称組成を有するNi基合金との段階的混合物を使用できる。
【0016】
【表1】

1つのかかる合金はIN 718(登録商標)という名称で入手可能である。言い換えると、遷移領域における堆積物はより多い量のCrMoVで始まり、例えば、IN 718(登録商標)の含有量を次第に増大させて、ローターのタービン側の純粋なIN 718(登録商標)への滑らかな遷移を実現する。或いは、1100Fまでのタービンセクションで、例えばパーセントで次の組成物を有する
もう1つ別のNi基合金を合金を使用することができる。
【0017】
【表2】

1つのかかる合金は粉末冶金法により形成されたIN−725という名称で入手可能である。さらに別のNi基合金は、例えばタービンローター後部シャフトに(905Fまでで)使用できる。この第3の合金はパーセントで表して次の組成を有し得る。
【0018】
【表3】

1つのかかる合金はIN−706という名称で入手可能である。
【0019】
同様な接合部は、異なる段及び/又はセクション(HP、IP及びLP)の間の遷移が温度プロフィールの変化を伴う圧縮機及びタービンローターセクションにも存在する。ローターディスク又はホイール(同一又は異なるディスク内)の冷間溶射中に材料変化も必要とされ得る。
【0020】
材料組成の遷移は単一の粉末供給機中の粉末の組成を変えることによって達成することができ、又は異なる粉末組成物を複数の供給機から所要の割合で供給することができる。言い換えると、冷間溶射法の段階的コーティングを形成する能力は、例えば、必要な場合には、熱膨張率の不整合のための応力を低下させるか、又はその他の材料特性要件を満たすために合金組成の段階的遷移を提供するのに利用することができる。
【0021】
工程2の実施中、様々な冷間溶射パラメーターは銃の設計(例えば、ノズル出口とノズル喉の面積の比)に依存する。下記式はチョークを閉じた状態で作動している収束/発散ノズル内の流れを記述する。
【0022】
【数1】

式中、Aはノズル出口の面積であり、A*はノズル喉の面積であり、ガンマ(γ)は使用するプロセスガスの断熱指数又は熱容量比Cp(定圧熱容量)/Cv(定容熱容量)である。
【0023】
ガス流パラメーターは比A/A*に依存する。チョークを閉じた状態でノズルを作動させるには一定の最小ガス質量流が必要である。チョークを閉じた状態でノズルが作動したら、出口ガス速度は上記式で予測されるマッハ数(M)になる。高いガンマ値を有するガスの方が、より高いマッハ数が得られるので有益である。しかし、ガス質量流をさらに増大しても、ガス出口速度は増大せず、ノズル内のガスがより濃くなる。この濃度の濃いガスは供給原料粒子により大きい流体抵抗を及ぼし、従ってそれらの粒子をより大きな程度に加速する。この場合、ガス質量流を増大することの効果は粒子速度を増大させることである。冷間溶射では、特に、粒子はコーティングを形成するのに一定の最小臨界速度以上で移動しなければならないので、一般に、より大きい粒子速度が良好である。ガス圧力を増大するとガス質量流が増大するが、幾つかの冷間溶射系は質量流制御装置を備えており、これらの系ではガス質量流を直接増大させることができることに留意されたい。
【0024】
ガス速度を増大することに関する温度の役割は多少間接的である。上記式から分かるように、ガス温度は出口マッハ数に関係していないが、より熱いガスはマッハ数としてより高い値を有し(すなわち、音速はより熱いガスではより速い)、これは、より熱いガスはより速い速度で移動するので出口ガス速度に影響する。
【0025】
これらの一般的冷間溶射パラメーターを念頭に置いて、所与のタービンローター冷間溶射製造法で利用される具体的な冷間溶射パラメーターは所望の結果を得るために必要に応じて変化し得ることが理解される。言い換えると、これらの一般的パラメーターは、ガス流れ、圧力及び温度、ノズル設計、ノズル出口と基材との間隔などのような具体的な溶射パラメーターを調節するやり方についての理解を提供する。
【0026】
冷間溶射法は、従来の製造技術よりかかる時間が短く、制御が容易である点で有利である。加えて、冷間溶射成形は、典型的な材料除去プロセス(例えば、鍛造後の機械加工)より効率的な付加的プロセスである。
【0027】
本方法の工程3では、例えば堆積した材料をアニーリングにより処理して材料の応力を除去すると共に所望のミクロ組織を実現する。
【0028】
工程4では、工程2で生成したニアネットシェイプを所望の表面仕上げ、厚さ及び輪郭を有する最終の形態又は形状に変換する(すなわち仕上げ成形する)。これは、鍛造、機械加工、研磨など、又はこれらの組合せのような慣用の手段により実現することができる。
【0029】
所要により、熱間等水圧圧縮成形(HIP)を行ってもよい。HIPは気孔率をさらに低下させ、機械的性質を改良するのに有用である。HIPは所要により工程3の後又は工程4の後に使用できる。
【0030】
工程5は、除去可能なマンドレル12を使用する場合にのみ適用される。この状況はマンドレルの材料の選択に影響する。例えば、マンドレルは苛性溶液に溶解することにより除去することができるアルミニウムで作成することができる。また、ある種のマンドレルは機械加工によって取り外してもよい。他のマンドレル材料の選択には、工程1−4の各成形後ローターを加熱することにより除去することができるプラスチック、ゴム又はワックスのような非金属があり、これは簡単に排除することができる。
【0031】
上述の「使い捨ての」マンドレルの代案として、永久に再使用できるマンドレルも本方法に使用することができる。これらのマンドレルは、例えば冷間溶射の前に剥離剤をマンドレルに塗布することにより除去可能にされる。窒化ホウ素のような剥離剤は、鍛造及び鋳造で広く使われている。剥離剤は薄膜としてマンドレル上に塗布され、冷間溶射材料の接着を防止する。低融点材料の薄い層もまた、その材料が冷間溶射の完了後に融解して除去することができ、そのためにマンドレルを除去することができる点で剥離剤として機能することができる。
【0032】
マンドレルを除去可能にするためのさらに別の技術において、冷間溶射パラメーターをマンドレル表面付近で緩く接着する粒子を生成するように調節してもよい(例えば、より低いガス質量流量及び温度を使用して、マンドレルにあまり良く接着しない低速衝突からの堆積物を生成する)。
【0033】
マンドレル12を使用することの利点は、ローター自体に所望の内部設計を外的特徴としてマンドレル内に組み込むことができることである。例えば、ローター上に冷却チャンネルが望まれる場合、マンドレル上に突起部として作成し後の溶射でその突起部上にチャンネルを形成することができる。複雑なマンドレルの設計を使用することにより、複雑な内部形体(例えば冷却チャンネル)をローター内に組み込むことができる。
【0034】
別の代表的であるが非限定的な実施形態において、ローターディスクを一般的に上記したように冷間溶射で形成した後、冷間溶射したローター10上に固定することができる。(「固定」には、接合溶射又はディスクをローターに接合するために界面での溶接作業が必要となり得る)。このように、ローター及びローターディスクの一方又は両方を冷間溶射で形成することができる。
【0035】
ここで図3を参照すると、冷間溶射法の修復への適用が示されている。すなわち、第1の工程1.1において、局部的に損傷したローター表面のみが、好ましくは最初に記載したローター製造方法の工程1と同様にして清浄化する必要がある。さらに、その損傷した領域を溶射作業を行えるように適切に開放する必要がある。工程1.2、1.3及び1.4は先に記載した方法の工程2−4と実質的に同様に行う。言い換えると、修復方法(例えば、ローターの調製した局部的に損傷した部分のみが、冷間溶射した後アニーリングし修復して、局部的に損傷した部分を最初に製造されたローターと実質的に同じ性質と実質的に同じ形状を有する修復された部分にすることが必要とされる)の局部的な面を別として、本方法の工程と工程パラメーターはローター製造方法に関して上述したのと実質的に同じである。ローターの損傷した部分の位置に応じて、合金粉末の組成が冷間溶射作業中軸方向及び/又は半径方向で変化し得ることは了解できるであろう。例えば、ローターシャフトとホイール又はディスクとの界面に位置する損傷した領域では粉末材料の組成の変化が必要とされ得る。
【0036】
さらに別の代表的であるが非限定的な実施形態において、冷間溶射を使用して、NiCrのような材料のトラック又はストリップを設けてローターへの機器リード線の取付を容易にすることができる。現在、機器リード線はHVOFにタック溶接されるか、又はローター上に空気プラズマ溶射された材料である。通例このローター上に溶射される材料はNi−、Co−又はFe−基合金である。コーティングの目的は、タック溶接されるビーズがローター材料を貫通しないようにローター上に層を設けることである。トラック内の気孔及び酸化物はトラックの故障の主要な原因である。冷間溶射されたトラックの低めの酸化物、より低い気孔率及びより良好な接着特徴はトラックの寿命を改良する助けとなる。より緻密なトラックはまたタック溶接部のローター基材中への貫通も防止する。これはHVOF及びプラズマ−溶射したトラックでは満足できない重要な性能要件である。このように、冷間溶射されたトラックに対して行われるハンダ付け、蝋付け又は溶接作業はHVOF又は空気プラズマ溶射されたトラックと比べてより良好な完全性を有する。
【0037】
冷間溶射を使用する際の利益はHVOF又はプラズマ溶射と比べたときのマスキング要件の低減にも反映される。
【0038】
機器リード線を設ける別の方法は、ローター上に配置されるリード線上に直接コーティングを冷間溶射し、従ってローター表面にリード線を取り付けることであろう。コーティングの厚さと幅は使用するリード線にかかる遠心力に依存する。冷間溶射されたコーティングは基材に対するより強い結合を促進するので、ローターに対してリード線をより強く結合することを可能にする。冷間溶射されたトラックとローター表面との拡散結合を改良するには従来のアニーリング工程が必要とされ得る。
【0039】
現在のところ最良で好ましい実施形態と考えられる態様について本発明を説明して来たが、本発明は開示された実施形態に限定されることはなく、特許請求の範囲の思想と範囲に含まれる様々な修正及び等価な変更を包含するものと了解されたい。本方法はまた様々な用途のその他の金属/合金部品を製造するのにも使用できる。
【符号の説明】
【0040】
ローター 10
コアシャフト 12
セクション 14
セクション 16
セクション 18

【特許請求の範囲】
【請求項1】
(a)コアシャフト12を準備し、
(b)前記コアシャフト上に合金粉末粒子を冷間溶射し、
(c)冷間溶射を制御して、コアシャフトに沿って異なる形状のセクション14、16、18を形成することによりニアネットシェイプローターを形成し、
(d)前記ニアネットシェイプローターを熱処理して、応力を軽減すると共に、個々の粉末粒子とコアシャフト12との界面を横切って拡散接合を形成する
ことを含んでなる、ローター10を製造する方法。
【請求項2】
前記コアシャフト12が前記ローター10の一体部品として残る、請求項1記載の方法。
【請求項3】
さらに、(e)前記ニアネットシェイプローターを鍛造、機械加工、研磨又はこれらの組合せのいずれかにより仕上げ成形する、請求項1記載の方法。
【請求項4】
前記合金粉末粒子の材料組成がローター10の少なくとも軸方向長さ次元で変化する、請求項1記載の方法。
【請求項5】
工程(c)を実施して、前記コアシャフト12上に1以上のディスクを形成する、請求項1記載の方法。
【請求項6】
前記合金粉末物品の組成が1以上のディスクの半径方向に沿って変化する、請求項5記載の方法。
【請求項7】
前記材料組成がローター10の圧縮機セクションでクロム基合金を含み、ローターのタービンセクションでニッケル基合金を含む、請求項4記載の方法。
【請求項8】
コアシャフト12が金属、プラスチック及びゴムを含んでなる群から選択される材料からなる、請求項3記載の方法。
【請求項9】
前記コアシャフト12が工程(e)の後除去される除去可能なマンドレルの形態である、請求項1記載の方法。
【請求項10】
(a)ローターの局部的に損傷した部分を調製し、
(b)前記局部的に損傷した部分上に合金粉末粒子を冷間溶射し、
(c)工程(b)の冷間溶射を制御して、局部的に損傷した部分を修復して最初に製造されたときと実質的に同じ性質及び形状を有する修復された部分を形成し、
(d)少なくとも修復された部分を熱処理する
ことを含んでなる、損傷したローター10を修復する方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−80463(P2011−80463A)
【公開日】平成23年4月21日(2011.4.21)
【国際特許分類】
【出願番号】特願2010−220116(P2010−220116)
【出願日】平成22年9月30日(2010.9.30)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】