説明

化学気相堆積のための装置及び方法

【課題】液体前駆体物質を気化形成するための方法及び装置の提供。
【解決手段】この方法又は装置は、例えば、基板上に膜を形成するための化学気相堆積装置又はシステムの部分として使用することができる。この方法及び装置は、液体前駆体211及び拡散素子232を含むための容器218を準備することを含み、その拡散素子は、その容器の内側断面寸法に実質的に等しい外側断面寸法を有している。

【発明の詳細な説明】
【背景】
【0001】
[0001]本発明の実施形態は、一般的に、気化液体を気化しキャリヤガスと混合するための装置及び方法に関する。本発明の実施形態は、例えば、半導体デバイス製造装置における化学気相堆積システムの反応チャンバへ気化反応物質を供給するのに特に適している。
【0002】
[0002]化学気相堆積(CVD)処理は、半導体デバイス及び集積回路に使用される薄膜を堆積するのに広く使用されている。このような処理は、基板上に均質的又は不均質的に化学蒸気の反応により堆積させることを含む。その反応速度は、温度、圧力及び反応ガス流量の如き1つ以上のパラメーターにより制御される。このような処理のために前駆体として低蒸気圧液体を使用すると、幾つかの利点があり、それが、より普通となってきている。
【0003】
[0003]従来のCVD処理は、バブラー又はボイラーを使用して低蒸気圧液体を輸送することを含む。これらの処理においては、キャリヤガスが、その液体を飽和し、その蒸気を輸送する。CVD適用例においては、種々な液体反応物質及び前駆体が使用され、それら液体反応物質は、キャリヤガスにて分配される。液体反応物質CVDシステムにおいては、キャリヤガスは、典型的に、そのキャリヤガスを液体反応物質で飽和させるように、その液体反応物質の容器を通して制御された割合で泡立てられ、それから、その飽和キャリヤが反応チャンバへと輸送される。
【0004】
[0004]CVD反応チャンバへ固体反応物質を分配する種々な試みがなされてきているが、それら試みはあまり成功していない。CVD処理における固体前駆体の分配は、サブリメータ/バブラー方法を使用して実施され、そこでは、その前駆体は、通常、サブリメータ/バブラーリザーバに置かれ、それから、それがその前駆体の昇華温度まで加熱され、気体化合物へと変換され、水素、ヘリウム、アルゴン又は窒素の如きキャリヤガスと共にCVDリアクタへと輸送される。しかしながら、このような方法は、多くの理由により、固体前駆体を反応チャンバへ分配する上での信頼性及び再現性の点で上手くいかないものであった。このような技法の主な問題点は、気化固体前駆体の再現性のある流れが処理チャンバへ分配されるように、制御された割合で固体を絶えず気化することができないということにあった。また、気化システムにおける固体前駆体の露出表面積が限られており、また最大昇華を与えるための温度を均一とできないために、速く流れるキャリヤガスストリームを完全に飽和させることが難しかった。固体前駆体サブリメータ/バブラーシステム及び液体前駆体バブラーシステムは、共に、CVD反応物質の分配のために使用されるのであるが、これらシステムの各々は、それぞれ異なる問題点及び考慮すべき点を有している。従って、固体サブリメータ/バブラーのために使用されるシステム又は装置は、液体前駆体バブラー装置のためには必ずしも上手く働かない。
【0005】
[0005]液体前駆体を通してキャリヤガスを泡立てることにより形成された蒸気を分配するための従来技術による装置が、図1A及び図1Bに示されている。図1Aは、液体前駆体物質11を含むアンプル又は容器12を含む従来の気化装置10を示している。ガス入口チューブ14がキャリヤガス源30に接続されている。ガス入口チューブ14は、液体11のレベルの下に延びている。キャリヤガス30を加圧分配することにより、気化液体前駆体とキャリヤガスとの混合体32が与えられ、この混合体32は、それから、CVDシステム(図示していない)に接続された出口導管16を通して容器12から出て行く。
【0006】
[0006]拡散材20は、典型的には、多孔性燒結金属であり、気化装置10の泡立て効率を改善することができる。図1A及び図1Bに示す気化装置は、容器内の液体物質を加熱し、その容器の底部の近くでその液体物質へ制御された割合にてキャリヤガスを導入することにより、液体状態の物質から蒸気を処理チャンバへ分配するものである。このとき、そのキャリヤガスがその容器の上部へと泡立てられていくにつれて、そのキャリヤガスは、その液体物質からの蒸気で飽和されるようになる。それから、その飽和されたキャリヤガスは、処理チャンバ、例えば、半導体製造において使用されるCVD装置へと輸送される。
【0007】
[0007]図1A及び図1Bに示す装置においては、キャリヤガスの泡は、微小液滴と称される、その液体前駆体の望ましくない小さな液体粒子を生成する。これら微小液滴は、キャリヤガスと前駆体蒸気との混合体と共に、出口チューブへ運ばれ、更に、処理チャンバへと運ばれる。このような微小液滴は、最終製品に欠陥を生じてしまうことがある。
【0008】
[0008]従って、CVD処理のために十分な流量において液体を気化でき且つ処理チャンバへの液体の小滴の持ち込みを減少させ又は防止することができるような液体気化方法及び装置が必要とされている。
【概要】
【0009】
[0009]本発明の実施形態は、反応チャンバにおける膜形成処理中にウエハを処理する装置及び方法に関する。第1の実施形態によれば、化学気相堆積装置は、ガス入口ポートを有する化学気相堆積チャンバと、液体反応物質気化装置と、を備える。上記液体反応物質気化装置は、チャンバ入口ポートに接続される出口ポートを有する。上記気化装置は、上方部分、下方部分、内側部表面及び底部表面を有する容器を備える。上記第1の実施形態によれば、上記容器は、液体反応物質を含み、上記内側部表面の間の間隔は、内部容器直径を定めている。上記装置は、更に、キャリヤガス源に接続される入口ポートと、上記容器の内部直径と実質的に等しい外部直径を有し且つ液体反応物質のレベルより下方で上記容器の上記下方部分へ挿入され、上記容器の底部との間にプレナムを画成する多孔性部材と、上記ガス入口ポート及び上記多孔性部材を通して延びるガス分配導管と、を含む。
【0010】
[0010]上記プレナムは、上記多孔性部材と上記容器の底部との間のギャップによって画成されている。ある特定の実施形態では、上記多孔性部材は、ディスクの形状である。ある幾つかの実施形態によれば、上記ディスクは、燒結金属、例えば、ステンレス鋼フリットの如き燒結金属フリットからなる。1つ以上の実施形態では、上記装置は、基板上に膜を形成するように適応されている。
【0011】
[0011]別の実施形態は、化学気相堆積反応チャンバ及び気化装置を備える化学気相堆積装置に関する。上記気化装置は、上部部分、底部部分、底部表面及び内壁部によって定められた内部直径を有する閉じた実質的に円筒形のアンプルと、上記上部部分を通して延びて上記ガス源と流体連通する入口ポートと、上記上部部分を通して延びて上記反応チャンバと流体連通する出口ポートと、を含む。上記気化装置は、更に、上記底部表面に隣接して上記アンプルの上記内壁部と接触する縁部表面を有し且つ液体反応物質内に沈められ上記底部表面との間にある間隔を与えるように取り付けられた多孔性プレートと、上記入口から上記多孔性プレートを通して延びるガス導管と、を含む。ある特定の実施形態では、上記プレートと上記底部表面との間の上記間隔は、少なくとも約2mmである。
【0012】
[0012]本発明の更に別の実施形態は、壁部及び底部表面により画成された容器であって、上記容器の上記壁部の間に延び、上記容器の底部部分にプレナムを画成し且つ液体反応物質に沈められた多孔性部材を含むような容器に含まれた上記液体反応物質を通してキャリヤガスを流すステップと、上記液体から蒸気が生成されるように上記多孔性部材を通して上記キャリヤガス及び上記液体反応物質が流されるようにするステップと、チャンバ内に含まれた基板上に層を形成するように上記液体反応物質を変換するような条件の下で上記蒸気を上記チャンバへ輸送するステップと、を含む化学気相堆積方法に関する。1つ以上の実施形態では、上記多孔性部材は、燒結フリット、例えば、燒結ステンレス鋼フリットの如き燒結金属フリットを含む。
【詳細な説明】
【0013】
[0016]本発明の典型的な実施形態について説明する前に、本発明は、以下の記載において説明する構成又は処理ステップの細部に限定されるものではないことを理解されたい。本発明は、その他の実施形態が可能なものであり、また、種々な仕方において実践され又は実施されることのできるものである。本発明の態様によれば、例えば、基板上に薄膜を形成するのに使用できるような化学気相堆積のための方法及び装置が提供される。
【0014】
[0017]図2を参照するに、典型的な化学気相堆積装置210が示されている。このCVD装置210は、液体反応物質又は前駆体211を含むアンプル又は容器212を含む。このアンプル又は容器212は、円筒形であっても、又は、その他の任意の適当な形状であってよい。図2に示されるように、容器212は、内部壁部218及び底部表面222により定められた閉じた容器である。この容器212の底部部分内に液体反応物質211が収容されている。液体反応物質の非限定的実施例としては、TEOS、ホウ酸トリメチル、ホウ酸テトラエチル、リン酸テトラエチル、テトラエチルホスファイト、テトラキス(ジメチルアミノ)チタン ジエチル類似体、液体バルク分配タンクから分配されるような水等がある。ガス入口導管214は、キャリヤガス230の源250に接続される入口ポートを与えている。キャリヤガスは、加圧容器に貯蔵しておくことができ、そのガスの流れは、当業分野において知られているような流量調整器及び/又はマスフローコントローラによって制御することができる。
【0015】
[0018]プレート又はディスクの形態でよい拡散素子232が、容器212に挿入され、内壁部218の間に且つ底部表面222に隣接して延びている。1つ以上の実施形態による拡散素子232と底部表面222との間の距離「D」は、約2mmより小さい。この拡散素子232の外側直径又は他の断面寸法は、容器212の内側直径又は他の断面寸法と実質的に等しい。従って、この拡散素子232は、この拡散素子232の外側縁部が容器212の内側壁部と接触するようにして、容器内に圧力ばめされ又は溶接され且つその容器の底部表面222から望ましい距離のところに配置される。容器212の底部表面222と拡散素子232との間のギャップ又は空間は、プレナム226を画成している。このプレナム内へ分配されたガスは、壁部と接触している拡散プレートの縁部によって制限されているので、そのほとんどがその拡散プレートの細孔を通して逃げていくことになる。
【0016】
[0019]この拡散素子232は、多孔性材料で形成されている。多孔性材料の一実施例は、燒結フリットである。この拡散素子232を形成するのに、燒結金属フリットを使用することができる。適当な燒結金属の一実施例は、ステンレス鋼である。燒結ステンレス鋼の多孔性フリットは、コネチカット州ファーミントンのモットコーポレーションから入手することができる。一実施形態では、この拡散素子は、約5.75インチの直径、約0.078インチの厚さ及び約40ミクロンの細孔サイズを有するディスクの形状である。しかしながら、本発明は、特定の寸法又は細孔サイズを有する拡散素子に限定されるものではないことを理解されたい。
【0017】
[0020]拡散素子232は、容器の下方部分に配設され、液体反応物質211に沈められている。ガス入口導管214は、液体反応物質211のレベルより下方に拡散素子232を通して延びている。キャリヤガス230を加圧分配することにより、気化液体前駆体とキャリヤガスとの混合体32が与えられ、この混合体32は、CVDチャンバ260に接続された出口導管又はポート216を通して容器212から出て行く。容器212と従来の熱又はプラズマ増強型であってよいCVDチャンバ260との間に、1つ以上のマスフローコントローラ又は調整器が接続されることは理解されよう。例えば、このようなチャンバ260は、次の同一所有者の米国特許、即ち、Adamik氏等に対して1991年3月19日に発行された米国特許第5,000,113号、Foster氏等に対して1987年5月26日に発行された米国特許第4,668,365号、Benzing氏等に対して1986年4月1日に発行された米国特許第4,579,080号、Benzing氏等に対して1985年1月29日に発行された米国特許第4,496,609号及びEast氏等に対して1980年11月4日に発行された米国特許第4,232,063号の各明細書に記載されており、これら明細書の記載は、ここに援用される。
【0018】
[0021]使用において、前述したCVD装置は、半導体基板の如き基板上に膜又は層を製造するのに使用することができる。かくして、化学気相堆積方法は、ガス供給源からキャリヤガスを、入口導管又はチューブ214を経て液体反応物質211を通して流すことを含む。液体反応物質を通してキャリヤガスを流すことにより、そのキャリヤガス及び液体反応物質がその多孔性部材を通して流され、その液体から蒸気が生成され、チャンバ260内に含まれた基板上に層を形成するようにその液体反応物質を変換するような条件の下でその蒸気が上記チャンバへ輸送される。
【0019】
[0022]本発明の種々な実施形態によれば、容器212の断面に亘って延びる多孔性部材を使用することにより、キャリヤ及び液体前駆体蒸気の混合ガスストリームにおける微小液滴の形成及び混入は無視できる程度のものとなる。また、こうすると、フリットディスクによる液体の変位のため、液体前駆体を残すことなく使用することができるようになり、それにより、液体反応物質をより効果的に消費することができるようになる。液体は、多孔性部材の細孔及びマイクロチャネル内へ吸収される。この多孔性部材は、この多孔性部材の底部と容器又はアンプル底部表面との間の一定の2mmギャップ又はプレナム内へと液体を変位させる。
【0020】
[0023]本発明を特定の実施形態に関して説明してきたのであるが、これらの実施形態は、本発明の原理及び適用例の単なる例示に過ぎないものであることは理解されよう。本発明の精神及び範囲から逸脱することなく、本発明の方法について種々な変更及び変形をなすことができることは、当業者には明らかであろう。従って、本発明は、特許請求の範囲内に入る種々な変更及び変形例、及びそれらの均等物を含むものとしている。
【図面の簡単な説明】
【0021】
【図1A】従来技術による気化装置を示している。
【図1B】従来技術による気化装置を示している。
【図2】本発明による気化装置の一実施形態を示している。
【符号の説明】
【0022】
10…気化装置、11…液体前駆体物質、12…アンプル又は容器、14…ガス入口チューブ、16…出口導管、20…拡散材、30…キャリヤガス源、32…混合体、210…化学気相堆積装置(CVD装置)、211…液体反応物質又は前駆体、212…アンプル又は容器、214…ガス入口導管、216…出口導管又はポート、218…内壁部、222…底部表面、226…プレナム、230…キャリヤガス、232…拡散素子、250…キャリヤガス源、260…CVDチャンバ、D…拡散素子と底部表面との間の距離

【特許請求の範囲】
【請求項1】
ガス入口ポートを有する化学気相堆積チャンバと、
上記チャンバの入口ポートに接続された出口ポートを有する液体反応物質気化装置と、
を備え、
該気化装置は、上方部分、下方部分、内側部表面及び底部表面を有する容器を含み、該容器は液体反応物質を含み、上記内側部表面の間の間隔は、内部容器直径を定めており、更に、キャリヤガス源に接続された入口ポートと、上記容器の内部直径と実質的に等しい外部直径を有し且つ液体反応物質のレベルより下方で上記容器の上記下方部分へ挿入され、上記容器の底部との間にプレナムを画成する多孔性部材と、上記ガス入口ポート及び上記多孔性部材を通して延びるガス分配導管と、を含む化学気相堆積装置。
【請求項2】
上記プレナムは、上記多孔性部材と上記容器の底部との間のギャップによって画成される、請求項1に記載の化学気相堆積装置。
【請求項3】
上記多孔性部材は、ディスク形状である、請求項2に記載の化学気相堆積装置。
【請求項4】
上記ディスクは、燒結金属からなる、請求項2に記載の化学気相堆積装置。
【請求項5】
上記ディスクは、燒結金属フリット(frit)からなる、請求項2に記載の化学気相堆積装置。
【請求項6】
上記金属は、ステンレス鋼を含む、請求項5に記載の化学気相堆積装置。
【請求項7】
上記装置は、基板上に膜を形成するように適応される、請求項1に記載の化学気相堆積装置。
【請求項8】
化学気相堆積装置において、
化学気相堆積反応チャンバと、
気化装置と、
を備え、
該気化装置は、上部部分、底部部分、底部表面、及び内壁部により定められた内部直径を有する閉じた実質的に円筒形のアンプルと、上記上部部分を通して延び上記ガス源と流体連通する入口ポートと、上記上部部分を通して延びて上記反応チャンバと流体連通する出口ポートと、上記底部表面に隣接して上記アンプルの上記内壁部と接触する縁部表面を有し且つ液体反応物質内に沈められ上記底部表面との間にある空間を与えるように取り付けられた多孔性プレートと、上記入口から上記多孔性プレートを通して延びるガス導管と、を含む化学気相堆積装置。
【請求項9】
上記多孔性プレートは、多孔性燒結金属フリットで形成される、請求項8に記載の化学気相堆積装置。
【請求項10】
上記プレートと上記底部表面との間の上記間隔は、少なくとも約2mmより小さい、請求項9に記載の化学気相堆積装置。
【請求項11】
上記多孔性金属プレートは、ステンレス鋼で形成される、請求項10に記載の化学気相堆積装置。
【請求項12】
壁部及び底部表面により画成された容器であって、該容器の上記壁部の間に延び、上記容器の底部部分にプレナムを画成し且つ液体反応物質に沈められた多孔性部材を含むような容器に含まれた上記液体反応物質を通してキャリヤガスを流すステップと、
上記液体から蒸気が生成されるように上記多孔性部材を通して上記キャリヤガス及び上記液体反応物質が流されるようにするステップと、
チャンバ内に含まれた基板上に層を形成するように上記液体反応物質を変換するような条件の下で上記蒸気を上記チャンバへ輸送するステップと、
を備えた化学気相堆積方法。
【請求項13】
上記多孔性部材は、燒結フリットを含む、請求項12に記載の化学気相堆積方法。
【請求項14】
上記燒結フリットは、金属からなる、請求項13に記載の化学気相堆積方法。
【請求項15】
上記金属は、ステンレス鋼を含む、請求項14に記載の化学気相堆積方法。
【請求項16】
上記多孔性部材は、上記容器の底部から約2mmより小さい間隔を置いて離間される、請求項12に記載の化学気相堆積方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate


【公開番号】特開2013−40410(P2013−40410A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−226073(P2012−226073)
【出願日】平成24年10月11日(2012.10.11)
【分割の表示】特願2009−505583(P2009−505583)の分割
【原出願日】平成19年4月11日(2007.4.11)
【出願人】(390040660)アプライド マテリアルズ インコーポレイテッド (1,346)
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【Fターム(参考)】