説明

噴射制御システム

【課題】高い割合の作動サイクルで高い差動電圧にさらされない圧電アクチュエータ制御式燃料噴射器を提供する。
【解決手段】圧電要素9のスタックを持つ圧電アクチュエータ(11)を含み、使用時に燃料レールと通信する燃料噴射器(12a、12b)の作動方法は、(a)スタック両端の第1の差動電圧レベル(V)から第2の差動電圧レベル(V/V)へスタックが放電するよう放電期間(TからT)にアクチュエータに放電電流(Idischarge)を印加し、(b)所定期間(TからT)に第2の差動電圧レベルを維持し、(c)第2(V)から第3の差動電圧レベルへスタックを充電するよう充電期間(TからT、TからT’)にアクチュエータに充電電流(ICHARGE)を印加し、第3の差動電圧レベル(V)が、レール圧力(P)、電気的パルス時間(Ton)および圧電スタック温度(Temp)から選択される少なくとも2つのエンジンパラメータに応じて選択される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は圧電燃料噴射器を作動させる方法に関する。具体的には、本発明は圧電燃料噴射器の作動寿命を改善し、かつ燃料噴射量の精度を維持するように圧電燃料噴射器を作動させる方法に関する。
【背景技術】
【0002】
内燃エンジンでは、燃料噴射器によってエンジンのシリンダへ燃料を送出することが既知である。燃料供給の正確な計量を可能にする燃料噴射器のタイプの1つに、いわゆる「圧電噴射器」がある。一般に、圧電噴射器は、噴射状態と非噴射状態の間でバルブニードルの運動を直接または間接的に制御するのに使用可能な圧電アクチュエータを含む。バルブニードルはバルブニードル座と係合可能であり、噴射器のノズル内の1つまたは複数の出口開口によって燃料送出を制御する。アクチュエータの軸方向移動によってニードルの軸方向運動が増幅されるように、アクチュエータとニードルの間に油圧増幅器が置かれてよい。前述のタイプの圧電噴射器の一例が欧州特許第0995901号に説明される。
【0003】
圧電アクチュエータは、圧電要素のスタックを備え、これは、全体として特定の静電容量を有するコンデンサと電気的に等価である。圧電スタックの両端に印加される電圧が変化すると、スタックよって蓄えられた電荷の量(「賦勢レベル」としても知られている)が変化し、したがって圧電スタックの軸方向長が変化する。スタックの長さが変化し、したがってバルブニードルの座に対する位置が変化することによって、燃料噴射器を通って渡される燃料の量が制御され得る。このようにして、圧電燃料噴射器は、小量の燃料を正確に計量する能力を提供する。前述のタイプの既知の圧電作動された燃料噴射器は、本発明者の同時係属の欧州特許出願である欧州特許第1174615号に説明される。
【0004】
圧電アクチュエータに印加される電荷量およびアクチュエータから除去される電荷量は、2つのやり方のうちの1つで制御され得る。電荷制御方式では、スタックに対して要求された電荷が付加または除去されるように、圧電アクチュエータに対して、電流が、所定期間にわたって流入または流出するように駆動される。あるいは、電圧制御方式では、圧電アクチュエータの両端の電圧が要求された(所定の)差動電圧レベルに達するまで、圧電アクチュエータに対して、電流が、流入または流出するように駆動される。いずれにしても、圧電アクチュエータ上の電荷レベルが変化するとき圧電アクチュエータの両端の電圧が変化する(逆の場合も同様である)。
【0005】
一般に、エンジンは複数の燃料噴射器を有し、これらは1つまたは複数の噴射器の群にまとめられてよい。欧州特許第1400676号に説明されるように、噴射器の作動を制御するために、噴射器の各群がそれ自体の駆動回路を有してよい。この回路は、電源によって生成された電圧をステップアップする(例えば12ボルトからより高い電圧へ)変圧器などの電源、および電荷を蓄積し、したがってエネルギーを蓄積するための蓄積コンデンサを含む。蓄積コンデンサの両端に高電圧が印加されるが、この電圧は、各噴射事象のために、圧電燃料噴射器の充放電に電力を供給するのに用いられる。国際公開第2005/028836A1号に説明されるように、駆動回路も開発されており、これは変圧器などの専用の電源を必要としない。
【0006】
燃料噴射を開始するために、アクチュエータの両端子間の差動電圧を、燃料送出が生じない高レベルから燃料送出が生じる比較的低レベルへ移行させるのに駆動回路が使用されてよい。この「駆動波形」に応答する噴射器は、「噴射するのに消勢する」噴射器と呼ばれる。したがって、そのような消勢噴射器が非噴射状態であるとき、噴射器の圧電アクチュエータ両端の電圧は比較的高く、噴射状態では、アクチュエータ両端の電圧は比較的低い。一般に、各燃料噴射事象が比較的急速であるので、圧電アクチュエータは作動寿命期間の約95%で完全に賦勢され得る。
【0007】
しかし、アクチュエータの作動サイクルの比較的長い部分にわたって圧電アクチュエータの両端にそのような高電圧が存在すると、圧電スタックの劣化(「エージング」)を引き起こして機械的および/または電気的性質の変化を招くことがあり、したがって噴射器の寿命(耐久性)および性能に悪影響を及ぼす恐れがあることが認められている。これらの問題は、部分的には、非噴射状態において高い差動電圧レベルで圧電アクチュエータに加えられる高ストレスレベルに帰することができる。アクチュエータの両端子間の高電圧によって、アクチュエータ保護の封緘を通り抜けてアクチュエータの中へイオン種の浸透が助長されることも疑われる。いずれにしても、結果として生じる燃料ボリューム送出におけるいかなる誤りも、燃焼効率に悪影響があり、燃費の悪化および有害排出物の増加を招くことになる。
【特許文献1】欧州特許第0995901号
【特許文献2】欧州特許第1174615号
【特許文献3】欧州特許第1400676号
【特許文献4】国際公開第2005/028836A1号
【特許文献5】欧州特許第1811164号
【特許文献6】欧州特許第1860306号
【発明の開示】
【発明が解決しようとする課題】
【0008】
したがって、噴射器の作動寿命を向上させ、かつ有益に燃料噴射量の精度を維持するように、そのような高い割合の作動サイクルにわたってそのような高い差動電圧にさらされない圧電アクチュエータに制御された燃料噴射器を提供するのが望ましいであろう。
【0009】
噴射器の耐用寿命を向上させ、予測可能で正確な燃料噴射量を送出する能力を強化するかまたは維持するようなやり方で、圧電アクチュエータで制御された燃料噴射器を作動させる方法を提供することはさらに有利であろう。
【0010】
したがって、本発明は、前述の問題の少なくとも1つを克服するか少なくとも緩和するように圧電燃料噴射器を作動させるための方法に関する。
【課題を解決するための手段】
【0011】
広範な言葉遣いでは、本発明は、(従来型の圧電噴射器と比較して)圧電アクチュエータがさらされる高い差動電圧を低下することができ、かつ/またはアクチュエータが高い差動電圧にさらされる時間を短縮することができるように、圧電アクチュエータで制御された燃料噴射器を作動させるための方法を提供する。本発明の方法は、噴射器の作動寿命を増加させ、かつ/あるいは燃料噴射量の精度を維持するかまたは向上させる。
【0012】
したがって、第1の態様では、本発明は、圧電スタックを備える圧電アクチュエータを含み、使用時に燃料レールと通信する燃料噴射器を作動させる方法を提供する。この方法は、(a)スタック両端の第1の差動電圧レベル(V)からスタック両端の第2の差動電圧レベル(V/V)へスタックが放電するように(噴射事象を開始するように)、放電期間(T0からT1)にわたってアクチュエータに放電電流(IDISCHARGE)を印加するステップと、(b)所定期間(T1からT2、「ドウェル期間」。)、(この間噴射事象が維持される)第2の差動電圧レベルを維持するステップと、(c)第2の差動電圧レベルから第3の差動電圧レベル(V)へスタックを充電するように(噴射事象を終結するように)、充電期間(T2からT3、T2からT3’)にわたってアクチュエータに充電電流(ICHARGE)を印加するステップとを含み、第3の差動電圧レベル(V)は、燃料レール内の燃料圧力(「レール圧力」または「P」と呼ばれる)、Ton(燃料噴射事象のオン時間)、および圧電スタック温度(Temp)から選択される少なくとも2つのエンジンパラメータに応じて選択される。
【0013】
噴射器は、最も適切には消勢噴射器であり、これは圧電アクチュエータの放電によって燃料噴射器が起動されるものである。有利には、アクチュエータに充電電流(ICHARGE)を与える前に少なくとも2つのエンジンパラメータが求められる。この少なくとも2つのエンジンパラメータを求めるステップは、測定するステップまたは評価するステップを含んでよい。有利には、パラメータは測定によって求められる。
【0014】
前述のように、噴射器は、一般にエンジンへの燃料噴射を制御するように、圧電アクチュエータによって、バルブニードル座と係合および分離の作動が可能なバルブニードルを含む。同一の条件下では、圧電アクチュエータの両端の差動電圧レベルによってその長さが決まる。1つの端子が250V電圧源に接続され、別の端子が50V電圧源に接続されると、アクチュエータ両端の差動電圧は、差動電圧レベルが200Vになるように圧電アクチュエータの2つの端子の各々に接続された電圧の差に相当する。
【0015】
一実施形態では、第2の差動電圧レベルから第3の差動電圧レベル(V)へスタックを充電するステップは、駆動回路によって制御され、この回路は、電圧VHIの高電圧レールおよび電圧VLOの低電圧レールを備え、これらの電圧は圧電アクチュエータのそれぞれの端子へ接続可能である。
【0016】
駆動回路は、適切には、アクチュエータを(再)充電する(すなわち賦勢する)のに用いられる高電圧すなわち「トップ」レールを充電するための機構を備える。トップレールと圧電アクチュエータが十分な期間にわたって接続されると、アクチュエータ両端の差動電圧はVHIとLOの間の差に平衡する。したがって、トップレールはアクチュエータの最高電圧を設定し、アクチュエータの最低電圧を設定するために低電圧すなわち「ボトム」レールが供給される。充放電目的のために、トップレールとボトムレールの間のアクチュエータの接続を制御するように、好都合には駆動回路にスイッチが設けられる。駆動回路は、圧電アクチュエータの充放電にそれぞれ使用される2つの蓄積コンデンサをさらに備えてよい。第1の蓄積コンデンサが設けられてよく、第1の蓄積コンデンサから電荷を除去することによって高電圧レールの電圧が低下される。
【0017】
好都合には、駆動回路は、一般に12Vのエンジンバッテリから好都合には例えば50Vと60Vの間にステップアップされる、例えばエンジン制御ユニット(ECU)からの電圧源すなわち電源(V)を備えるか、または収容する。有益には、圧電アクチュエータの充放電を制御するために駆動回路が用いられ、このように、関連する圧電燃料噴射器は動的に制御され得る。一実施形態では、この制御は、燃料噴射器機構/電子回路に交互に接続される2つの蓄積コンデンサを使用することにより達成される。好都合には、第1の蓄積コンデンサは、充電段階中に噴射器機構に接続され、これが噴射事象を終結させ、一方、第2の蓄積コンデンサは、放電段階中に噴射器機構に接続され、これによって噴射事象が開始する。充電段階(T2からT3、T2からT3’)の最後に、また後続の放電段階(T1からT0)の前に、再生スイッチが使用されてよく、第1の蓄積コンデンサを再充電し、トップレールを介して、充電されたアクチュエータの高電圧が回復されることが可能になる。
【0018】
エンジンは、一般に複数の燃料噴射器を備え、したがって、本発明の方法は、複数の燃料噴射器を同時に作動させるようにエンジン内で用いられてよい。さらに、使用するとき、エンジンの燃料噴射器は、一般にエンジン作動の連続的期間にわたる複数の燃料噴射事象をもたらし、例えば、各噴射器は、回転速度および/または負荷次第で、1秒に1回または複数回の噴射(1秒につき1、2、3または4回の噴射など)を送出してよい。したがって、上記のステップ(a)から(c)は、単一の燃料噴射事象(または1回の燃料噴射「サイクル」)のステップおよび一般には燃料噴射器の作動に関係するものであり、最終的には、本発明の方法を用いるエンジンは、複数のそのような燃料噴射サイクル/事象を含んでよいことを理解されたい。したがって、本発明の方法による燃料噴射器が作動され、少なくとも2つの連続した燃料噴射事象があるとき、先行の燃料噴射事象の前述の「第3の差動電圧レベル」(V)も、直後の燃料噴射事象の前述の「第1の差動電圧レベル」(V)を好都合に示し得ることを理解されたい。
【0019】
燃料噴射事象に関連する少なくとも2つのエンジンパラメータを基に第3の差動電圧レベルを選択することによって、隣接した噴射の間に圧電アクチュエータが保持される電圧は、噴射器が閉じられているときに、噴射器が必要な瞬間に正確な燃料噴射量を供給する能力を損なうことなく、圧電アクチュエータ上の電荷を最小限にするように選択され得る。
【0020】
一実施形態では、少なくとも2つのエンジンパラメータを求めるステップは、(1)放電期間の開始に先立って、かつ/または(2)放電期間中(T0からT1)、かつ/または(3)ドウェル期間中(T1からT2)、選択されたパラメータを測定または推定するステップを含む。したがって、関連するエンジンパラメータの各々は、燃料噴射サイクルの様々な期間(または間隔)に求められ得て、上記(1)から(3)の期間の2つ以上の期間中に、または2つ以上のパラメータが同一の期間中に求められ得る。一例として、レール圧力およびTonは、放電期間の開始に先立って求められてよく、スタック温度は放電期間中に求められてよい。しかし、どちらの場合も、関連するエンジンパラメータはステップ(c)における後続の充電期間に先立って求められる。
【0021】
適切には、これら少なくとも2つのエンジンパラメータは、レール圧力およびTonである。有利な実施形態では、レール圧力、Tonおよび圧電スタック温度の3つのすべてに応じて、第3の差動電圧レベル(V)が選択される。したがって、第3の差動電圧レベルは、レール圧力、Tonおよび圧電スタック温度の関数(例えばV=f(P,Ton,Temp))として有利に選択される。第3の差動電圧レベルを出力するために、求められたエンジンパラメータが処理されかつ/または解釈される手段は、一括して「データ比較のための手段」であると考えられてよい。データ比較のための手段は、1つまたは複数のルックアップ表、データマップ、スケール関数、式など任意の適当なシステムまたはシステムの組合せでよい。
【0022】
比較的高いレール圧力では、低いレール圧力で達成されるニードルリフトと同一量のニードルリフトを達成するのに、より大きなアクチュエータ変位が必要とされることが理解されており、これは噴射器のニードルを閉じようとする力がレール内の圧力とともに増加するためである。したがって、レール圧力が比較的低いと、ニードルリフトおよびその結果として起こる燃料噴射事象を損なうことなく、賦勢状態におけるアクチュエータ両端の絶対電圧を低下させることが可能である。したがって、本発明の方法は、ある意味では、エンジンの燃料レール内の燃料圧力に応じてアクチュエータの賦勢レベル(すなわち第3の差動電圧レベル)を選択することによって、圧電アクチュエータが賦勢状態(非噴射状態)のとき燃料噴射器内の圧電アクチュエータ両端の電圧を低下させるように作動するものであり、これによって、ニードルリフトで妥協して噴射器作動の妨げになることなく、噴射器がより効率的に作動されることが可能になる。より詳細には、レール圧力が比較的低いと、エンジンは大量の燃料噴射を必要とせず、したがって、小さなニードル変位および少量の燃料噴射を達成するのに圧電アクチュエータの小規模の放電しか必要でない。したがって、燃料噴射のための差動電圧の大幅な低下を可能にするために圧電アクチュエータが高い差動電圧レベルに保持される必要はなく、したがって、先行の燃料噴射事象に続いて、第3の差動電圧レベル(V)へ噴射器の圧電アクチュエータを再充電することが可能になり得て、このVは、先行の燃料噴射事象以前のスタック両端の差動電圧レベル(すなわち第1の差動電圧レベル(V))より低いものである。そのような環境下の圧電スタック両端の電圧差を低下させることによって、アクチュエータが非噴射状態のときに受けるストレスが低下し、これは噴射器寿命のためになり得る。また、スタック両端の電圧降下がより小さいとき、イオン種がアクチュエータ保護の封緘を通り抜けてアクチュエータの中へ浸透することは、低減傾向になるはずである。反対に、例えば、エンジンのアイドル期間の後にレール圧力は急速に増加することができ、第3の差動電圧レベル(V)が第1の差動電圧レベルより大きいものに選択され得る。したがって、アクチュエータが賦勢状態で選択されたアクチュエータの差動電圧レベルは、ある程度レール圧力に比例し得る。
【0023】
圧電アクチュエータの賦勢されたレベル/状態(または「充電レベル」(VCHARGE))を参照するのは好都合であり得て、また、この説明のために、圧電アクチュエータの賦勢されたレベルが第1の差動電圧レベルおよび第3の差動電圧レベルの両方を包含すると考え得ることを理解されたい。本発明は、燃料噴射器の圧電アクチュエータの賦勢されたレベルを、できるだけ低い差動電圧に、作動期間のできるだけ長い時間にわたって維持するという目的を有する。適切には、差動電圧は250V未満または200V未満であり、有利には200Vから150Vの範囲または200Vから100Vの範囲である。より有利には、本発明の方法は、燃料噴射器が活動状態のほとんどの時間(すなわち少なくとも50%の時間)で、180Vから100Vまたは150Vから100Vの範囲にアクチュエータの充電レベルを維持するという意図を有する。
【0024】
レール圧力に応じて第3の差動電圧レベルを選択することに加えて、第3の差動電圧レベルは、次の(後続の)燃料噴射事象の所定の電気的パルス時間(Ton)の関数として変化されてよい。電気的パルス時間は、燃料噴射事象が行われる期間であると考えられることが多く、また、(消勢噴射器では)この期間は放電期間(T0からT2)から成り、これは放電段階(T0からT1)およびアクチュエータのドウェル期間(T1からT2)を含む。
【0025】
本発明の方法は、有益には、先行の(または現在の)噴射事象の前に、またはその事象中に、圧電アクチュエータ向けの望ましい充電レベル(すなわち上記の第3の差動電圧レベル)を目標とする/選択するように、次の燃料噴射事象向けに所定のTonを考慮する。この実施形態は、エンジンがアイドル状態の期間中、したがって、エンジンを低速回転させておくために限定された量のニードルリフトのみが必要とされる非常に短い時間、アクチュエータ両端の賦勢される差動電圧は、このニードルリフトに必要とされるわずかな帯電の変化を有効にするのに十分な最低レベルに低下されてよいという特別な利点をもたらす。その上、(いくつかの作動条件下では)エンジンが、その作動期間の顕著な割合にわたってアイドル状態であり得るので、本発明は、圧電アクチュエータの作動寿命の全体にわたってアクチュエータの電圧制御を最適化する。
【0026】
次の燃料噴射事象向けTonがエンジン負荷、回転速度および/またはスロットル位置に基づいて求められる限り、第3の差動電圧レベルも、エンジン負荷、回転速度またはスロットル位置、あるいはこれらエンジンパラメータのうち複数のものの組合せの関数として変化されてよい。
【0027】
別の実施形態では、第3の差動電圧レベルは、スタック温度の関数として選択されてよい。スタック温度は、複数の理由で関連するエンジンパラメータになり得る。例えば、ある動作温度では、圧電スタックは増加されたストレス下に置かれ、このことは、スタック長における大きな変化および/または急速な変化が、スタックの損傷の確率を高める恐れがあり、また、圧電スタックの静電容量が、その温度によって直接影響を及ぼされる場合があることも意味する。したがって、スタックの温度が既知であれば、温度に応じたやり方で燃料噴射器を制御し、したがって、エンジン始動時(例えばアクチュエータが比較的冷たい可能性があるとき)、およびエンジン動作の長い期間中に(例えばアクチュエータが比較的暖かいときに)、正確で予測可能な燃料計量をもたらすことが可能になり得て、アクチュエータの寿命を延ばすのに役立つ。スタックが高温での長さ変化によって損傷される可能性が高いので、賦勢された状態でのアクチュエータの差動電圧レベルは、ある程度までスタック温度に反比例するように選択されてよい。いくつかの作動条件下では、圧電スタックは、低温度より高温度で充電レベルの変化に対して応答性が高いことがあり、したがって、充電の変化量はそれに応じて調整されてよい。
【0028】
本発明者の同時係属出願である欧州特許第1811164号は、圧電アクチュエータのスタック温度が求められ得る(測定または推定される)方法を説明しており、この方法は参照によって本明細書に組み込まれる。一実施形態では、圧電スタックの温度は、作動中に直接測定され得る。しかし、燃料噴射器内のアクチュエータの封緘のために、作動中にスタック温度を、エンジン較正中に取得されかつ/または計算されかつ/またはモデル化されるエンジンパラメータの測定値に基づくなど、間接方式で測定するほうが好都合なことがある。
【0029】
適切には、第3の差動電圧レベルは、較正データを基に、1つまたは複数のルックアップ表、データマップ、式またはスケール関数から選択される。較正は、車両への燃料噴射装置の供給および/または取付けに先立って、エンジン/システムの製造業者によって好都合に実行される。
【0030】
第3の差動電圧レベルは、少なくとも2つのエンジンパラメータの階段状に変化する関数または少なくとも2つのエンジンパラメータの線形関数でよい。
【0031】
有利な実施形態では、第3の差動電圧レベルは、データマップ、ルックアップ表、スケール関数または式、関係するTonおよびレール圧力などのデータ比較の手段を用いて選択される。適切には、データ比較の手段は、Tonおよびレール圧力に基づいたデータマップまたはルックアップ表である。一実施形態では、Tonは、第3の差動電圧レベルの出力を得るために、レール圧力と共にデータマップの形で用いられる。一例として、第3の差動電圧レベルは、レール圧力およびTonがどちらもそれぞれの最小限にあるか、または最小限に近いときには、最小の適当なレベルに選択されてよい。
【0032】
あるいは、好都合な実施形態では、必要な第3の差動電圧レベルを達成するために、この出力は、より間接的なやり方で、圧電アクチュエータの1つの端子に印加されることになるトップレール電圧に対してある値を与えることにより、第3の差動電圧レベルをもたらしてよい(第2のアクチュエータ端子の低電圧レベルが既知であるものとする)。この点に関して、圧電アクチュエータの両端の差動電圧は、アクチュエータの2つの端子の各々に接続された電圧レベル間の差であるということが当業者には理解されよう。
【0033】
スタック温度も考慮されるとき、Tonおよびレール圧力に関係するデータマップ、ルックアップ表またはスケール関数からの出力が、スケール関数、または圧電スタックの温度に関係するデータマップなどのさらなるデータ比較手段へ入力されてよい。したがって、有利な一実施形態では、第3の差動電圧レベルを選択するプロセスは、レール圧力およびTonに関するデータマップから第1の出力を得るステップと、スタック温度を基に、第1の出力に対してスケール関数を適用することにより第2の出力を得るステップとを含み、この第2の出力は、必要な第3の差動電圧レベルに相当する。別の適当な実施形態では、第3の差動電圧レベルを選択するプロセスは、レール圧力およびTonに関するデータマップから第1の出力を得るステップと、第1の出力に対するスタック温度に関するデータマップから第2の出力を得るステップとを含み、この第2の出力は、必要な第3の差動電圧レベルに相当する。あるいは、第2の出力は、所望の第3の差動電圧レベルを達成するために圧電アクチュエータに接続された必要なトップレール電圧に相当する。
【0034】
別の実施形態では、第3の差動電圧レベルは、1つのスケール関数がレール圧力、Ton、および圧電スタック温度の各々に基づく3つのスケール関数を適用する処理によって選択されてよい。
【0035】
燃料噴射事象の最後に(すなわち電気パルス時間の最後に)適当な第3の差動電圧レベルを選択してから、この方法は、燃料噴射事象を終結するために、燃料噴射事象中の差動電圧レベル(すなわち第2の差動電圧レベル)から第3の差動電圧レベル(V)へスタックを充電するように、充電期間(T2からT3またはT2からT3’)にわたってアクチュエータに充電電流(ICHARGE)を印加するステップをさらに含む。
【0036】
スタックは第3の差動電圧レベルへ再充電されるが、第3の差動電圧レベルは、(少なくとも2つのエンジンパラメータに応じて)任意の適当なやり方で、例えば、アクチュエータ端子への電圧源(例えば高電圧レールVHI)のレベルを調整するか、または放電事象に続くアクチュエータの再充電期間中(T2からT3、T2からT3’)にアクチュエータに再度印加される電荷の量を制御することによって、調整されてよい。アクチュエータへの高電圧源の電圧レベルに対する調整は、任意の適当なやり方で達成されてよい。例えば、いくつかの環境では、電子回路および/または制御手段によってトップレール電圧を能動的に低下させることが可能であり得る。好都合には、アクチュエータの高電圧源(VHI)の電圧レベルは、トップレール電圧における何らかの低下に続いて、選択的に、トップレールを以前の高レベルへ再充電しないことによって、受動的なステップ式のやり方で低下される。一例として、トップレール電圧は、圧電アクチュエータを再充電するために用いられるとき、結果として低下する。
【0037】
本発明の一実施形態では、圧電アクチュエータの両端の差動電圧は、再生スイッチ回路を備える駆動回路によって制御される。再生スイッチ回路は、まず、トップレールの電圧が以前のレベル未満に低下されたときにその電圧を再生成するために使用され得る第1の蓄積コンデンサを備えてよい。適切には、再生スイッチ回路は、噴射事象の最後の再生段階中に第1の蓄積コンデンサに戻される電荷を変えるようにECUによって作動可能である。第1の蓄積コンデンサ上の電荷が駆動回路の高電圧レールの電圧レベルを決定するので、再生回路が作動される期間を調整することにより、トップレールの最高電圧レベルが制御され得て、したがって圧電アクチュエータが再充電され得る最高電圧が制御され得る。
【0038】
したがって、トップレール電圧を低下させるための受動的機構では、この方法は、トップレールを充電するのに使用される第1の蓄積コンデンサとトップレール間の接続を(例えばスイッチによって)所定期間遮断するステップを含んでよい。切断の期間中、トップレールの電圧における何らかの降下、例えば(トップレールによって)アクチュエータを再充電することに起因する降下は、駆動回路の第1のコンデンサからのトップレールの充電によって補償されることがない。
【0039】
トップレール電圧を低下させるための受動的機構では、トップレール電圧は、例えば燃料噴射事象につき数ボルトずつ(例えば10V以下、0から5Vずつ、など)低下されてよい。稼動中のエンジン内の燃料噴射事象の頻度が与えられると、トップレールの電圧は、このようにして数秒につき50Vずつ低下されてよい。
【0040】
別の実施形態では、駆動回路は、蓄積されたかなりの量の電荷を能動的に除去するために、前述の第1の蓄積コンデンサを能動的に放電する手段を備えてよく、それによって能動的にトップレールの電圧を低下させる。
【0041】
別の実施形態では、本発明の方法は、アクチュエータの両端の第3の差動電圧レベルを達成するように、アクチュエータに充電電流が印加される充電期間(または充電時間、T2からT3またはT2からT3’)を選択するステップを含んでよい。そのような実施形態では、例えば上記で論じられたように、トップレール(高電圧レール)の最高電圧は、一定かまたは変化するものでよい。選択された充電期間は、好都合には、アクチュエータの両端の最大の差動電圧レベルを制御するように用いられてよい。例をあげると、例えば250V一定のトップレール電圧および例えば50V一定の低いレール電圧の場合、充電期間(T2からT3またはT2からT3’)を短縮すると第3の差動電圧レベル(V)が低下することになる(短縮された充電期間が、アクチュエータがトップレールの電圧に達するのに必要な時間より短いものとする)。したがって、この実施形態では、この方法は、少なくとも1つのエンジンパラメータに応じて第3の差動電圧レベルを選択するステップに続いて、選択された第3の差動電圧レベルを達成するように、充電電流が印加される充電時間を選択するステップを含む。
【0042】
前述の方法では、アクチュエータ両端の電圧における第1の差動電圧レベルから第3の差動電圧レベルへの(第2の差動電圧レベル経由での)変化は、階段状に(例えば中間電圧レベルV3’経由で)または単一ステップで実施されてよい。所望の、目標の第3の差動電圧レベルが、第3の差動電圧レベルを連続的に目標へ収束させる複数の中間電圧レベルV3’経由で達成されるように、トップレール電圧を低下させる(したがって第3の差動電圧レベルを低下させる)ための受動的機構が、階段状のやり方で好都合に実施される。例えば、連続的な複数の燃料噴射事象を実行することにより目標の第3の差動電圧レベルVを得ることができ、各事象がトップレールの電圧を数ボルトずつ(例えば燃料噴射事象当り1Vから5V)低下させる働きをし、したがって(前述のように)所望の第3の差動電圧レベルが達成されるまで圧電スタック両端の差動電圧を低下させる。
【0043】
したがって、一実施形態では、本発明の方法のステップ(c)は、(b1)ステップ(a)および(b)を繰り返すステップと、(b2)第2の差動電圧レベルから第1の差動電圧レベルと第3の差動電圧レベルの中間の差動電圧レベル(V3’)へスタックを充電するように、アクチュエータに対して、充電期間(T2からT3’)にわたって充電電流(ICHARGE)を印加するステップと、(b3)第3の差動電圧レベルと同等またはそれを近似する(すなわち収束し続ける)中間の差動電圧レベルV3’までステップ(b1)および(b2)を繰り返すステップとを含んでよく、第1の(すなわち先行の)ステップ(b2)で得られた中間の差動電圧レベル(V3’)は、第2の(すなわち、それに続く)ステップ(b1)における第1の差動電圧レベル(V)であると解釈される。
【0044】
ステップ(a)、(b)、(b1)、および(b2)を実行すると、非噴射状態のときの高いアクチュエータの差動電圧レベル(V、V3’)が、目標とする第3の差動電圧レベル(V)に到達するまで階段状に低下されるように、適切には、中間の差動電圧レベル(V3’)は第1の電圧レベルより低いものである。好都合には、賦勢された圧電アクチュエータの差動電圧レベルの低下は、例えば(前述のように)トップレールに対して電圧源を供給することができる(第1の)コンデンサによる駆動回路のトップレールの再充電を妨げることにより、受動的機構によって行われる。しかし、代替実施形態では、中間電圧レベルは能動的機構によって達成される。差動電圧レベルを低下させるための能動的機構では、例えば、アクチュエータの圧電スタックが駆動回路のトップレールから充電電流を受け取る充電期間(T2からT3’)をECUが制御してよい。あるいは、圧電スタックの賦勢された差動電圧レベルを上昇させる必要があるときは、能動的機構は、例えばトップレールを再生するための第1の蓄積コンデンサ上の電荷量を増加するかまたはトップレールの再生時間を増加することによって、トップレールの電圧(VHI)を上昇させるステップを含んでよい。
【0045】
本発明は、圧電アクチュエータの電圧を単に低下(または上昇)させると、特に燃料噴射量の精度について、余分のアーチファクトをもたらす恐れがあることをさらに認める。この点に関して、圧電材料の固有の特性、圧電アクチュエータのスタックの変位(したがって噴射バルブニードルの変位の程度)は、総合的な電荷の変化(すなわちスタックに付加されたかまたはスタックから除去された電荷の量)ばかりでなく、アクチュエータの両端子間の差動電圧の大きさにも左右される。アクチュエータの両端子間の差動電圧の大きさが、例えば200Vから150Vへ低下されると、アクチュエータ変位の大きさも、差動電圧降下に対応して低減され得る。一例として、電圧制御によってアクチュエータを作動させると、例えば200Vの差動電圧レベルから始まる150Vの差動電圧降下は、150Vから0Vまでの同等の150Vの差動電圧降下より、圧電スタックのより大きな変位を(したがって関連する噴射バルブニードルのより大きな変位を)もたらし得る。電荷制御によってアクチュエータを作動させるとき、類似の問題が存在し得る。したがって、絶対差動電圧または圧電アクチュエータ上の電荷を変化させることによって、アクチュエータの作動も影響を与えられ得る。
【0046】
一方、燃料噴射バルブを制御するために使用される圧電アクチュエータ上の電荷の変化(または差動電圧の変化)速度は、バルブニードル変位の速度を決定し、したがって燃料噴射事象を開始または終了するためのそれぞれの噴射バルブの開および/または閉の速度を決定し、こうして燃料噴射事象中に噴射される燃料の量を決定することができる。換言すれば、例えば200V一定の初期差動電圧では、圧電スタックのより速い放電によってスタックの収縮がより速くなり、関連する燃料噴射ノズルが開くのがより速くなり得て、かつ特定の期間にわたって噴射される燃料の量が増加する可能性がある。
【0047】
実際上、アクチュエータの圧電材料の固有の特性および噴射器設計の両方(燃料噴射器内のアクチュエータの伸長(または収縮)の速度および量の両方を意味する)が、作動する差動電圧レベルと、差動電圧の変化と、アクチュエータと接触する燃料の圧力と、アクチュエータの温度とを含む複数の要因によって影響を及ぼされ得る。圧電アクチュエータの応答の程度および速度に影響を与え得る要因(例えばエンジンパラメータ)のうちいくつかに対処するために、本発明の方法は、1つまたは複数の補償を適用するステップをさらに含んでよい。
【0048】
したがって、本発明の方法の一実施形態は、(i)ステップ(a)でスタックを放電させるのに用いられる放電電流(IDISCHARGE)を選択するための放電電流補償、(ii)ステップ(c)でスタックを充電するのに用いられる充電電流(ICHARGE)を選択するための充電電流補償、および(iii)ステップ(b)で第2の差動電圧レベルを達成するためにスタックから除去される電荷量を選択するための開放放電補償のうち少なくとも1つを適用するステップをさらに含んでよい。
【0049】
ステップ(i)では、噴射バルブを所定の速度で開く(圧電スタックの収縮および結果として生じるバルブニードルリフトによって)ために、適切な放電電流(IDISCHARGE)を選択するように放電電流補償が適用される。このようにして、燃料噴射事象の開始は、アクチュエータの圧電スタックの収縮速度を制御することにより制御され得る。燃料噴射器バルブの開放速度が、ほとんど、実質的に、または完全に、エンジンパラメータに対して独立したものとなるように、放電電流補償の量は、適切には、1つまたは複数のそれらのパラメータに応じて決定される。
【0050】
ステップ(ii)では、(圧電スタックの伸長および結果として生ずるバルブニードル閉鎖によって)噴射バルブを所定の速度で閉じるために、適切な充電電流(ICHARGE)を選択するように充電電流補償が適用される。したがって、燃料噴射事象の終了ポイントは、アクチュエータの圧電スタックの伸長速度を制御することにより制御され得る。燃料噴射器バルブの閉鎖速度が、ほとんど、実質的に、または完全に、エンジンパラメータに対して独立したものとなるように、充電電流補償の量は、1つまたは複数のそれらのパラメータに応じて適切に決定される。
【0051】
ステップ(iii)では、(圧電スタックの収縮および結果として生ずるバルブニードルリフトによって)噴射バルブを所定の量だけ開くために、圧電スタックから除去されることになる電荷の適切な量を選択するように開放放電電流補償が適用される。このようにして、燃料噴射事象中に関連するエンジンシリンダ内に噴射される燃料の量は、既知の期間中に噴射ニードルとその座の間を通過し得る燃料の量を制御することにより制御され得る。繰り返しになるが、燃料噴射器バルブの開放の程度が、ほとんど、実質的に、または完全に、エンジンパラメータに対して独立したものとなるように、開放放電補償の量は、1つまたは複数のそれらのパラメータに応じて決定される。
【0052】
有利な実施形態では、この方法は、前述の放電電流補償、充電電流補償および開放放電補償から選択される2つの補償を適用するステップを含み、より有利には、この方法は、1つまたは複数のエンジンパラメータに応じて3つの補償をすべて適用するステップを含む。1つまたは複数のエンジンパラメータは、レール圧力(P)と、圧電スタック温度(Temp)と、第1の差動電圧レベル(V)とから適切に選択される。
【0053】
1つまたは複数のエンジンパラメータは、(1)放電期間(T3からT0)の開始に先立って、かつ/または(2)放電期間中(T0からT1)に、かつ/または(3)特定の燃料噴射事象のドウェル期間中(T1からT2)に、好都合に求められる(すなわち測定または推定される)。適切には、放電電流補償、したがって放電電流(IDISCHARGE)は、放電期間の最初に適用され得るように放電期間の開始に先立って求められる。好都合には、放電期間の開始に先立って、放電期間中に、または特定の燃料噴射事象のドウェル期間中に、充電電流補償が求められ、その結果、ドウェル期間の最後に(すなわち充電段階T2からT3、T2からT3’の最初に)充電電流補償が適用されて燃料噴射事象を終結させる。一般に、開放放電補償は、放電期間の開始に先立って、または放電期間中(T0からT1)に求められ、放電期間中または放電期間の最後に適用されて、第2の差動電圧レベルにあるアクチュエータに対して(すなわち燃料噴射器が開いているとき)充電レベルを制御する。
【0054】
有利には、本発明の方法は、(i)ステップ(a)でスタックを放電させるのに用いられる放電電流(IDISCHARGE)を選択するための放電電流補償、(ii)ステップ(c)でスタックを充電するのに用いられる充電電流(ICHARGE)を選択するための充電電流補償、および(iii)ステップ(b)で第2の差動電圧レベルを達成するためにスタックから除去される電荷量を選択するための開放放電補償を適用するステップを含み、放電電流補償、充電電流補償および開放放電補償は、各々が、レール圧力(P)、圧電スタック温度(Temp)および第1の差動電圧レベル(V)の関数として別々に求められる。
【0055】
第2の態様では、本発明は、圧電要素のスタックを有する圧電アクチュエータを含む燃料噴射器向け駆動回路を提供するものであり、駆動回路は、(A)スタック両端の第1の差動電圧レベル(V)からスタック両端の第2の差動電圧レベル(V)へスタックが放電するように(噴射事象を開始するように)、放電期間(T0からT1)にわたってアクチュエータに放電電流(IDISCHARGE)を印加するための1つまたは複数の第1の要素と、(B)所定期間(T1からT2、「ドウェル期間」。)、(この間噴射事象が維持される)第2の差動電圧レベルを維持するための1つまたは複数の第2の要素と、(C)第2の差動電圧レベルから第3の差動電圧レベル(V)へスタックを充電するように(噴射事象を終結するように)、充電期間(T2からT3、T2からT3’)にわたってアクチュエータに充電電流(ICHARGE)を印加するための1つまたは複数の第3の要素と、(D)スタックが充電される第3の差動電圧レベルが少なくとも2つのエンジンパラメータに応じて選択されるように、アクチュエータに充電電流(ICHARGE)を印加する前にこれら少なくとも2つのエンジンパラメータを求めるための1つまたは複数の第4の要素とを備え、これら少なくとも2つのエンジンパラメータは、燃料レール内の燃料圧力(「レール圧力」または「P」と呼ばれる)、Ton(燃料噴射事象のオン時間)、および圧電スタック温度(Temp)から選択される。
【0056】
本発明の第1の態様に関して説明されたように、本発明の第2の態様では、スタックが充電される第3の差動電圧レベルは、少なくともレール圧力およびTonの関数として適切に選択される。より適切には、第3の差動電圧レベルは、少なくともレール圧力、Tonおよび圧電スタック温度の関数(Temp)として選択される。
【0057】
一実施形態では、本発明の駆動回路は、(E)スタックを放電させるのに用いられる放電電流(IDISCHARGE)を選択するように放電電流補償を適用するための1つまたは複数の第5の要素、および/または(F)スタックを充電するのに用いられる充電電流(ICHARGE)を選択するように充電電流補償を適用するための1つまたは複数の第6の要素、および/または(G)噴射バルブを必要な程度まで開くために圧電スタックから除去することになる電荷の量を選択するように開放放電補償を適用するための1つまたは複数の第7の要素、および(H)少なくとも2つのエンジンパラメータを求めるための1つまたは複数の第8の要素をさらに含み、これら少なくとも2つのエンジンパラメータは、レール圧力(P)、圧電スタック温度(Temp)および第1の差動電圧レベル(V)から選択される。
【0058】
好都合には、本発明の第1および第2の態様における補償はECUによって求められ、駆動回路によって適切に実施されてよい。
【0059】
このようにして、本発明の方法に関して説明されたように、駆動回路は、燃料噴射器内の圧電アクチュエータを制御して燃料噴射器の開閉を調整するのに有利に使用されてよく、また、それによって、燃料噴射事象でエンジンシリンダに送出される燃料の割合および量を正確に制御する。適切には、放電電流補償、充電電流補償および開放放電補償は、各々が、レール圧力(P)、圧電スタック温度(Temp)および第1の差動電圧レベル(V)の関数として別々に求められる。
【0060】
本発明の第2の態様の駆動回路の実施形態は、本発明の第1の態様の方法のステップのうち任意のものを実行/実施するのに必要なさらなる要素または手段を備えてよいことが理解されよう。
【0061】
第3の態様では、本発明は、実行環境で実行されたときに、本発明の任意の方法を実施するように作動可能な少なくとも1つのコンピュータプログラム・ソフトウェア部分を含むコンピュータプログラム製品を提供する。
【0062】
第4の態様では、本発明は、本発明の第3の態様のコンピュータソフトウェア部分または各コンピュータソフトウェア部分が格納されるデータ格納媒体を提供する。
【0063】
第5の態様では、本発明は、本発明の第4態様のデータ格納媒体が備わっているマイクロコンピュータを提供する。
【0064】
本発明のこれらの態様および他の態様、目的および利点は、本発明の詳細および添付の特許請求の範囲を検討することによって明瞭かつ明白になる。
【0065】
次に、本発明が、添付図面を参照しながら例として説明される。
【発明を実施するための最良の形態】
【0066】
図1Aおよび図1Bを参照すると、自走車両エンジンなどのエンジン8が、第1の燃料噴射器12aおよび第2の燃料噴射器12bを備える噴射器機構を有して全体的に示される。燃料噴射器12a、12bは、各々が、圧電要素9のスタックを備える圧電アクチュエータ11および噴射器バルブニードル13を有する。圧電アクチュエータ11は、バルブニードル座7に対して噴射器バルブニードル13の位置を制御するように作動可能である。
【0067】
圧電アクチュエータ11の両端子間の電圧次第で、バルブニードル13は、バルブニードル座7を分離する(この場合、燃料は、1組のノズル放出口3を介してエンジン8の関連づけられた燃焼室/シリンダ(図示せず)へ送出される)か、またはバルブニードル座7と係合される(この場合、燃料供給は阻止される)。
【0068】
燃料噴射器12a、12bは、例えば圧縮点火内燃エンジンでエンジン8にディーゼル燃料を噴射するように用いられてよく、またはスパーク点火内燃エンジンでエンジン8に燃焼性ガソリンを噴射するように用いられてよい。
【0069】
燃料噴射器12a、12bは、エンジン8の燃料噴射器の第1の噴射器セット10を形成し、駆動回路20aによって制御される。実際上、エンジン8には2つ以上の噴射器セット(10)が備わっていてよく、各噴射器セットは1つまたは複数の燃料噴射器を含み、各噴射器セットはそれ自体の駆動回路20aを有する。したがって、図1Aでは、エンジンは2つの燃料噴射器12a、12bを有して示されるが、任意の適当な数の燃料噴射器がエンジンに設けられてよいことは理解されよう。例えば、エンジンは1つまたは複数の燃料噴射器を含んでよく、例えば1、2、3、4、5、6、10、12、16またはそれ以上の燃料噴射器を含んでよい。可能なところでは、以下の説明は、明瞭さのために1つだけの噴射器セットに関する。以下に説明される本発明の実施形態では、燃料噴射器12a、12bは、マイナス充電変位タイプである。したがって、燃料噴射器12a、12bは、放電段階中にエンジンシリンダに燃料を噴射するために開かれ、充電段階中に燃料噴射を終結するために閉じられる。
【0070】
エンジン8はエンジン制御ユニット(ECU)14によって制御され、ECUには駆動回路20aが内蔵されている。さらに、ECU14は、マイクロプロセッサおよびメモリ(図示せず)を有利に含んでよく、これは、例えば図示の噴射器制御ユニット21(ICU)を使用して、燃料噴射器機構の制御を含むエンジン8の作動を制御する様々なルーチンを実行するように配置される。ECU14は、連続的に複数のエンジンパラメータ23(回転速度および負荷など)を監視し、次いでICU21にエンジン出力要求信号を送ってよい。ICU21は、要求された噴射事象シーケンスを計算してエンジンに対して必要なパワーを供給し、それに応じてECU14の噴射器駆動回路20aを制御する。その結果として、噴射器は、駆動回路20aによって電流を印加または除去され、要求された噴射事象シーケンスが達成される。
【0071】
ECU14は、約12Vのバッテリ電圧VBATを有するエンジンバッテリ(図示せず)に接続される。ECU14は、エンジン8の他の要素によって必要とされる電圧をバッテリ電圧VBATから生成する。
【0072】
ECU14の作動のさらなる詳細およびエンジン8を作動させるうえでのその機能が、国際公開第2005/028836号に説明され、特に噴射器機構の噴射サイクルが説明される。ECU14のマイクロプロセッサ(図示せず)と駆動回路20aの間で信号が伝送され得て、駆動回路20aから受け取られた信号に含まれるデータは、ECU14のメモリ(図示せず)に書き込まれ得る。
【0073】
一連の燃料噴射事象を制御するために、駆動回路20aは、放電段階、充電段階および再生段階の3つの主要な段階で作動すると考えられてよい。放電段階の間、駆動回路20aは、1つまたは複数の燃料噴射器12a、12bを放電させるように作動し、噴射器バルブニードル13をバルブシート7から持ち上げて燃料を噴射する。一般に、噴射事象は、放電段階の直後のドウェル期間を含み、この期間中は、圧電アクチュエータに出入りする電流は実質的に存在しない。したがって、ドウェル期間中、アクチュエータは放電された収縮状態にとどまり、関連するエンジンシリンダへの燃料噴射が継続する。燃料噴射段階は、充電段階によって終結される。充電段階中、駆動回路20aは、以前に放電された燃料噴射器12a、12bを充電するように作動して噴射器バルブを閉じ、したがって燃料噴射を終結する。再生段階中、後続の噴射サイクル用に、第1の蓄積コンデンサC1および第2の蓄積コンデンサC2(図1に図示せず)に電荷の形でエネルギーが補充されてよく、その結果、専用の電力供給が不要になり得る。これらの作動段階の各々は、図2に示される適当な駆動回路を参照しながら、さらに詳細に説明される。
【0074】
図2を参照すると、駆動回路20aは、第1の高電圧レールVHIおよび第2の低電圧レールVLOを備える。第1の電圧レールVHIは、第2の電圧レールVLOより高い電圧にある。駆動回路20aは、双方向電流経路としての働きをする中間の電流経路32を有するハーフHブリッジ回路を含む。中間の電流経路32は、燃料噴射器12a、12bの噴射器セット10と直列に結合されたコイル33を有する。燃料噴射器12a、12bおよび関連する切換え回路は、互いに並列に接続される。
【0075】
各燃料噴射器12a、12bは、コンデンサの電気的特性を有し、その圧電アクチュエータ11は、圧電アクチュエータ11の低電位側(−)端子と高電位側(+)端子の間の電位差であるホールド電圧に充電可能である。
【0076】
駆動回路20aは、第1の蓄積コンデンサC1および第2の蓄積コンデンサC2をさらに備える。蓄積コンデンサC1、C2の各々は、プラス端子およびマイナス端子を有する。さらに、各蓄積コンデンサC1、C2は、高電位側および低電位側を有し、高電位側はコンデンサのプラス端子上にあり、低電位側はマイナス端子上にある。第1の蓄積コンデンサC1は、高電圧レールVHIと低電圧レールVLOの間に接続される。第2の蓄積コンデンサC2は、低電圧レールVLOとアース電位レールVGNDの間に接続される。
【0077】
さらに、駆動回路20aは、ECU14によって給電される電圧源V(すなわち電源22)を有するので、駆動回路20aには専用電源がない。電圧源Vは、低電圧レールVLOとアース電位レールVGNDの間に接続され、第2の蓄積コンデンサC2にエネルギーを供給するように配置される。再生段階中に、第1の蓄積コンデンサC1へ、電荷の再生によってエネルギーが供給される。一般に、電圧源Vは、55Vなど、50Vと60Vの間にある。
【0078】
駆動回路20aには、第1および第2の燃料噴射器12a、12bの充放電作動をそれぞれ制御するための充電スイッチQ1および放電スイッチQ2がある。充電スイッチQ1および放電スイッチQ2は、例えばECU14のマイクロプロセッサ(図示せず)によって作動可能である。充電スイッチQ1および放電スイッチQ2の各々は、閉じられたとき、そのスイッチを通る1方向の電流の流れを可能にし、開かれたとき電流の流れを阻止する。充電スイッチQ1は、その両端に接続されている第1の再循環ダイオードRD1を有する。同様に、放電スイッチQ2は、その両端に接続されている第2の再循環ダイオードRD2を有する。これらの再循環ダイオードRD1、RD2は、燃料噴射器12a、12bの少なくとも1つからエネルギーが回復される駆動回路20aの作動エネルギー再循環段階中に、第1の蓄積コンデンサC1および第2の蓄積コンデンサC2へそれぞれ再循環電流が電荷を戻すのを可能にする。
【0079】
第1の燃料噴射器12aは、関連する第1の選択スイッチSQ1と直列に接続され、第2の燃料噴射器12bは、関連する第2の選択スイッチSQ2と直列に接続される。繰り返しになるが、選択スイッチSQ1、SQ2の各々は、マイクロプロセッサ(図示せず)によって作動可能であり得る。第1のダイオードD1は、第1の選択スイッチSQ1と並列に接続され、第2のダイオードD2は、第2の選択スイッチSQ2と並列に接続される。一例として、関連する選択スイッチSQ1が有効化され、放電スイッチQ2が作動されるとき、放電電流(IDISCHARGE)が選択された燃料噴射器12aを通って放電方向に流れることが可能になる。第1のダイオードD1および第2のダイオードD2の各々によって、回路の充電作動段階中に、それぞれ第1の燃料噴射器12aおよび第2の燃料噴射器12bの端子から端子まで充電電流(ICHARGE)が充電方向に流れることが可能になる。
【0080】
駆動回路20aには、噴射器12a、12bと並列に再生スイッチ回路が含まれ、再生段階を実施する。再生スイッチ回路は、第2の蓄積コンデンサC2をコイル33に接続する働きをする。再生スイッチ回路は、マイクロプロセッサ(図示せず)によって作動可能な再生スイッチRSQを備える。第1の再生スイッチダイオードRSD1は、再生スイッチRSQと並列に接続され、第2の再生スイッチダイオードRSD2は、第1の再生スイッチダイオードRSD1および再生スイッチRSQと直列に結合される。第2の再生スイッチダイオードRSD2は、保護ダイオードとして働く。というのは、第1および第2の再生スイッチダイオードRSD1、RSD2は互いに対向しており、その結果、もし再生スイッチRSQが閉じられて第2の電圧レールVLOから電流が流れることがなければ、再生スイッチ回路を電流が流れないはずだからである。したがって、充電段階中には、電流が再生スイッチ回路を通過することができない。
【0081】
中間の電流経路32は、電流の検出および制御手段34を含み、これはマイクロプロセッサ(図示せず)と通信するように配置されてよい。電流の検出および制御手段34は、中間の電流経路32中の電流を検出し、かつ検出された電流を所定の電流閾値と比較するように配置される。電流の検出および制御手段34は、検出された電流が所定の電流閾値と実質的に等しいとき出力信号を生成する。
【0082】
電圧検出手段(図示せず)も設けられて、噴射のために選択された1つまたは複数の燃料噴射器12a、12bの両端で検出された電圧VSENSEを検出する。第1および第2の蓄積コンデンサC1およびC2の両端の電圧VC1、VC2、ならびに電源22の電圧を検出するために電圧検出手段が使用される。第1および第2の蓄積コンデンサC1、C2の両端で検出された電圧レベルVC1、VC2が実質的に所定の電圧レベルと同一であるとき再生段階は終結する。
【0083】
駆動回路20aは、電流の検出および制御手段34の出力、燃料噴射器12aおよび12bのアクチュエータ11のプラス端子(+)から検出された電圧VSENSE、ならびに任意のマイクロプロセッサ(図示せず)およびその関連するメモリ(これも図示せず)からの様々な出力信号を受け取るための制御論理回路30も含む。制御論理回路30は、充電スイッチQ1および放電スイッチQ2、第1および第2の選択スイッチSQ1、SQ2、ならびに再生スイッチRSQの各々向けに制御信号を生成するように、様々な入力を処理するためにマイクロプロセッサによって実行可能なソフトウェアを含む。選択された噴射器のアクチュエータが充電または放電され、したがって燃料供給が制御されるように、噴射器選択スイッチSQ1、SQ2、充電スイッチQ1および放電スイッチQ2を制御することによって、噴射器12a、12bを通り変化する電流を必要な期間駆動することが可能である。噴射器駆動回路20aが、ECU14の内蔵部品を形成するものとして図1Aに示されるが、これが必須ではなく、噴射器駆動回路20aは、ECU14から分離したユニットでよいことが理解されよう。
【0084】
一般に、第1の噴射器12aからの燃料の単一の主噴射がある燃料噴射事象シーケンス中は、関連する駆動回路20aが以下のようにして作動されてよい。
【0085】
駆動回路20aは、燃料噴射器12a(または必要に応じて12b)の圧電アクチュエータ11に駆動パルス(または電圧波形)を送出する。駆動パルスによって、アクチュエータ11の圧電スタック9の両端の差動電圧が、充電電圧V(すなわち第1の差動電圧レベル)と放電電圧V(すなわち第2の差動電圧レベル)の間で変化する。
【0086】
非噴射状態のとき、第1の噴射器選択スイッチSQ1が開かれ、充電選択スイッチQ1および放電選択スイッチQ2の両方が開かれる。作動のこのステージの間、アクチュエータ11の両端子間の差動電圧は、第1の差動電圧レベル(すなわちV)にあり、これは約200Vでよい。しかし、本発明によれば、圧電アクチュエータ11の作動中にできるだけ長く、Vをできるだけ低くすることが望ましい。したがって、図1および図2に関して説明された特定の装置に限定されることなく、一実施形態では、本発明の方法は、アクチュエータ11の賦勢された(すなわち充電された)状態のできるだけ長い期間にわたって最小の適当な電圧レベル(すなわち第3の差動電圧レベル、V)にVを調整することを目標とする。例えば、第3の差動電圧レベルのVは、200Vと150Vの間または200Vと100Vの間など、有利には200V未満である。有利には、Vは180V未満(例えば180Vと150Vの間または180Vと100Vの間)であり、あるいは、より有利には、約150Vなど、160V未満である。有益には、第3の差動電圧レベルは、圧電アクチュエータの作動期間の少なくとも20%、少なくとも40%または少なくとも50%にわたって維持される。いくつかの有利な実施形態では、第3の差動電圧レベルは、圧電アクチュエータの作動期間の少なくとも75%、または少なくとも90%にわたって維持される。
【0087】
第1の噴射器12aに燃料を送出させるために、第1の噴射器選択スイッチSQ1が有効化され(すなわち閉じられ)、噴射器放電選択スイッチQ2が有効化される(すなわち閉じられる)。これによって、電荷が、噴射器12aからコイル33および放電選択スイッチQ2を通ってアース電位レールGNDへ流れる。噴射器駆動回路20aは、例えばECU14のメモリに格納されたルックアップ表から、要求された放電期間または時間(この間アクチュエータ11からアースGNDへ放電電流IDISCHARGEが移される)を求める。これは放電段階(T0からT1)と呼ばれてよい。一旦放電時間が経過すると、噴射器放電スイッチSQ1が無効化されて(すなわち開かれて)電荷移動が終結される。電荷移動の結果として、噴射器12aの両端の差動電圧は、比較的低い第2の差動電圧レベル(V)へ低下される。一般に、Vの値は、ECU14(またはデータ操作の類似の手段)のメモリに格納されたルックアップ表から、既知の賦勢された差動電圧(V)を基に、VからVまでの電圧降下がアクチュエータ11の圧電スタック9で必要な応答(すなわち収縮の既知の長さ)を引き起こして所望の燃料噴射事象を開始するのに十分なように、選択される。繰り返しになるが、図1および図2に関して説明された特定の装置によって限定されることなく、一実施形態では、本発明の方法は、圧電スタックの所望の収縮をもたらし、したがって燃料噴射の所望量をもたらすために、アクチュエータの両端の必要な電圧降下が実現されるとき到達され得るVのレベルに結果として生じる影響に関係なく、最低の適当な電圧レベルにVを維持することを目標とする。一般に、第2の差動電圧レベル(すなわちV)は、−50Vから0Vの範囲、または適切には−30から0Vの範囲など、−50Vから+50Vの間にある。しかし、いくつかの実施形態では、(使用するとき、ほとんどの放電段階によって、Vが、0V未満または少なくとも約−10V未満には低下しないように)0Vから+50Vの範囲にVを実質的に維持することは有利であり得る。したがって、本発明の方法は、Vを最低の適正値に維持するようにさらに作動してよいことが意図され、このことによって、Vがほぼ0V以上、例えば0Vから50Vの範囲に実質的に維持され得ることになる。この実施形態では、使用するとき、Vは、特に主噴射事象中に前述の実施形態のものより高くてよい(前述の実施形態では、Vが、主噴射事象中にしばしば0V未満に降下し得る)。
【0088】
アクチュエータ両端の差動電圧は、通常、噴射器が燃料を噴射している比較的短い期間にわたって第2の差動電圧レベルにとどまる(または「ドウェルする」)ことになる。このドウェル期間は、エンジンの燃料要求に従って、例えば回転速度および負荷など1つまたは複数のエンジンパラメータを基に、ECU14のメモリに格納されたルックアップ表から好都合に選択される。
【0089】
噴射事象を終結するために、噴射器充電スイッチQ1が有効化されて、高電圧レールVHIから充電選択スイッチQ1を通って噴射器12aの中へ電荷を流し、それによって、噴射器12aの両端子間の例えば約+200Vの差動電圧を回復する。これは充電段階(T2からT3)と呼ばれる。本発明によれば、一旦噴射事象が終結すると、アクチュエータ11の両端の新規の電圧は、本明細書の他の個所で説明されるように第3の差動電圧レベルVまたはV3’である。充電段階中に噴射器充電スイッチQ1が有効化される時間および頻度は、アクチュエータ11の、先行の放電段階の放電時間、選択された賦勢状態または第3の差動電圧レベルに基づくものでよい。
【0090】
既に論じられたように、有利には、放電事象の直後の、アクチュエータの充電された差動電圧レベル(すなわちV)は、放電事象に先行する充電された差動電圧レベル(すなわちV)より低い。しかし、いくつかの環境では、例えばエンジンの要求の増加に対して応答するなど、後続の燃料噴射事象が、先行の噴射事象より、アクチュエータの両端でより大きな電圧降下を必要とするとECU14が判断したとき、第3の差動電圧レベルは第1の差動電圧レベルより高くてよいことを理解されたい。したがって、ECU14が例えば170Vの第3の差動電圧レベルを選択しており、先行の充電電圧レベルが150Vであるなら、第3の差動電圧レベルが第1の差動電圧レベルより高いことになる。もちろん、場合によっては、例えば燃料要求が比較的不変の期間中には、第3の差動電圧レベルは第1の差動電圧レベルとほぼ同じでよい。
【0091】
最後に、蓄積コンデンサC1の両端の電荷を再生成するための再生段階があってよい。再生段階の間、第1の蓄積コンデンサC1上のエネルギーが所定のレベルに達するまで、再生スイッチRSQおよび放電スイッチQ2は各々有効化される。
【0092】
充電段階および放電段階ならびに再生段階における駆動回路20aの様々な作動方式は、国際公開第2005/028836A1号に詳細に説明されており、これは参照によって本明細書に組み込まれる。
【0093】
有利には、放電段階中(T0からT1)、噴射事象を開始するために、選択された燃料噴射器12aの両端の差動電圧が適切な放電されたレベル(V)に低下されるように、電荷の適正量が圧電アクチュエータから除去されるまで、放電スイッチQ2は、ECU14のマイクロプロセッサ(図示せず)によって発せられ得る信号の制御の下で自動的に開閉される。次いで、噴射が必要とされる所定の期間(ドウェル期間)の後、燃料噴射器12aは、充電スイッチQ1を閉じることにより閉じられる。一般に、後続の充電段階中(T2からT3、T2からT3’)、圧電アクチュエータに電荷の適正量が付加されて新規の賦勢された(すなわち充電された)差動電圧(V)を達成するまで、充電スイッチQ1は絶えず開閉される。したがって、充電電流および放電電流は、所望のレベルで適切に制御される。同様に、再生段階中、第1の蓄積コンデンサC1上の電荷が所定のレベルに達して高電圧レールの所望の電圧VHIを確立するまで、放電スイッチQ2は周期的に開閉される。
【0094】
図3Aは、前述のように、単一の燃料噴射を含む一般的な噴射事象の電圧プロファイルを示し、図3Bは、図3Aの電圧プロファイルに対応する駆動電流プロファイルを示す。T0からT1の期間にわたって、振幅変調された放電電流をRMS電流レベルIDISCHARGEで噴射器を通して駆動することにより、放電段階が時間T0で開始される。放電電流は、放電段階の最後にすなわち時間T1でオフにされ、噴射器は時間T2までドウェル段階にとどまる。時間T1と時間T2の間で、噴射器は燃料を噴射する。時間T2でのアクチュエータ11の両端の差動電圧はVと呼ばれ得る。一般に、VはVと等しく、この説明の目的で、VがVと等しいものと仮定される。しかし、いくつかの実施形態では、差動電圧レベルVがわずかにVと異なることはあり得て、そのような実施形態も、本明細書に説明された本発明の範囲に含まれる。この場合、ステップ(a)の第2の差動電圧レベルはVであると考えられ、ステップ(c)の第2の差動電圧レベルはVであると考えられる。ステップ(b)における「第2の差動電圧を維持する」は、一般に「実質的に第2の差動電圧を維持する」と解釈される。時間T2では、充電電流ICHARGEがオフにされて噴射器が差動電圧レベルV(またはV)で非噴射状態に戻される時間T3まで、充電段階にわたって、RMS電流レベルICHARGEにある振幅変調された充電電流が噴射器に供給される。
【0095】
噴射器の実用寿命は、ほとんど非噴射状態で費やされるので、ほとんどの作動寿命は、アクチュエータの両端子間に高い差動電圧(V、V、V’)を有して費やされることが理解されよう。先に論じられたように、このことは、耐久性など、噴射器の性能の程度に対して有害であり得る。
【0096】
本発明の方法は、一定の環境では、アクチュエータの両端子間の差動電圧は、必ずしも充電段階(T2からT3’)の最後に初期の非噴射状態と同じ高い差動電圧レベル(V)に戻される必要があるとは限らないと理解することにより、圧電燃料噴射器の寿命向上を改善するために、図1および図2の駆動回路によって実施されてよい。本発明のこの有利な方法を実施する方式の1つが、図4に関して説明される。
【0097】
図4に示されるように、最初に、時間T0では、噴射器は非噴射状態にあって、アクチュエータ両端の差動電圧(第1の差動電圧レベルV)は約+200Vでよい。このとき、(i)コモンレール内の燃料の圧力(レール圧力)、(ii)後続の燃料噴射事象の所定のドウェル期間(Ton)、および(iii)圧電スタック温度から選択される少なくとも2つのエンジンパラメータが求められてよい。一例として、燃料圧力は、ECU14に供給されたレール圧力センサ信号から好都合に求められ得る。Tonは、ECU14に格納されたルックアップ表(または類似のもの)から選択され、かつ、回転速度および負荷の平均、またはより適切にはそれらの瞬時値など1つまたは複数のエンジンパラメータを基に、エンジンの燃料要求から決定されてよい。圧電スタック温度は、本発明者の同時係属出願の欧州特許第1811164号に詳細に説明された方法を用いて計算または推定され得るが、この方法は以下で簡単に説明される。
【0098】
(前述のように)時間T0とT1の間で燃料噴射事象を開始するために、要求された量の電荷をアクチュエータから除去し(「開放放電」)、それによってアクチュエータ両端の差動電圧を燃料噴射事象に必要な比較的低電圧レベル(約−30Vであり得る)に低下させるために、アクチュエータから放電電流IDISCHARGEが流れる。差動電圧は−50V程度まで低下されてよく、または、ニードルリフトの値が小さい場合には、約0Vなど、0Vと+50Vの間まで低下されてよい。いくつかの実施形態では、放電電流IDISCHARGEは、(以下で説明されるように)1つまたは複数のエンジンパラメータに基づいて選択されてよい。例えば、IDISCHARGEは、1つまたは複数のレール圧力(P)、圧電スタック温度および/または第1の差動電圧レベルによって求められてよい。一実施形態では、以下で説明されるように、IDISCHARGEは、レール圧力、圧電スタック温度および第1の差動電圧レベルの関数として求められる。
【0099】
放電段階の最後に、時間T1で、放電電流IDISCHARGEが除去され、アクチュエータは、時間T2までドウェル段階にとどまる。時間T1と時間T2の間で、噴射器は燃料を噴射する。T0とT2の間の期間は、燃料噴射事象のオン時間すなわちTonと呼ばれる。
【0100】
有益には、T0からT2の期間の以前に、またはその期間中に(例えば放電段階中またはドウェル段階中)、ECU14は、噴射事象を終結するために、どのような差動電圧レベル(第3の差動電圧レベル)にアクチュエータが充電されるべきか求めるようにプログラムされてよい。この第3の差動電圧レベル(V)は、上記で論じられたように、1つまたは複数のルックアップ表、スケール関数、式、または類似のものを用いて、レール圧力、Tonおよび圧電スタック温度を含むエンジンパラメータの2つ以上を基に好都合に求められる。有利には、決定は、レール圧力、Tonおよび圧電スタック温度の3つすべての組合せに基づくものである。例えば、噴射事象の最初に測定されたレール圧力が所定レベル(例えば50MPa(500バール))未満であると、ECU14は、充電段階(T2からT3、T2からT3’)の最後のアクチュエータ11の両端の比較的高い初期差動電圧を回復する必要がないと判断してよい。しかし、この判断は、迫っている後続の燃料噴射事象向けのTonの所定値および/または圧電スタック温度にも左右され得る。同様に、迫っている噴射事象向けのTonが先行の噴射事象向けのTonより短い(またはほぼ同じ)か、あるいは、迫っている噴射事象向けのそのTonが所定値(500マイクロ秒など)未満であると、ECU14は、アクチュエータ11が、先の賦勢された差動電圧レベル(V)より低い第3の差動電圧レベルに適切に再充電され得ると判断してよい。同様に、ECU14が、圧電スタックの温度が所定値より高い(あるいは、圧電スタックの温度が連続した測定の間の期間にわたって上昇した)と判断すると、次いで、ECU14は、アクチュエータ11が、先の第1の差動電圧レベル(V)より低い第3の差動電圧レベルに再充電されるべきであると判断してよい。したがって、一実施形態では、レール圧力、Tonおよび圧電スタックの温度の各々について測定または推定された値は、好都合には、第3の差動電圧レベルが、第1の差動電圧レベルより高いものであるべきか、同じであるべきか、あるいはより低いものであるべきか、ECU14が判断するために、そのパラメータ向けの所定値と順番に比較される。したがって、個々には、(a)レール圧力が所定値より低いと、一般に、アクチュエータ11の賦勢された差動電圧レベルを低下させるための信号がECU14からもたらされ、(b)Tonが所定値より短いと、一般に、アクチュエータ11の賦勢された差動電圧レベルを低下させるための信号がECU14からもたらされ、また、(c)圧電スタックの温度が所定値より高いと、一般に、アクチュエータ11の賦勢された差動電圧レベルを低下させるための信号がECU14からもたらされる。
【0101】
第3の差動電圧レベルが、レール圧力、Tonおよび圧電スタック温度の3つのパラメータのすべてに応じて求められる、より有利な実施形態では、第3の差動電圧レベルは、ECU14によって、それらのパラメータの値のバランスに基づいて求められてよい。いくつかの実施形態では、さらなるエンジンパラメータも測定されてその所定のパラメータ値と比較されてよく、その測定または推定されたエンジンパラメータの組合せを考慮してアクチュエータ11の両端に必要な第3の差動電圧レベルの最終決定をもたらす。
【0102】
そのような方法では、燃料噴射器の圧電アクチュエータ両端の賦勢された差動電圧は、充電時間の適切な調整によって、または好都合には高電圧レール(VHI)の電圧が連続した燃料噴射事象にわたって低下するのを許容することにより、階段状に変化させるやり方で変えられてよい。ステップの量は、考えられる様々なパラメータのバランスに基づいて、求められたパラメータが所定値から異なる量に左右されるか、または第3の差動電圧を低下させるための受動的機構では、各燃料噴射事象でトップレール電圧(VHI)が低下され得る量に左右される。したがって、いくつかの実施形態では、目標とする第3の差動電圧レベルは、複数の連続した燃料噴射事象(例えば受動的機構では図4の時間T3’に続く噴射事象によって示される)にわたって達成されてよく、あるいは、第3の差動電圧レベルは、支配的なエンジンパラメータに応じて、複数の連続した燃料噴射事象にわたって、選択的に低下されてよい。
【0103】
そのような実施形態では、ECU14は、好都合には測定または推定されたエンジンパラメータに応じて、低電圧レール(VLO)の電圧に配慮して、高電圧レール(VHI)の電圧を制御する。このようにして、噴射器の圧電アクチュエータ両端の賦勢された差動電圧は、アクチュエータを高電圧レールの電圧へ再充電することにより変化される。高電圧レールの電圧は、(上記で論じられたエンジンパラメータに応じて)アクチュエータ両端の必要とされる第3の差動電圧レベル(V)と低電圧(またはボトム)レールの電圧(VLO)の和に等しくなるように適切に計算される。すなわち、アクチュエータ両端の賦勢された差動電圧は、そのそれぞれの端子電圧間の差である。したがって、第3の差動電圧レベルに関して上記で論じられたように、高電圧レールの電圧(VHI)は、好都合には、関連するエンジンパラメータ(例えばレール圧力、Tonおよび圧電スタック温度)が各々所定値を上回るか下回るかということに従って階段状のやり方で、あるいは、より有利には、個々の関連するパラメータのそれぞれの絶対値に応じて線形のやり方で調整されてよい。これらの実施形態では、ECU14は、以下で概説されるように、2つ以上のエンジンパラメータを監視して高電圧レールの値を構成するタスクを実行してよい。
【0104】
この点に関して、本願と同時係属の欧州特許出願である欧州特許第1860306号は、駆動回路20aの一部を形成する再生スイッチ回路(図2を参照されたい)を使用することによって高電圧レール(VHI)の電圧が制御される方法を説明する。図2に関して説明されたように、駆動回路20aは、有利には、噴射事象の最後に起こる再生段階中、第1の蓄積コンデンサC1に戻される電荷を変えるようにECU14によって作動可能な再生スイッチRSQを含む再生スイッチ回路を備える。第1の蓄積コンデンサC1上の電荷は、高電圧レールVHIのレベルを決定する。したがって、本発明による、高電圧レールVHIのレベルを調整するやり方の1つに、蓄積コンデンサC1を再充電するために、したがって高電圧レールVHIの電圧を設定するために、再生スイッチRSQが作動される時間を調整するものがある。有利な実施形態では、トップレールの再生を阻止し、それによってトップレールの電圧が階段状のやり方で低下させることを可能にするために、再生スイッチRSQは、燃料噴射事象の後には有効化されない。ECU14は、再生スイッチRSQの作動を制御し、したがって、燃料レール内の燃料圧力(レール圧力)、電気的パルス時間(Ton)、および圧電スタック温度から選択される2つ以上のエンジンパラメータに関連するトップレールの電圧を制御する。より適切には、この方法は、少なくともレール圧力、Tonおよび圧電スタック温度に応じてトップレールの電圧を選択する(したがって間接的に第3の差動電圧レベルを選択する)。トップレールの電圧は、階段状のやり方で、すなわち関連するエンジンパラメータの各々についての所定値との比較の結果として制御され得て、あるいは、より有利には、高電圧レール(VHI)の電圧は、測定されたエンジンパラメータの各々に比例して直線的に変化されてよい。
【0105】
トップレール電圧を低下させる(したがって第3の差動電圧を低下させる)ための、駆動回路20aまたは代替回路は、上記の受動的機構より、むしろ、能動的にトップレールの電圧を低下させるように適合されてよい。
【0106】
上記の機構では、圧電アクチュエータ11は、一般にトップレールのレベルに充電される。しかし、本発明の代替実施形態では、ECU14は、アクチュエータ11の両端の第3の差動電圧を達成し、したがってトップレールの電圧を調整するのに(例えばルックアップ表またはデータマップから)トップレールで必要とされる適正電圧を求めるのではなく、ECU14は、その代わりに(またはそれに加えて)、圧電アクチュエータ11へ必要な量の電荷を付加するのに必要な再充電時間を求めて、選択された第3の差動電圧レベルをもたらしてよい。これは、第3の差動電圧レベルを低下させるための能動的機構を示すと考えることができる。アクチュエータが、第1の差動電圧レベルより低い差動電圧レベルに充電されるべきであると判断された場合、短縮された期間(T2からT3’)にわたってアクチュエータに充電電流(ICHARGE)が供給され、その結果、充電段階の最後(すなわちT3’での噴射の最後)では、アクチュエータ両端の差動電圧は、放電段階の開始直前(すなわちT0)の差動電圧より低くなる。このシステムは、開ループ充電制御方式を示し、所定の差動電圧を達成するために選択された充電時間にわたって充電電流が印加される。開ループシステムでは、電圧に基づいて充電電流が制御されるわけではないので、充電段階の最後に、第3の差動電圧レベルを補正するために、必要に応じてアクチュエータにさらなる電流パルスが印加されてよい。充電時間(T2からT3’)とは別に、T0での適切な放電電流(IDISGHARGE)の選択に関して説明されたように、ECU14は、1つまたは複数のエンジンパラメータに応じて充電電流(ICHARGE)を選択してもよい。
【0107】
それと対照的に、燃料噴射事象に先立って、関連するエンジンパラメータが変化した(例えばレール圧力が所定の閾値を上回って増加した可能性がある)と判断されるとき、アクチュエータの両端に、より高い差動電圧レベルが必要になることがある。この場合、充電段階の最後にアクチュエータ11の両端に、より高い電圧(第1の差動電圧レベルVなど)を確立するように、ECU14の管理下で、増加された期間(例えば図3AのT2からT3)にわたってアクチュエータに充電電流(ICHARGE)が印加されてよい。いくつかの環境では、第1の差動電圧レベル(V)より高い差動電圧レベルにアクチュエータが再充電されてよいことが理解されよう。これは、本発明の方法が複数の燃料噴射事象に対して用いられるとき(通常のことである)特にありがちである。というのは、先行の燃料噴射事象中に第1の差動電圧レベルがかなり低下された可能性があるからである。
【0108】
上記で論じられた受動的機構のように、測定されたエンジンパラメータ値と所定のエンジンパラメータ値の間の比較を基に、階段状のやり方で第3の差動電圧を調整するように、圧電アクチュエータのチャージ時間(T2からT3、T2からT3’)が選択されてよく、あるいは、2つ以上のエンジンパラメータ、レール圧力、Tonおよび圧電スタック温度の関数として線形のやり方で選択されてよい。線形の方法では、ECU14は、1つの噴射事象から次の噴射事象で、測定された(または推定された)個々のパラメータ値の相対変化を考慮に入れる。したがって、第2の噴射事象の間、レール圧力が、先の噴射事象中のレール圧力と比較して低下した場合(話を簡単にするために、関連する他のエンジンパラメータがすべて不変であると仮定する)、噴射器は、例えば充電時間(T2からT3、T2からT3’)を適切に調整することにより、充電段階の最後に噴射器両端の差動電圧がレール圧力の低下に比例して低下されるように制御される。前述のように、ECU14は、測定または推定された1つまたは複数のエンジンパラメータに配慮して、まず(例えばルックアップ表またはデータマップから)噴射器両端で必要とされる差動電圧を求めることにより、それ自体のメモリに保存されたデータから適切な短縮された充電時間を選択してよい。次いで、ECU14は、(ルックアップ表またはデータマップから)所望の差動電圧レベルをもたらす適切な充電時間を求める。
【0109】
圧電アクチュエータの賦勢された差動電圧レベルにおけるいかなる変化も線形のやり方で容易に制御され得るので、特に第3の差動電圧レベルを調整するための能動的機構では、第3の差動電圧レベルを選択するために線形の方法を用いることは有利であり得る。
【0110】
有利には、ECU14は、レール圧力および他のエンジンパラメータを監視して噴射器両端の差動電圧を選択し、したがってトップレールの電圧または充電時間あるいはその両方をこれらエンジンパラメータに応じて選択するタスクを実行する。単に例として、非噴射状態(T0からT3)における燃料噴射器の圧電アクチュエータ11の必要な差動電圧レベルおよび必要な燃料噴射事象を開始するのに必要な差動電圧降下(VからV)は、以下のように、レール圧力の変化によってかなり影響を及ぼされることがある。噴射器が非噴射状態にあるとき、一杯のレール圧力では、一般に、アクチュエータ11の両端子間に+200Vの差動電圧が印加されてよく、この差動電圧は、例えば−30Vに低下され得て(すなわち230Vの差動電圧降下)、主噴射を開始する。しかし、最低のレール圧力では、噴射器の非噴射状態においてアクチュエータ両端子間の差動電圧が約+180V以下であるとき、主噴射事象を実行することが可能であり得て、また、わずか約180Vから200Vの差動電圧降下で燃料噴射事象を開始することが可能であり得る。エンジンパラメータの影響に加えて、最適の差動電圧レベルは、例えば噴射器設計および圧電アクチュエータの性質にも左右され得る。
【0111】
このように、本発明の利点は、アクチュエータの両端子間の最も高い差動電圧(例えば200V以上)で圧電アクチュエータが費やす期間が短縮されることであり、したがって、アクチュエータが作動中に受けるストレスが低下される。消勢燃料噴射器は、使用する時間の大部分にわたって非噴射状態(したがって既知の作動方式では最も高い差動電圧レベル)にあるので、非噴射状態におけるアクチュエータの差動電圧を低下させることにより、アクチュエータの期待される作動寿命がかなり改善され得る。
【0112】
その上、エンジンのアイドル期間中など燃料の要求が少ないとき、エンジンを低速回転に保つのに噴射燃料は小量しか必要でないことを理解されたい。小量の燃料を噴射するのに燃料噴射器が大幅に開く必要はなく、したがって、圧電アクチュエータから小量の電荷を除去するだけでよい。圧電アクチュエータ両端の差動電圧が比較的低い(100Vなど)ときなど、アクチュエータが最初に有する電荷が比較的小量のときでさえ、アクチュエータからこの小量の電荷を除去することは可能である。このように、レール圧力が比較的低いとき、燃料噴射には小さなバルブニードルリフトしか必要でなく、したがって、通常は、圧電アクチュエータ上の絶対電荷レベルは噴射器の作動に対して決定的ではない。これらの環境では、圧電アクチュエータは、賦勢されたより低い差動電圧に容易に再充電され得て、次に、噴射器性能を損なうことなく比較的小さい開放放電によって放電され得る。
【0113】
一実施形態では、ECU14は、線形のやり方で、少なくともレール圧力およびTonに応じてアクチュエータの第3の差動電圧レベルを求める。例えば、ECU14は、レール圧力およびTonに関する所定のデータマップを用いて、燃料噴射事象の最後にアクチュエータを再充電する適切な第3の差動電圧レベルを選択してよい。あるいは、ルックアップ表、式またはスケール関数がECU14に格納されて、低電圧レール(VLO)の電圧に配慮して高電圧レール(VHI)の適切な所望の電圧レベルを求めるのに用いられてよい。有利には、圧電スタック温度も測定され(または推定され)、第3の差動電圧レベルは、その値にも配慮して求められる。一実施形態では、第3の差動電圧レベル向けの第1の値を得るのにレール圧力およびTonのデータマップが用いられる。別の実施形態では、差動電圧レベル向けの第1の値を求めた後に、第1の値に対して圧電スタック温度に基づくスケール関数が適用されて、所望の第3の差動電圧レベルすなわち高電圧レールの所望の電圧に相当する第2の値を得る。レール圧力、Tonおよび圧電スタック温度(または他の関連するエンジンパラメータ)を基に3つの別個のスケール関数に基づいて、あるいは対象の3つのエンジンパラメータに関係するデータマップまたはルックアップ表の任意の他の組合せを用いて、第3の差動電圧レベルがもう1つの選択肢として求められてよいことが理解されよう。
【0114】
前述の方法は、開ループ充電制御方式を利用して第3の差動電圧を達成するものである。別の実施形態では、閉ループ充電制御方式が用いられてよく、それによって、例えば、充電レベルを求めるためにアクチュエータ両端の電圧を監視することにより、充電段階(T2からT3、T2からT3’)の間、アクチュエータ上の電荷が繰り返し測定される(すなわち、Q=C×Vを用いる。ここでQ=電荷、C=静電容量、V=電圧である)。そのような実施形態では、所望の充電(選択された第3の差動電圧レベルに対応する)が達成されるときまで、アクチュエータに充電電流が印加される。
【0115】
別の変形形態では、閉ループ電圧制御方式が用いられてよく、それによって、充電段階中、電圧が測定され、選択された第3の差動電圧レベルがアクチュエータの両端で達成されたと判断されたとき充電電流が終了される。
【0116】
圧電アクチュエータの第3の差動電圧レベル(V)を計算するかまたは必要な第3の差動電圧レベルをもたらす駆動回路の必要なトップレール電圧(VHI)を計算するために採用され得るステップを示す制御流れ図が、図5に示される。この実施形態では、燃料噴射器内の圧電アクチュエータ両端の目標の第3の差動電圧レベルを生成するのに必要とされる目標のトップレール電圧300(VHI)を求めるためにECUが使用される。しかし、先に論じられたように、別の実施形態では、第3の差動電圧は、アクチュエータ11が完全にはトップレール電圧に充電されないように充電時間を選択することにより、例えば電圧300より低く制御されてよい。
【0117】
制御流れ図は、2つの相互に作用するサブモデルを含み、第1のサブモデル100は、Ton対レール圧力(P)に関する3次元データマップ110を生成するものであり、第2のサブモデル200は、トップレール電圧が圧電スタック温度(Temp)に従って調整されることを可能するスケールファクタ210を生成するものである。目標のトップレール電圧(VHI)300は、データマップ110の出力と第2のサブモデル200から得られた圧電スタック温度に基づくスケールファクタ調整の積である。
【0118】
第1のサブモデル100では、データマップ110は、X軸に沿ったレール圧力値111のスケール(例えば0から200MPa(2000バール))とY軸に沿ったTon値112のスケール(例えば0から2000ミリ秒)によって規定される。目標のトップレール電圧VHI(これは特定の燃料噴射事象向けに、圧電アクチュエータを第3の差動電圧レベルVに充電するために用いられることになる)を求めるために、測定されたレール圧力(P)111aおよび次の燃料噴射事象向けに計算されたTon 112aがデータマップ110に与えられ、z軸は、それら2つの値に応じて目標のトップレール電圧VHIを与える。
【0119】
好都合には、レール圧力111aは、エンジンのコモンレール内の燃料圧力を測定するように配置された圧力センサを使用して求められるが、任意の適当な手段が用いられてよい。次の燃料噴射事象のTon(すなわち燃料噴射事象の燃料を噴射する段階の長さ)は、例えばECU14によって、既知のやり方で、エンジン要求を基に(例えば回転速度および負荷に従って)計算され得る。
【0120】
第1のサブモデルから得られた目標のトップレール電圧の値は、好都合には圧電スタック温度のデフォルト値(TempDEFAULT)に基づくものであり、この温度は、使用しているアクチュエータ11の圧電スタックの定常状態の温度と同等のものまたは近似でよい。いくつかの実施形態(圧電アクチュエータの第3の差動電圧レベルがレール圧力およびTonのみに応じて選択されており、したがって、アクチュエータ11が圧電スタック温度のデフォルト値にあると仮定される)では、次にサブモデル110の出力(すなわちz軸の読み取り値)が目標のトップレール電圧(VHI)として取得される。
【0121】
第2のサブモデル200の有利な機能は、圧電アクチュエータが望ましくない高温で高い差動電圧レベルにさらされる時間の長さを制限することである。すなわち、圧電アクチュエータのストレスが高温で増加した恐れがあるので、その高温での圧電スタック両端の賦勢された差動電圧を低下させることによって、圧電アクチュエータの寿命が延長され得る。
【0122】
第2のサブモデル200では、圧電スタック温度(Temp)211の推定(または測定)は、任意の適切な手段を用いて取得される。例えば、現実的であるなら、温度センサによって圧電スタック温度が直接測定されてよい。あるいは、圧電スタック温度は、例えば本出願人に譲渡された欧州特許である欧州特許第1811164号に説明された方法を用いて計算によって推定されてよく、その全体が本明細書に組み込まれ、本発明の範囲内にある。
【0123】
欧州特許第1811164号に説明された方法は、定常状態のスタック温度を求めるために用いられてよく(すなわちエンジンパラメータが特定の作動条件下で等化されたときに)、また、スタックの動的温度を求めるためにも用いられてよい(すなわちエンジン動作パラメータが一定でないときに)。圧電スタックの動的温度を推定するのに、圧電スタックの推定された定常状態温度が用いられてよい。あるいは、この方法は、最初に定常状態の温度を計算するのでなく、圧電スタックの動的温度を直接推定するステップを含んでよい。
【0124】
圧電スタック温度(Temp)を求めてから、求められた値が、圧電アクチュエータの寿命および/または耐久性に対する温度の影響に関する所定のデータと比較される。測定または推定された圧電スタック温度211には、例えばアクチュエータの寿命またはアクチュエータが受ける相対的ストレスに対する温度の影響を反映したゲイン係数210が掛けられる。測定または推定された温度212とゲイン係数210の積にスケールオフセット212が加算されて数値因子を生成し、これによって、データマップ110から得られた、求められた圧電スタック両端の賦勢された差動電圧が、スタック温度に応じて調整されることになる。(i)スケールオフセット212と、(ii)圧電スタック温度211とゲイン210の積との、和が、圧電スタック温度と目標の差動電圧レベルの間の線形の関係を出力する。しかし、この値は、温度211と圧電アクチュエータのストレスまたは寿命に対する悪影響の間の非線形性の部分に対処し、かつ結果として生じるいかなる目標トップレール電圧も許容限度内に確実に保たれるようにするために、飽和関数213を用いて適切に緩和される。例えば、圧電スタックが許容できる(または望ましい)作動温度の範囲内(例えば10℃と100℃の間など100℃以下の温度)であるとき、データマップ110から得られた目標のトップレール電圧がそれ以上変化されないように、サブモデル200(すなわち、スケールファクタすなわちゲイン210とスケールオフセット212の和)は、(飽和関数213によって)1に較正され得る。それと対照的に、測定された圧電スタック温度が望ましいレベルを上回る(例えば100℃を上回る)と判断されたときには、エンジン性能に対するいかなる悪影響も防ぐためには目標のトップレール電圧300のそれ以上の低下が許容され得ないポイントである飽和関数213の下限に達するまで目標のトップレール電圧(および第3の差動電圧レベル)が低下されるように、スケールファクタすなわちゲイン210とスケールオフセット212の和は1未満でよい。
【0125】
いくつかの実施形態では、トップレール電圧、VHIは、レール圧力および圧電スタック温度を基に求められてよい。この場合、図5に示されたモデルは、目標のトップレール電圧対レール圧力および圧電スタック温度に関するデータマップを含むように調整されてよい。次いで、Tonなど別のエンジンパラメータに従って目標のトップレール電圧300を調整するために、線形スケールファクタを含む第2のサブモデルが用いられてよい。あるいは、測定または推定された圧電スタック温度は、第2のデータマップ中で第1のデータマップ110の出力と組み合わせて用いられてよく、目標の第3の差動電圧レベル(V)または高いレール電圧(VHI)を導出する。
【0126】
したがって、図5に関して説明された本発明の実施形態は、本発明の方法がどのように実行され得るか限定することのない一例であることを理解されたい。前述のように、目標のトップレール電圧300は、例えば2つの別個のデータマップを用いて、1つまたは複数の任意の適当な数学的方法で計算されてよい。しかし、本発明の方法が最小限の費用を実施することができること、および目標のトップレール電圧を迅速に計算することができて車両エンジンの作動中に(必要に応じて)頻繁な調整が可能になることは有利であり得る。(本発明の方法を実行するために適切に使用される)ECU14において、メモリ容量の増加は経済的コストを意味し、また、機能の複雑さおよび格納されたデータの量が、処理時間/処理速度に悪影響を及ぼす恐れがある。線形スケールファクタ(例えばサブモデル200で図示されたもの)と比べて、データマップ(例えばデータマップ110)は比較的大量の記憶容量(メモリ)を必要とすることがあり、また、マップ中のデータの補間は比較的大きな処理時間を必要とすることがある。したがって、図5に示されたものなどいくつかの実施形態では、圧電スタック温度の次元はデータマップ110に対する追加のデータマップに含まれ得て、線形補正またはスケールファクタへ分離されており、これによって、ECU14内で実施するのに必要なメモリおよび処理時間がかなり低減される。いくつかの実施形態では、データマップ110の必要性を回避するように、トップレール電圧のデフォルト値に基づく2つ以上の線形補正(スケールファクタ)を基に目標のトップレール電圧を計算することが可能であり得る。
【0127】
目標のトップレール電圧(すなわち第3の差動電圧レベル)が噴射事象の充電段階の開始(例えばポイントT2)前に求められていれば、燃料噴射事象の前に、または燃料噴射事象中に目標のトップレール電圧が計算され得る。燃料噴射段階(T0からT2)の最後に、関連するエンジンパラメータ(例えばレール圧力、Tonおよび圧電スタック温度)に応じて圧電アクチュエータ11の目標の第3の差動電圧レベルを求めてから、次いで、アクチュエータ11を、その電圧レベルに再充電し始める必要がある(すなわちT2からT3の間中)。
【0128】
また、燃料噴射段階の所望の最後で、エンジンのシリンダ内への燃料噴射が、適切な動特性または噴射器閉鎖プロファイルで迅速に停止されることも重要である。この点に関して、燃料噴射段階のT2での最後は、(消勢噴射器内で)アクチュエータ11の圧電スタック9上の電荷(またはアクチュエータの両端子間の電圧)の増加に応じて圧電スタック9を伸張させることによって制御される。
【0129】
圧電スタック9の伸張速度に影響を及ぼすファクタの1つに、アクチュエータ11に供給される充電電流(ICHARGE)の大きさがある。この充電電流は、消勢噴射器内の燃料噴射器が閉じる原因となるので「閉鎖電流」とも呼ばれてよい。充電電流(ICHARGE)は、例えば、燃料噴射器(12a、12b)の意図された閉鎖プロファイルに従って、エンジンのECU14によって既知のやり方で適切に求められる。充電電流も、アクチュエータ11の圧電材料の圧電の特徴/特性に従って選択されてよい。本発明の一実施形態では、ECU14は、充電電流のデフォルト値(ICHARGE−DEFAULT)を設定し、T2で、この電流による初期速度で、影響を及ぼすいかなる追加のファクタもなくアクチュエータ11が再充電される。圧電スタックを充電するこの初期速度は、燃料噴射事象の一次閉鎖電流を示すと考えられてよい。いくつかの実施形態では、アクチュエータ両端の差動電圧が目標の第3の差動電圧レベルに近づくのにつれて、圧電アクチュエータ11が再充電される速度を低下させるのが望ましい。これらの実施形態では、ECU14は、一次閉鎖電流より小さい二次閉鎖電流を印加してよい。T0とT1の間の放電電流に対して類似の電流制御機構が考えられ得る。
【0130】
上記のことに関して、図6は、本発明の別の実施形態に従って燃料噴射事象を制御する代替方法を示す。この作動サイクルでは、放電段階(T0からT1)および充電段階(T2からT3)は、それぞれ一次段階および二次段階を含む。一次段階および二次段階は、それぞれの放電段階および充電段階の期間および/または放電段階および充電段階の電気的特性によって特徴づけられ得る。図6の実施形態では、放電段階(T0からT1)は、T0からT0.5の一次放電段階(この間、アクチュエータから流れる放電電流は、第1の、ほぼ一定の電流レベル(IDISCHARGE−P)である)、およびT0.5からT1の二次放電段階(この間、放電電流は、第2の、低下されたほぼ一定の電流レベルIDISCHARGE−Sである)を含む。同様に、充電段階(T2からT3)は、アクチュエータに流れる充電電流が第1の電流レベル(ICHARGE−P)にある一次充電段階(T2からT2.5)、および充電電流が低下されたRMSレベルICHARGE−Sにある二次充電段階(T2.5からT3)を含む。図示の実施形態では、放電段階および充電段階の二次段階は、各々が、最終的に放電段階および充電段階の合計時間の約50%をそれぞれ含む。しかし、二次放電段階は、例えば少なくとも95%、少なくとも90%、少なくとも80%、70%、60%、または少なくとも50%である、放電段階の合計期間の100%未満の任意の割合を含んでよいことが理解されよう。いくつかの実施形態では、二次放電段階は、40%、30%、20%または10%までなど、放電段階の合計時間の50%以下を含む。いくつかの燃料噴射事象では、二次放電段階が放電段階の大部分(例えば50%から95%)を含むことは有利である。
【0131】
これらの実施形態の利点は、圧電スタックからの電荷の急速な除去に対するアクチュエータの物理的応答(すなわち圧電スタックの収縮)が、放電段階の終わりに向かって厳しさが緩和されて行くことである。このようにして、比較的大きな放電電流が急速に切られたとき(収縮速度の急速な変化が生じる)圧電アクチュエータによって経験される大きな物理的ストレスが低下され得る。いくつかの燃料噴射器では、理論に拘束されることなく、圧電アクチュエータが、相対的に収縮されるときより伸張下で物理的に強いように計画されてよい。したがって、収縮期間の最後に圧電アクチュエータに及ぼされる外力は、圧電アクチュエータを損傷する恐れがより大きい。したがって、一次段階および二次段階を含む放電段階を適用することは有利であり得て、二次放電段階中の放電電流(IDISCHARGE−S)は、一次放電段階中の放電電流(IDISCHARGE−P)より小さい。
【0132】
例えばわずかな燃料噴射しか必要でないいくつかの燃料噴射事象(例えば低いレール圧力でのもの)または高いレール圧力での予備噴射については、放電段階は、一次放電電流のみを含むものでよい。小量の電荷だけが圧電スタックから除去され(開放放電)、したがって圧電アクチュエータによって経験されるストレスが相対的に低いので、この方法は、そのような小さい燃料噴射事象に適し得る。概して、燃料噴射事象のTonが短くなると、二次放電段階で構成される放電段階の割合が小さくなる。
【0133】
同様に、いくつかの実施形態では、充電段階(T2からT3)は、電流がICHARGE−Pの一次放電段階(T2からT2.5)、および電流がICHARGE−Sの二次充電段階(T2.5からT3)を含んでよい。二次充電段階は、上記の放電段階に関して説明されたように、充電段階全体の任意の割合を含んでよい。また、放電段階と同様に、有利な二次充電段階がある場合、二次充電段階中の充電電流(ICHARGE−S)は、一次充電段階中の充電電流(ICHARGE−P)より小さい。一般に、二次充電段階の存在有無、継続時間および電流レベルは、二次放電段階の存在有無、継続時間および電流レベルと無関係に選択される。
【0134】
いくつかの燃料噴射事象では、放電段階および充電段階は、どちらも一次段階および二次段階を有し、各二次段階は、それぞれの一次段階よりも電流が小さいことによって特徴づけられる。本発明の有利な方法では、放電段階は一次段階および二次段階を有し、同一の燃料噴射事象の充電段階は一次段階のみを有する。
【0135】
放電電流を調整するために、ECUは、必要な期間(Ton)にわたって必要な量だけ燃料噴射器を開くのに必要な開放放電の量を最初に求めてよく、エンジンの燃料要求に対処する。一般に、ECUは、必要な量だけ燃料噴射器を開くのに必要とされる開放放電(すなわち圧電スタックからの電荷除去)の量も求める。次いで、ECUは、RMS放電電流値を設定してよく、噴射事象の期間(Ton)にわたって必要な開放放電に対処する。一般に、RMS放電電流(および充電電流)は、上側および下側の閾値電流レベルを設定することにより制御され、放電段階中に放電スイッチQ2は(または充電段階中に充電スイッチQ1は)、認知されたやり方で、それらの放電閾値に左右される頻度で開閉される。これは放電電流および充電電流の振幅変調として知られている。例えば、燃料噴射事象が一次放電段階および二次放電段階を含むとき、各段階が別々の閾値電流レベルの設定を有し、放電スイッチQ2はそれに従って作動される。
【0136】
それぞれの一次段階より電流レベルの低い二次放電段階および/または二次充電段階を任意選択で含むにもかかわらず、また、長さの急速な変化に関連する圧電アクチュエータに対する損傷の危険性の増加にもかかわらず、放電段階および充電段階がポイントT0およびT2で鋭い開始をそれぞれ有し、その結果、アクチュエータが、燃料噴射事象を開始するかまたは終結する信号に迅速に応答することは一般に望ましいことを理解されたい。
【0137】
トップレール電圧が一定に保たれる、普通の従来技術の燃料噴射装置では、一般に、開放電流および閉鎖電流が前もって求められてECUに格納される。このようにして、速度および量が既知の燃料噴射が達成され得るように、一般に、各主燃料噴射事象が同一のプロファイル(例えば噴射器開閉の速度および距離に関して)を有するように意図される。しかし、本発明は、圧電噴射器の従来技術のこの作動方式が、あらゆるエンジン状態で、また、一様でない賦勢された差動電圧レベル下でも、圧電アクチュエータの両端に同一の燃料噴射のプロファイル/パターンを達成するわけではないことを認識する。
【0138】
この点に関して、圧電スタックの長さの変化速度(したがって圧電燃料噴射器の開閉プロファイル)は、開閉電流の大きさに加えて1つまたは複数の可変エンジンパラメータによって影響を及ぼされ得る。本発明によれば、考慮され得る可変エンジンパラメータは、レール圧力、アクチュエータ11に印加されるトップレール電圧(VHI)、および/または圧電スタック温度から選択される。別の実施形態によれば、考慮され得る可変エンジンパラメータは、レール圧力、アクチュエータ11の賦勢された差動電圧レベル(V)、および/または圧電スタック温度から選択される。
【0139】
したがって、本発明によれば、充電電流(ICHARGE)は、レール圧力、トップレール電圧(VHI)および圧電スタック温度の1つまたは複数のものに応じて計算されてよい。有利な実施形態では、ECU14は、選択された1つまたは複数のエンジンパラメータに応じてデフォルト電流を調整することにより、デフォルト充電電流(ICHARGE−DEFAULT)から充電電流を計算し、支配的なエンジン状態に関して1つまたは複数の補償を含む目標充電電流(ICHARGE)を得る。特に有利な実施形態では、目標充電電流(ICHARGE)は、レール圧力、トップレール電圧(VHI)および圧電スタック温度の既存の値(または最近時に測定/推定された値)向けにデフォルト充電電流を補償することにより計算される。デフォルト充電電流は、一例として、理想的エンジンパラメータまたは平均的エンジンパラメータに従ってエンジンのテスト中に求められてよい。このデフォルト充電電流は、例えば、支配的なエンジン状態にかかわらず所定の充電電流が適用される従来型の作動方式で印加されるはずの充電電流でよい。
【0140】
図3および図4をもう一度参照すると、T3では、圧電アクチュエータ11がその第3の差動電圧レベル(V、V’)に再充電されており、その後はどのポイントでも、放電段階は、後続のT0で次の燃料噴射事象の起動を開始されてよい。
【0141】
(消勢噴射器では)上記で論じられた閉鎖電流(すなわち充電電流)と同様に、燃料噴射事象を開始するためにT0で圧電スタックから除去される放電電流(すなわち開放電流)IDISCHARGEのレベルは、圧電スタックの収縮速度を制御することにより、燃料噴射器の開放プロファイルを制御するのに重要なファクタである。したがって、ECU14は、意図された燃料噴射量に応じて(回転速度および負荷に応じるなど)異なる放電電流を開始するようにプログラムされてよい。したがって本発明の一実施形態では、ECU14は、放電電流のデフォルト値(IDISCHARGE−DEFAULT)を設定し、アクチュエータ11は、T0で、関連するエンジンパラメータに関連する影響ファクタに対するいかなる補償もなしにこの電流による速度で放電される。
【0142】
しかし、前述のように、本発明は、所定のデフォルト放電電流に対する圧電アクチュエータ11の応答が、1つまたは複数の可変エンジンパラメータによって影響を及ぼされ得ることを認識する。一例として、本発明の方法によって達成された圧電アクチュエータ両端の賦勢された差動電圧における有益な低下は、いくつかの実施形態では、圧電アクチュエータを再充電するのに使用される駆動回路のトップレール電圧(VHI)が、ある燃料噴射事象から別の事象へ変化してよいことを意味し得る。圧電アクチュエータ11が、放電電流(例えばデフォルト放電電流IDISCHARGE−DEFAULT)の特定の大きさに対して、アクチュエータ両端のT0での差動電圧に左右されて各様に応答することがあるので、一実施形態では、本発明は、圧電アクチュエータ11の両端の充電された状態での差動電圧(すなわちVおよび/またはV)に応じて、有利に放電電流を求める。適切には、放電電流は、T0での放電事象の直前のアクチュエータ11両端の差動電圧(すなわち差動電圧V)に応じて求められる。いくつかの実施形態では、圧電アクチュエータ11がトップレールの電圧に再充電されるという前提があり、かつ低いレール電圧(VLO)が既知であるので、放電電流は、駆動回路20aのトップレール電圧(VHI)に応じて選択されてよいことが理解されよう。
【0143】
他の可変エンジンパラメータ(具体的にはレール圧力および圧電スタック温度である)も、特定の(例えばデフォルトの)放電電流に対する圧電アクチュエータの応答に影響を及ぼすことがある。この点に関して、圧電スタックの温度が、特定の差動電圧レベルで圧電アクチュエータ上に蓄積される電荷の量に影響を及ぼすことがある。
【0144】
したがって、本発明は、レール圧力、アクチュエータ11の両端の差動電圧レベル(V)および圧電スタック温度の1つまたは複数のものに応じて放電電流(IDISCHARGE)を有利に計算して、支配的なエンジン状態向けに補償された目標放電電流を得る。より有利には、目標放電電流(IDISCHARGE)は、レール圧力、アクチュエータ11の両端の差動電圧レベル(VまたはV)および圧電スタック温度を含む既存の(または最近時に測定/推定された)パラメータに対してデフォルト放電電流を補償することにより計算される。この放電電流は、消勢噴射器内の燃料噴射器が開く原因となるので、開放電流とも呼ばれてよい。適切には、放電電流(IDISCHARGE)は、T0以前の任意のポイントで、次の燃料噴射事象向けにECU14によって計算される。放電電流は、T3からT0の段階中に好都合に計算され、この期間中に、アクチュエータの賦勢された差動電圧レベルの正確な値が知られ得る。
【0145】
前述のように、放電段階の最後に圧電スタックの収縮速度にそのような鋭い変化がないように、したがって、圧電アクチュエータによって経験される物理的ストレスが低下され得るように、放電段階(T0からT1)の終了以前に圧電アクチュエータの放電速度を低下させることも有益であり得る。したがって、本発明は、前述のように、所定期間(T0からT0.5)にわたって第1の大きさの一次放電電流を印加し、それに続いて、所定期間(T0.5からT1)にわたって低下された大きさの二次放電電流を印加するステップを含んでよい。
【0146】
圧電アクチュエータ両端に必要な所定の電圧降下が達成されるまで放電電流(または開放電流)が印加されて、圧電アクチュエータ11の所望の第2の差動電圧レベル(V)を達成する。燃料噴射事象を達成し維持するために、第1のレベル(V)から第2のレベルV/V(すなわちT0とT2の間)へ差動電圧を変化させることによって圧電アクチュエータ11から除去された電荷の量は、燃料噴射器を開くために圧電スタックから除去された電荷の量であるので、好都合には「開放放電」と称されてよい。第2の差動電圧レベルでの圧電スタックの長さは、燃料を噴射するために圧電燃料噴射器が開く程度に影響を及ぼし、また、燃料圧力と相まって、噴射器のドウェル期間(T1からT2)にエンジンの関連するシリンダに噴射され得る燃料の量および速度に影響を及ぼす。
【0147】
一実施形態では、圧電アクチュエータ11は、T1で所定の第2の(低い)差動電圧レベルへ放電されてよい。このようにして、圧電アクチュエータ11の放電された電圧レベルは、アクチュエータの充電された電圧レベルと無関係に求められる。
【0148】
別の実施形態では、いくつかの従来技術の燃料噴射装置で一般的なように、本発明の方法は、圧電アクチュエータ11の第1の差動電圧レベルに関係なく所定の差動電圧降下(例えば250V)によって圧電アクチュエータ11を放電させるように作動する。所定の電圧降下は、既知のやり方で、エンジン要求に基づいて選択されてよい。例えば、主噴射事象向けには、所定の電圧降下は250Vでよく、一方、エンジンがアイドルにあるときか、または予備噴射を引き起こすときには、所定の電圧降下は50Vと低いものでよい。
【0149】
しかし、充電された状態で圧電アクチュエータ両端に可変の高い差動電圧を有することのさらにもう1つの結果には、アクチュエータ11両端の所定の電圧降下(例えば燃料噴射器を開くためのもの)に対して、アクチュエータが可変の低い差動電圧レベル(すなわち第2の差動電圧レベル)に放電されることがある。一例として、主燃料噴射事象を開始するために200Vのデフォルト放電電圧降下が実施されると、+200Vの予備放電電圧では、アクチュエータが0Vに放電されることになり、例えば、アクチュエータ両端の予備放電電圧が170Vの低下されたレベルにあると、差動電圧における同じ変化が、より低い第2の差動電圧レベル−30Vをもたらすことになる。
【0150】
本発明は、燃料噴射器の開閉プロファイル(圧電スタックの収縮/伸張の長さおよび速度の両方に左右される)が、圧電スタック両端の充電状態および放電状態における絶対差動電圧レベル(アクチュエータ11の賦勢された状態と消勢された状態間の差動電圧における変化を含む)、およびアクチュエータが充電または放電される速度(すなわち充電電流または放電電流)の両方に左右され得ることを認識する。したがって、圧電アクチュエータの充電された差動電圧レベル(すなわち第3の差動電圧レベル)を変化させることにより、関連する燃料噴射器の開放プロファイルも、T0で後続の燃料噴射事象を開始するために用いられる任意の所定(デフォルト)の差動電圧降下およびデフォルト放電電流(IDISCHARGE)向けに変化し得る。したがって、圧電アクチュエータ両端の賦勢された差動電圧レベルにおける前述の変化は、様々な燃料噴射プロファイルをもたらし得て、その結果として、様々なエンジンの状況下で様々な量の燃料噴射およびエンジンの燃料要求と正確に一致しない誤動作をもたらし得る。
【0151】
この問題に対処するために、本発明の方法は、適切には、1つまたは複数のエンジンパラメータ次第で、開放放電を必要に応じて修正する開放放電補償をさらに含んでよい。レール圧力、充電されたアクチュエータ11の両端の差動電圧レベル(すなわち第1の差動電圧レベルまたは第3の差動電圧レベル)、および圧電スタック温度から1つまたは複数のエンジンパラメータが適切に選択される。一実施形態では、レール圧力、アクチュエータ11の両端の充電された差動電圧レベル(V)、および圧電スタック温度の1つまたは複数のものに応じて開放放電が計算される。前述の補償に関して、開放放電補償は、例えばエンジンのテスト/セットアップ中に前もって求められ得るデフォルト開放放電のレベルから計算されてよい。デフォルト開放放電のレベルは、ルックアップ表、データマップまたは他の関数などからエンジンの燃料要求レベルに応じて選択されてよく、また、所定の第1の差動電圧レベルに基づいて選択されてよい。一般に、第1の差動電圧レベルは、ECU14によって知られるかまたは測定され得る。第1の差動電圧レベルが、一連の複数の燃料噴射事象において第3の差動電圧レベルに相当することは、もちろん理解されよう。
【0152】
有利には、本発明は、(i)燃料噴射事象を開始するために、T0で圧電スタックを放電させる速度になる開放電流を選択するための開放電流補償、(ii)燃料噴射事象を終結するために、T2で圧電スタックを充電する速度になる閉鎖電流を選択するための閉鎖電流補償、および(iii)燃料噴射事象が行われているとき(すなわちT0からT2の間)、圧電スタックから除去される電荷量を選択するための開放放電補償のうち少なくとも1つを適用するステップを含む。このようにして、燃料噴射器によって噴射される燃料の速度および量を含む燃料噴射事象のプロファイルは、1つまたは複数のエンジンパラメータに応じて調整され得る。より有利な実施形態では、本発明は、開放電流補償、閉鎖電流補償、および開放放電補償の3つをすべて適用するステップを含んでよい。この有利な実施形態がどのように実施され得るかということの限定的でない例が、図7を参照しながら以下で説明される。
【0153】
図7は、(A)開放電流補償400、(B)閉鎖電流補償500、および(C)燃料噴射器内の開放放電補償600を計算するために採用され得るステップを示す制御流れ図である。これらの補償(400、500および600)の各々は、開放電流、閉鎖電流および開放放電の所定のデフォルト値に対して好都合に適用されて、それぞれ開放電流、閉鎖電流および開放放電についての目標レベルを得る。
【0154】
開放電流補償400を計算するために、まず、測定または推定のいずれかによって、エンジン内のレール圧力レベル410、賦勢された差動電圧レベル(V)420および圧電スタック温度430が求められる。有利には、レール圧力410、賦勢された差動電圧レベル(V)420および圧電スタック温度430の各々は、補償が計算される事象の直前の燃料噴射事象中など、次の燃料噴射事象の直前に求められる。そのような最近の測定または推定を使用することが不可能なときには、各パラメータに対して最近時に求められたものが使用されてよい。この目的のために、エンジンパラメータの比較的最近の値を格納するためにECU14のメモリが使用され得る。
【0155】
求められたレール圧力410は、飽和曲線411と比較される。この飽和曲線は、圧電スタックが開放電流の変化に感応しない範囲にレール圧力410があると判断されたときに、開放電流補償400のレール圧力要素を0に設定するのに用いられ得る。一例として、一実施形態では、燃料圧力が80MPa(800バール)未満であるとき圧電スタックが開放電流の変化に感応するのに対して、80MPa(800バール)を上回る燃料圧力では、開放電流の変化は、圧電アクチュエータ11の応答に影響を及ぼさない。
【0156】
同様に、賦勢された差動電圧レベル(V)について求められた諸値および圧電スタック温度430は、いかなる開放電流補償も無効にするために、それぞれ飽和曲線421および431と比較されるが、ここでは賦勢された差動電圧レベル(V)および圧電スタック温度は、開放電流の変化に圧電アクチュエータ11が感応しないレベルにある。
【0157】
412では、所定のデフォルト開放電流での圧電アクチュエータ11の応答に対する求められたレール圧力410の影響に比例したゲイン(または調整)を計算するために、求められたレール圧力410の値が所定の線形スケール関数に引用される。例えば、圧電アクチュエータ11が、所定のデフォルト条件下より開放電流の変化に対して敏感に反応するレベルに燃料圧力410があると判断されたとき、燃料圧力ゲインは1未満であり、また、反対の条件下では、ゲインは1を上回る。このようにして、開放電流に感応しづらくなる燃料圧に圧電アクチュエータ11がさらされるとき、デフォルト開放放電(IDISCHARGE−DEFAULT)に対して目標開放電流(IDISCHARGE)が増加され、その逆の場合も同様である。
【0158】
同様に、422および432では、所定のデフォルト開放電流での圧電アクチュエータ11の応答に対する求められた賦勢差動電圧レベル(V)420および圧電スタック温度430の影響に比例する両ゲインをそれぞれ計算するために、求められた賦勢差動電圧レベル(V)420および圧電スタック温度430が、それぞれ賦勢差動電圧レベル(V)および圧電スタック温度の所定の両線形スケール関数と比較される。
【0159】
450では、個々のゲイン値と定数440を加算することにより、結合されたゲインすなわちスケールファクタ(すなわち個々のゲイン412、422および432のバランス)が計算される。目標開放電流に3つのエンジンパラメータを関連づける正確な4次元表面を生成するのに定数440が必要である。
【0160】
次いで、トータルゲイン450は、目標開放電流が圧電アクチュエータ11の作動に関する許容レベル内に確実に維持されるように機能する別の飽和曲線451と比較される。したがって、一例として、デフォルト開放電流がxアンペアであり、しかし2xアンペアを超えるまたは0.5xアンペア未満の開放電流が圧電アクチュエータの作動に悪影響を及ぼし受け入れがたいものであるとあらかじめ判断されている場合には、次いで、いかなる結合されたゲイン450の値も、飽和曲線451によって、許容できる0.5から2.0の範囲内に緩和されることになる。
【0161】
目標開放電流(IDISCHARGE)を計算するように、デフォルト開放電流(IDISCHARGE−DEFAULT)に対して、飽和曲線451によって緩和されている可能性がある結合されたゲイン450が適用される。図示された実施形態では、開放電流は、一次デフォルト開放電流460(IDISCHARGE−DEFAULT−P)および二次デフォルト開放電流470(IDISCNARGE−DEFAULT−S)を含むが、これらは同一かまたは異なってよい。デフォルト値に同一のスケールファクタすなわちゲイン451を掛けることによって、最終的に一次目標開放電流461(IDISCHARGE−P)および二次目標開放電流471(IDISCHARGE−S)が計算される。方式600に従って開放放電補償を計算するために、開放電流480における変化率または比例した変化が用いられる。
【0162】
(上記と同様に)閉鎖電流補償500を計算するために、エンジン内のレール圧力レベル510、賦勢された差動電圧レベル(V)520および圧電スタック温度530が、測定または推定のいずれかによって求められる。開放電流補償も計算されることになっている場合、レール圧力510、賦勢された差動電圧レベル(V)520および圧電スタック温度530の値が、対応する値410、420および430と同一であることに留意されたい。
【0163】
400での開放電流補償の計算に関して、レール圧力510、賦勢された差動電圧レベル(V)520および圧電スタック温度530の求められた値が、飽和曲線511、521および531に対してそれぞれ参照されて、圧電アクチュエータ11が閉鎖電流の変化に感応しない、燃料圧力510、賦勢された差動電圧レベル(V)520および/または圧電スタック温度530の条件下で考えられる閉鎖電流補償を無効にする。
【0164】
512では、圧電アクチュエータ11に対する支配的な燃料圧力510の影響を補償するためにデフォルト閉鎖電流を調整するための割合向けにスケールファクタすなわちゲインが得られる。上記の412でのように、閉鎖電流の変化に対する圧電アクチュエータ11の応答に燃料圧力を関連づける所定の線形スケール関数を参照することによって、好都合にゲインが計算される。同様に、522および532では、所定のデフォルト閉鎖電流での圧電アクチュエータ11の応答に対する求められた賦勢差動電圧レベル(V)520および圧電スタック温度530のそれぞれの影響に比例する個々のゲインを計算するために、求められた賦勢差動電圧レベル(V)520および圧電スタック温度530が、それぞれ賦勢された差動電圧レベル(V)および圧電スタック温度の所定の線形スケール関数と比較される。
【0165】
550では、個々のゲイン値に定数540を加算することにより、エンジンパラメータの各々に対する個々のゲインのバランスが計算される。次いで、(目標の開放電流に関して上記で論じられたように)トータルゲイン550は、結果として生じる目標閉鎖電流が、圧電アクチュエータ11の作動に関する許容レベル内に確実に維持されるように機能する別の飽和曲線551と比較される。
【0166】
目標閉鎖電流(ICHARGE)を生成するために、結合されたゲイン550の値(飽和曲線551によって緩和されている可能性がある)がデフォルト閉鎖電流(ICHARGE−DEFAULT)に対して適用される。閉鎖電流も、一次デフォルト閉鎖電流560(ICHARGE−DEFAULT−P)および二次デフォルト閉鎖電流570(ICHARGE−DEFAULT−S)を含むが、これらは同一かまたは異なってよい。デフォルト値に551から得られた同一のスケールファクタすなわちゲインを掛けて、最終的に一次目標閉鎖電流561(ICHARGE−P)および二次目標閉鎖電流571(ICHARGE−S)が求められる。
【0167】
前述のように、開放放電補償600は、有益には、まずエンジン内のレール圧力610、賦勢された差動電圧レベル(V)620および圧電スタック温度630の値を求めることにより計算される。これらの変数は、それぞれの変数410と510、420と520、430と530が各々同一である。
【0168】
開放電流補償(400)および閉鎖電流補償(500)に関して、圧電アクチュエータ11が開放放電の変化に感応しないエンジン状況下の補償の可能性を解消するために、計算されたエンジンパラメータ610、620および630が、それぞれ飽和曲線611、621および631と比較される。
【0169】
次に、圧電アクチュエータ11に対するパラメータ610、620および630の影響を補償するために、開放放電に対する調整をもたらすように、例えば所定の線形スケール関数を参照することによって、それぞれスケールファクタ/ゲインの612、622および632が求められる。次いで、個々のゲイン値に定数640を加算することによって総合的なゲイン650が計算されるが、これは、既に述べられた理由で、必要に応じて、飽和曲線651を参照することによって調整されてよい。
【0170】
図示された実施形態では、圧電アクチュエータからの開放放電を調整するために、一般に、放電電流が開始される時間(すなわちT0)が一定に保たれる。すなわち所定のT0が存在する。それと対照的に、ポイントT1が、したがって開放時間(T1−T0)が、デフォルト開放時間に対して調整される。このようにして、任意の所与の(例えばデフォルトの)開放電流に対して、圧電アクチュエータからの開放放電は、開放時間T1−T0を延ばすことにより増加され、また開放時間T1−T0を短縮することにより減少される。図示された実施形態における開放放電補償は、一次開放時間(T0.5−T0)660および二次開放時点(T1−T0.5)670に関する値を含む。T0.5は、二次放電(すなわち開放)電流が開始される時点に相当することが理解されよう。したがって、651では補償されたスケールファクタが得られ、これは、圧電アクチュエータ11からの開放放電において燃料圧力、賦勢された差動電圧レベル(V)および圧電スタック温度の値を補償するために必要とされる比例した変化または変化率を示す。
【0171】
圧電アクチュエータ上の開放放電は、400で計算された開放電流におけるあらゆる変化によって、また開放時間T1−T0(すなわち、開放電流すなわち放電電流がアクチュエータから除去される期間)におけるあらゆる変化によっても影響を及ぼされ得る。したがって、680では、一次開放時間660および二次開放時間670に何らかの補償が必要かどうか判断するために、開放電流480における変化率または比例した変化が、開放放電において必要とされる変化率または比例した変化で除算される。一例として、開放電流補償400によって開放電流に10%の増加が必要であると計算されると、次いで、一次開放時間660および二次開放時間670のデフォルトに対するいかなる変化も伴わずに、圧電アクチュエータ11からの開放放電に、対応する10%の増加が結果として生じることになる。したがって、651で、必要な開放放電補償が0%であると計算されると、次いで、開放電流における10%の増加を補償するために、一次開放時間660および二次開放時間670の10%の短縮が必要とされることになる。
【0172】
したがって、補償された一次開放時間661の値は、680で求められた追加の補償(必要な開放電流補償および開放放電補償のためのもの)とデフォルトの一次開放時間660の積として計算される。同様に、補償された二次開放時間671を求めるために、追加の補償680とデフォルトの二次開放時間670の積が計算される。一般に、一次開放時間および二次開放時間の両方に対して、同一の比例した変化または変化率の補償が適用される。
【0173】
図7で説明されたモデルは、燃料圧力、賦勢された差動電圧レベル、および圧電スタック温度の3つのエンジンパラメータに配慮して、開放電流、閉鎖電流および開放放電における補償が計算され得る方法の1つを示す。当業者なら、例えば、例示された実施形態のエンジンパラメータを基に他の数学的モデルまたは式を考案することができる。その上、燃料噴射事象を制御するための選択された補償の計算において、追加の補償および/または追加のエンジンパラメータが用いられてよい。したがって、前述の実施形態は、特許請求の範囲で設定される本発明の範囲を限定するようには意図されていない。
【0174】
上文および特許請求の範囲に列挙された方法のステップが、すべての場合において、それらが紹介された順序で行われる必要はなく、本発明に関連した利点を依然として提供しながら、逆にされるかまたは再度順序付けられてよいことも理解されよう。
【0175】
本発明の方法が、消勢噴射器内の圧電アクチュエータ両端の差動電圧レベルが低下され得ると判断したとき、前述の実施形態は、充電された圧電アクチュエータ両端の差動電圧レベルを低下させる特定の手段に限定されないことになっている。例えば、充電された差動電圧レベルは能動的かまたは受動的な機構によって低下されてよい。受動的機構では、アクチュエータを再充電するのに使用される駆動回路内のトップレール電圧(VHI)は、再充電しないことにより、各燃料噴射事象を受けて徐々に低下することが可能である。能動的機構は、(i)圧電アクチュエータの充電時間を変化させて圧電アクチュエータをトップレールの全電圧(VHI)に再充電するのを防止するステップ、および(ii)駆動回路の機能を操作することによりトップレール電圧(VHI)を能動的に低下させるステップを含むが、任意選択で、圧電アクチュエータがトップレールの全電圧に再充電されるのを許容する。いくつかの実施形態では、圧電アクチュエータの両端の差動電圧を低下させるために受動的な機構を使用するのが好ましいが、いくつかの環境では、例えば、充電されたアクチュエータ両端の差動電圧をより急速に低下させるのに能動的な機構を使用するのが好ましいことがある。
【0176】
本発明は、圧電スタックを備える圧電アクチュエータを含み、使用時に燃料レールと通信する燃料噴射器を作動させる方法も提供することができる。この方法は、(a)スタック両端の第1の差動電圧レベル(V)からスタック両端の第2の差動電圧レベル(V/V)へスタックが放電するように(噴射事象を開始するように)、放電期間(T0からT1)にわたってアクチュエータに放電電流(IDISCHARGE)を印加するステップと、(b)所定期間(T1からT2、「ドウェル期間」。)、(この間噴射事象が維持される)第2の差動電圧レベルを維持するステップと、(c)第2の差動電圧レベルから第3の差動電圧レベル(V)へスタックを充電するように(噴射事象を終結するように)、充電期間(T2からT3、T2からT3’)にわたってアクチュエータに充電電流(ICHARGE)を印加するステップとを含み、第3の差動電圧レベル(V)は、燃料レール内の燃料圧力(「レール圧力」または「P」と呼ばれる)、Ton(燃料噴射事象のオン時間)、および圧電スタック温度(Temp)から選択される少なくとも1つのエンジンパラメータに応じて選択され、この方法は、(i)ステップ(a)でスタックを放電させるのに用いられる放電電流(IDISCHARGE)を選択するための放電電流補償、(ii)ステップ(c)でスタックを充電するのに用いられる充電電流(ICHARGE)を選択するための充電電流補償、および(iii)ステップ(b)で第2の差動電圧レベルを達成するためにスタックから除去する電荷量を選択するための開放放電補償、の少なくとも1つを適用するステップをさらに含み、様々なエンジンパラメータおよび方法のステップは本明細書に説明された通りである。
【図面の簡単な説明】
【0177】
【図1A】駆動回路を備えるエンジン制御ユニット(ECU)および圧電噴射器を含む燃料噴射システムの概略図である。
【図1B】圧電アクチュエータに制御された燃料噴射器の概略図である。
【図2】図1の駆動回路を示す回路図である。
【図3】図3Aは、図2の噴射器駆動回路による実装形態に関する噴射事象シーケンス向けの電圧プロファイルを示す図である。図3Bは、図3Aの電圧プロファイルに対応する理想化された駆動電流プロファイルを示す図である。
【図4】本発明の一実施形態による噴射事象シーケンス向けの電圧プロファイルを示す図である。
【図5】本発明の一実施形態によって目標の第3の差動電圧レベルを達成するために、圧電燃料噴射器用駆動回路のトップレール電圧を計算するのに適用され得るステップを示す制御流れ図である。
【図6】本発明の別の実施形態によって理想化された駆動電流プロファイルを示す図である。
【図7】本発明の一実施形態によって燃料噴射器の圧電アクチュエータに適用され得る開放電流補償、閉鎖電流補償および開放放電補償を計算するためのステップを示す制御流れ図である。
【符号の説明】
【0178】
7 バルブニードル座7
8 エンジン
9 圧電要素
10 噴射器セット
11 圧電アクチュエータ
12 燃料噴射器
13 バルブニードル
14 エンジン制御ユニット
20a 駆動回路
21 噴射器制御ユニット
22 電源
23 エンジンパラメータ
30 制御論理回路
32 電流経路
33 コイル
34 電流の検出および制御手段
112 電気的パルス時間
200 サブモデル
210 ゲイン
211 圧電スタック温度
212 温度
213 飽和関数
300 目標のトップレール電圧
400 開放電流補償
410 レール圧力
411 飽和曲線
412 ゲイン
420 賦勢された差動電圧レベル
421 飽和曲線
422 ゲイン
430 圧電スタック温度
431 飽和曲線
432 ゲイン
440 定数
450 トータルゲイン
451 飽和曲線
460 デフォルト開放電流
461 目標開放電流
470 デフォルト開放電流
471 目標開放電流
480 開放電流
500 閉鎖電流補償
510 燃料圧力
511 飽和曲線
512 ゲイン
520 賦勢された差動電圧レベル
521 飽和曲線
522 ゲイン
530 圧電スタック温度
531 飽和曲線
532 ゲイン
540 定数
550 トータルゲイン
551 飽和曲線
560 デフォルト閉鎖電流
561 目標閉鎖電流
570 デフォルト閉鎖電流
571 目標閉鎖電流
600 開放放電補償
610 レール圧力
611 飽和曲線
612 ゲイン
620 賦勢された差動電圧レベル
621 飽和曲線
622 ゲイン
630 圧電スタック温度
631 飽和曲線
632 ゲイン
640 定数
651 飽和曲線
660 開放時間
661 補償された開放時間
670 開放時間
671 補償された開放時間
680 追加の補償

【特許請求の範囲】
【請求項1】
圧電要素(9)のスタックを有する圧電アクチュエータ(11)を含み、使用時に燃料レールと通信する燃料噴射器(12a、12b)を作動させる方法であって、
(a)前記スタック両端の第1の差動電圧レベル(V)から前記スタック両端の第2の差動電圧レベル(V/V)へ前記スタックが放電するように、放電期間(T0からT1)にわたって前記アクチュエータ(11)に放電電流(IDISCHARGE)を印加するステップと、
(b)所定期間(T1からT2、「ドウェル期間」)にわたって前記第2の差動電圧レベルを維持するステップと、
(c)前記第2の差動電圧レベルから第3の差動電圧レベル(V)へ前記スタックを充電するように、充電期間(T2からT3、T2からT3’)にわたって前記アクチュエータ(11)に充電電流(ICHARGE)を印加するステップとを含み、
前記第3の差動電圧レベルが、前記燃料レール内の燃料圧力(レール圧力、P)、電気的パルス時間(Ton)、および圧電スタック温度(Temp)から選択される少なくとも2つのエンジンパラメータに応じて選択される方法。
【請求項2】
前記少なくとも2つのエンジンパラメータを求める前記ステップが、
(1)前記放電期間の開始に先立って、かつ/または
(2)前記放電期間中(T0からT1)に、かつ/または
(3)前記ドウェル期間中(T1からT2)に、前記少なくとも2つのエンジンパラメータを測定するステップを含む請求項1に記載の方法。
【請求項3】
少なくとも前記レール圧力(P)および前記電気的パルス時間(Ton)に応じて前記第3の差動電圧レベル(V)が選択される請求項1または請求項2に記載の方法。
【請求項4】
前記第3の差動電圧レベル(V)が、前記レール圧力(P)、前記電気的パルス時間(Ton)、および前記圧電スタック温度の関数(V=f(P,Ton,Temp))である請求項1から3のいずれか一項に記載の方法。
【請求項5】
前記第3の差動電圧レベル(V)が、較正データを基に、1つまたは複数のルックアップ表、データマップ、式またはスケール関数から選択される請求項1から4のいずれか一項に記載の方法。
【請求項6】
前記レール内の前記燃料圧力を測定するように配置される圧力センサを使用して前記レール圧力(P)が測定される請求項1から5のいずれか一項に記載の方法
【請求項7】
前記電気的パルス時間(Ton)が、エンジン負荷、回転速度およびスロットル位置の1つまたは複数の関数として求められる請求項1から6のいずれか一項に記載の方法。
【請求項8】
ステップ(c)が駆動回路(20a)によって制御され、前記駆動回路が、電圧VHIの高電圧レール、電圧VLOの低圧レールを備え、前記高電圧レールおよび前記低圧レールが前記圧電アクチュエータ(11)のそれぞれの端子へ接続可能であり、前記圧電アクチュエータの前記第3の差動電圧(V)が前記VHIとVLOの間の電圧差である請求項1から7のいずれか一項に記載の方法。
【請求項9】
前記駆動回路(20a)が前記高電圧レール(VHI)の電圧を制御するための装置を含み、前記少なくとも2つのエンジンパラメータに応じて前記第3の差動電圧レベル(V)を選択するステップに続いて、前記高電圧レールの前記電圧が、前記選択された第3の差動電圧レベルを達成するように制御される請求項8に記載の方法。
【請求項10】
前記レール圧力および前記電気的パルス時間(Ton)に関するデータマップから、所望の第3の差動電圧レベルに対する第1の出力を得るステップと、圧電スタック温度を基に前記第1の出力に対してスケール関数を適用することにより第2の出力を得るステップとによる処理によって目標の第3の差動電圧レベル(V)が選択され、前記第2の出力が、前記目標の第3の差動電圧レベルに関係する請求項1から9のいずれか一項に記載の方法。
【請求項11】
前記レール圧力(P)および前記電気的パルス時間(Ton)と関係する第1のデータマップから所望の第3の差動電圧レベルへの第1の出力を得るステップと、スタック温度および所望の第3の差動電圧レベルに対する前記第1の出力に関する第2データマップから第2の出力を得るステップとによる処理によって目標の第3の差動電圧レベル(V)が選択され、前記第2の出力が、前記目標の第3の差動電圧レベルに関係する請求項1から10のいずれか一項に記載の方法。
【請求項12】
前記第1および第2の出力が、請求項8または請求項9に記載の前記高電圧レール(VHI)の前記電圧に相当する請求項10または請求項11に記載の方法。
【請求項13】
ステップ(c)が、
(b1)ステップ(a)および(b)を繰り返すステップと、
(b2)前記アクチュエータ(11)に対して、前記第2の差動電圧レベルから前記第1の差動電圧レベル(V)と第3の差動電圧レベル(V)の中間の差動電圧レベル(V3’)へスタックを充電するように、充電期間(T2からT3’)にわたって充電電流(ICHARGE)を印加するステップと、
(b3)前記中間の差動電圧レベル(V3’)が、前記第3の差動電圧レベル(V)と実質的に同等になるまでステップ(b1)および(b2)を繰り返すステップとをさらに含み、先行するステップ(b2)で得られた前記中間の差動電圧レベル(V3’)が、それに続くステップ(b1)における前記第1の差動電圧レベルと解釈される請求項1から12のいずれか一項に記載の方法。
【請求項14】
(i)ステップ(a)で前記スタックを放電させるのに用いられる前記放電電流(IDISCHARGE)を選択するための放電電流補償、
(ii)ステップ(c)で前記スタックを充電するのに用いられる前記充電電流(ICHARGE)を選択するための充電電流補償、および
(iii)ステップ(b)で前記第2の差動電圧レベル(V/V)を達成するために前記スタックから除去する電荷量を選択するための開放放電補償、の少なくとも1つを適用するステップをさらに含む請求項1から13のいずれか一項に記載の方法。
【請求項15】
前記放電電流補償、前記充電電流補償および前記開放放電補償の各々が、前記レール圧力(P)、前記圧電スタック温度(Temp)および前記第1の差動電圧レベル(V)から選択される少なくとも1つのエンジンパラメータに応じて求められる請求項14に記載の方法。
【請求項16】
(i)ステップ(a)で前記スタックを放電させるのに用いられる前記放電電流(IDISCHARGE)を選択するための放電電流補償、
(ii)ステップ(c)で前記スタックを充電するのに用いられる前記充電電流(ICHARGE)を選択するための充電電流補償、および、
(iii)ステップ(b)で前記第2の差動電圧レベル(V/V)を達成するために前記スタックから除去する電荷量を選択するための開放放電補償、を適用するステップを含み、
前記放電電流補償、前記充電電流補償および前記開放放電補償の各々が、前記レール圧力(P)、前記圧電スタック温度(Temp)および前記第1の差動電圧レベル(V)の関数として別々に求められる請求項1から15のいずれか一項に記載の方法。
【請求項17】
圧電要素(9)のスタックを有する圧電アクチュエータ(11)を含む燃料噴射器(12a、12b)向けの駆動回路であって、
(A)前記スタックの両端の第1の差動電圧レベル(V)から前記スタックの両端の第2の差動電圧レベル(V/V)へ前記スタックが放電するように、放電期間(T0からT1)にわたって前記アクチュエータ(11)に放電電流(IDISCHARGE)を印加するための1つまたは複数の第1の要素と、
(B)所定期間(T1からT2)にわたって前記第2の差動電圧レベルを維持するための1つまたは複数の第2の要素と、
(C)前記第2の差動電圧レベル(V/V)から第3の差動電圧レベル(V)へ前記スタックを充電するように、充電期間(T2からT3、T2からT3’)にわたって前記アクチュエータ(11)に充電電流(ICHARGE)を印加するための1つまたは複数の第3の要素と、
(D)前記スタック(9)が充電される前記第3の差動電圧レベル(V)が少なくとも2つのエンジンパラメータに応じて選択されるように、前記アクチュエータ(11)に前記充電電流(ICHARGE)を印加する前に前記少なくとも2つのエンジンパラメータを求めるための1つまたは複数の第4の要素とを備え、前記少なくとも2つのエンジンパラメータが、前記燃料レール内の燃料圧力(レール圧力、P)、電気的パルス時間(Ton)、および圧電スタック温度(Temp)から選択される駆動回路。
【請求項18】
前記スタック(9)が充電される前記第3の差動電圧レベル(V)が、前記レール圧力(P)、前記電気的パルス時間(Ton)、および前記圧電スタック温度(Temp)の関数として選択される請求項17に記載の駆動回路。
【請求項19】
(E)前記スタックを放電させるのに用いられる前記放電電流(IDISCHARGE)を選択するように放電電流補償を適用するための1つまたは複数の第5の要素、および/または
(F)前記スタックを充電するのに用いられる前記充電電流(ICHARGE)を選択するように充電電流補償を適用するための1つまたは複数の第6の要素、および/または
(G)前記第2の差動電圧(V/V)を達成するために前記スタックから除去することになる電荷の量を選択するように開放放電補償を適用するための1つまたは複数の第7の要素、および、
(H)前記放電電流補償、前記充電電流補償および前記開放放電補償のうち任意のものを適用する前に少なくとも1つのエンジンパラメータを求めるための1つまたは複数の第8の要素をさらに含み、前記少なくとも1つのエンジンパラメータが、前記レール圧力(P)、前記圧電スタック温度(Temp)および前記第1の差動電圧レベル(V)から選択される請求項17または請求項18に記載の駆動回路。
【請求項20】
前記放電電流補償、前記充電電流補償および前記開放放電補償の各々が、前記レール圧力(P)、前記圧電スタック温度(Temp)および前記第1の差動電圧レベル(V)の関数として別々に求められる請求項19に記載の駆動回路。
【請求項21】
実行環境で実行されたときに、請求項1から16のいずれか一項に記載の方法を実施するように作動可能な少なくとも1つのコンピュータプログラム・ソフトウェア部分を含むコンピュータプログラム製品。
【請求項22】
請求項21に記載の前記コンピュータソフトウェア部分またはその各々が格納されたデータ格納媒体。
【請求項23】
請求項22に記載の前記データ格納媒体が備わっているマイクロコンピュータ。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−68494(P2009−68494A)
【公開日】平成21年4月2日(2009.4.2)
【国際特許分類】
【外国語出願】
【出願番号】特願2008−235620(P2008−235620)
【出願日】平成20年9月12日(2008.9.12)
【出願人】(599023978)デルファイ・テクノロジーズ・インコーポレーテッド (281)
【Fターム(参考)】