説明

回転機械

【課題】可変静翼を備える回転機械において、可変静翼の回動角度に応じて空力性能が変動することを抑制する。
【解決手段】流路壁5の壁面において、可変静翼3bが回動する領域が平坦化領域Rとされている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転機械に関するものである。
【背景技術】
【0002】
従来から、ジェットエンジン等の回転機械では、幅広い回転域での安定動作を目的として、可変静翼が設置される場合がある。
このような可変静翼は、高さ方向に流路壁に挟まれて配置されており、高さ方向に向く回動軸を中心として回動可能とされている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−345997号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
周知のように、ジェットエンジン等の回転機械は、回転軸を中心とする回転対称に形状設定されている。このため、可変静翼を挟む上述の流路壁も、流体の流れ方向から見た場合には、円形に形状設定されている。
そして、上述の可変静翼は、高さ方向すなわち回転機械の半径方向に向く回動軸を中心として回動されることとなる。
【0005】
ところが円形に形状設定された流路壁に対して可変静翼が回動すると、可変静翼の回動角度によって、可変翼と流路壁との間に形成される隙間の大きさが変化する。
つまり、可変静翼が回動することによって可変静翼の前縁は、流体の流れ方向から見て左右に移動することとなる。そして、流体の流れ方向から見て前縁が回動軸と重なる位置(中央位置)では、可変静翼のハブと当該ハブ側の流路壁との間の隙間は最小となり、前記が上記中央位置から離れるに従って当該隙間が拡大することとなる。
【0006】
このように、可変静翼のハブと当該ハブ側の流路壁との隙間が大きくなると、可変静翼と流路壁との間における流体の漏れ量が多くなり、圧力損失が増大する。
つまり、可変静翼を備える従来の回転機械においては、可変静翼の回動角度によって空力性能が変動してしまうという問題を有している。
【0007】
本発明は、上述する問題点に鑑みてなされたもので、可変静翼を備える回転機械において、可変静翼の回動角度に応じて空力性能が変動することを抑制することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、上記課題を解決するための手段として、以下の構成を採用する。
【0009】
第1の発明は、チップとハブとが流路壁に対向配置されると共に前記チップと前記ハブとを繋ぐ方向から見て回動可能な可変静翼を備える回転機械であって、前記流路壁の壁面において、前記可変静翼が回動する領域の少なくとも1つが平坦化された平坦化領域とされているという構成を採用する。
【0010】
第2の発明は、上記第1の発明において、前記平坦化領域が、前記可変静翼の前記ハブ側に設けられているという構成を採用する。
【0011】
第3の発明は、上記第1または第2の発明は、角度の異なる前記平坦化領域同士の接続領域が円弧処理されているという構成を採用する。
【0012】
第4の発明は、上記第1〜第3いずれかの発明において、前記流れ方向から見て前記可変静翼が環状に複数配列され、前記流れ方向から見て前記流路壁が環状形状とされているという構成を採用する。
【0013】
第5の発明は、上記第1〜第4いずれかの発明において、前記平坦化領域が、ジェットエンジンの高圧圧縮機に設けられているという構成を採用する。
【発明の効果】
【0014】
本発明によれば、流路壁の壁面において可変静翼が回動する領域の少なくとも1つが平坦化された平坦化領域とされている。
このような平坦化領域において可変静翼が回動する場合には、可変静翼の回動角度がどのような角度であっても、可変静翼と平坦化領域との間の隙間は変化しない。このため、本発明によれば、可変静翼の回動角度に応じて可変静翼と平坦化領域を有する流路壁との隙間が変動することがない。
したがって、本発明によれば、可変静翼を備える回転機械において、可変静翼の回動角度に応じて空力性能が変動することを抑制することが可能となる。
【図面の簡単な説明】
【0015】
【図1】本発明の一実施形態におけるジェットエンジンの要部を示す概略構成図である。
【図2】本発明の一実施形態におけるジェットエンジンが備える可変静翼を含む模式図である。
【図3】本発明の一実施形態におけるジェットエンジンと従来のジェットエンジンとを比較する比較図である。
【発明を実施するための形態】
【0016】
以下、図面を参照して、本発明に係る回転機械の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
【0017】
図1(a)は、本発明の回転機械の一例であるジェットエンジンS1の概略構成を示す要部断面図である。この図に示すように、ジェットエンジンS1は、ファン1と、低圧圧縮機2と、高圧圧縮機3とを備えている。
なお、ジェットエンジンS1は、図1に示す他に、燃焼器、タービン、噴射ノズル等を備えているが、これらの構成については従来と同様であるため、ここでの説明は省略する。
【0018】
ファン1は、ケース4内部に空気を取込むための装置である。なお、ケース4の内部は、燃焼室に通じるコア流路4aと、ケース4の外部に通じるバイパス流路4bとに分岐されている。
そして、ファン1は、シャフトに連結されて回転駆動されるファン動翼1aと、ケース4の内部に設けられたバイパス流路4b内に設置されるファン静翼1bとを備えている。
【0019】
低圧圧縮機2は、コア流路4aにおいて高圧圧縮機3よりも上流側に配置されており、コア流路4bに流れ込んだ空気を圧縮するものである。
この低圧圧縮機2は、シャフトに連結されて回転駆動される動翼2aと、コア流路4aに固定される静翼2bとを備えている。
【0020】
高圧圧縮機3は、コア流路4aにおいて低圧圧縮機2よりも下流側に配置されており、低圧圧縮機2によって圧縮された空気をさらに圧縮して後流側の燃焼器に供給するものである。
この高圧圧縮機3は、シャフトに連結された回転駆動される動翼3aと、コア流路4aに回動可能に設置される可変静翼3bとを備えている。
【0021】
図1(b)は、図1(a)のA−A線矢視図である。この図に示すように、可変静翼3bは、ジェットエンジンS1の回転軸Lを中心として環状に複数配列されており、コア流路4aを形成する環状のハブ側流路壁5とチップ側流路壁6との間に配置されている。
【0022】
そして、各可変静翼3bは、図2(a)の斜視図に示すように、ハブ3b1がハブ側流路壁5に対向配置され、チップ3b2がチップ側流路壁6(図2(a)においては不図示)に対向配置され、前縁3b3が空気流れの上流側に向けて配置され、後縁3b4が空気流れの後流側に向けて配置されている。
また、各可変静翼3bは、ハブ3b1とチップ3b2とを繋ぐ高さ方向に向く回動軸3b5(スピンドル軸)を中心とし、高さ方向から見て回動可能とされている。
【0023】
なお、各可変静翼3bは、回動軸3b5(スピンドル軸)がコア流路4aの外部に設けられたアクチュエータリングと接続されている。
このアクチュエータリングは、アクチュエータにより回転軸Lを中心に回動可能とされている。このようなアクチュエータリングが回動することによって各可変静翼3bの回動軸が回動される。
そして、アクチュエータを制御することによって、アクチュエータリングの回動位置すなわち可変静翼3bの回動角度を任意に設定することができる。
このようなアクチュエータリングやアクチュエータによって、各可変静翼3bは、隣り合う可変静翼3bから最も遠ざかる全開姿勢(図2(a)の実線で示す姿勢)と、隣合う可変静翼3bと最も近づく全閉姿勢(図2(b)の破線で示す姿勢)との間で回動される。
【0024】
ここで、本実施形態のジェットエンジンS1では、図2(a)に示すように、ハブ側流路壁5が、可変静翼3bごとに平坦化領域Rを有している。つまり、ハブ側流路壁5の壁面のうち、可変静翼3bが対向して回動する領域の各々が平坦化領域Rとされている。
【0025】
本実施形態において各平坦化領域Rは、図2(b)の平面図に示すように、平面視が矩形に形状設定されており、幅d1が可変静翼3bの稼動幅daよりも広く、奥行きd2が可変静翼3bの翼長dbよりも長く設定されている。また、各平坦化領域Rは、ジェットエンジンS1の回転軸Lを中心とする半径方向に対して少なくとも幅d1方向が直交して配置されている。
【0026】
なお、本実施形態のジェットエンジンS1の高圧圧縮機3は、回転軸Lを中心に環状に配列される可変静翼3bよって翼列を空気の流れ方向に複数備えている。
そして、高圧圧縮機3において最も上流側に配置された翼列を形成する可変静翼3bは、高圧圧縮機3に流れ込む空気の流量を調節するためのインレットガイドベーンとして機能する。
【0027】
また、1つの翼列を構成する複数の可変静翼3bが環状に均等間隔で配列されており、これらの可変静翼3bの各々に対して上述の平坦化領域Rが設けられている。このため、平坦化領域Rも、回転軸Lを中心とする円周方向に均等間隔で配列されることとなる。よって、ハブ側流路壁5の外形形状は、空気の流れ方向から見た場合に、周りを囲む可変静翼3bの数に応じた正多角形形状となる。
【0028】
このような構成を有する本実施形態のジェットエンジンS1では、ファン1が駆動されることにより外部から空気が取込まれて、コア流路4aに流れ込む空気が低圧圧縮機2及び高圧圧縮機3により圧縮される。そして、圧縮された空気が燃焼器に供給されて燃料と共に燃焼され、この際の燃焼ガスを噴射ノズルから噴射することによって推力が得られる。
そして、例えばジェットエンジンS1の回転数に応じて、高圧圧縮機3の可変静翼3bの回動角度が設定される。
【0029】
ここで、本実施形態のジェットエンジンS1においては、ハブ側流路壁5の壁面のうち可変静翼3bが回動する領域が平坦化領域Rとされている。
このような平坦化領域Rにおいて可変静翼3bが回動する場合には、可変静翼3bの回動角度がどのような角度であっても、可変静翼3bと平坦化領域R(ハブ側流路壁5)との間の隙間は変化しない。このため、本実施形態のジェットエンジンS1によれば、可変静翼3bの回動角度に応じて可変静翼3bとハブ側流路壁5との隙間が変動することがない。
したがって、本実施形態のジェットエンジンS1によれば、可変静翼3bの回動角度に応じて空力性能が変動することを抑制することが可能となる。
【0030】
図3(a)は、本実施形態のジェットエンジンS1と従来のジェットエンジンとを比較するための模式図であり、可変静翼3bの前縁3b3とハブ側流路壁とを示す模式的に示す図である。なお、図3において、本実施形態のジェットエンジンS1のハブ側流路壁を符号5で指し示すと共に実線で示し、従来のジェットエンジンS1のハブ側流路壁を符号5aで指し示すと共に仮想線(二点差線)で示している。
この図3(a)に示すように、本実施形態のジェットエンジンS1では、可変静翼3bが実線で示す全開姿勢と破線で示す全閉姿勢との間で移動した場合であっても、可変静翼3bとハブ側流路壁5との隙間は変化しない。
一方、従来のジェットエンジンでは、ハブ側流路壁が湾曲しているため、可変静翼3bが全開姿勢よりも全閉姿勢の場合に、可変静翼3bとハブ側流路壁5aとの隙間が大きくなる。
【0031】
図3(b)は、図3(a)に示す従来のジェットエンジンにおいて、可変静翼3bが全開姿勢(全開時)と全閉姿勢(全閉時)とで圧力損失がどのように変化するかを示したグラフである。この図から分かるように、従来のジェットエンジンでは、全閉時すなわち可変静翼3bとハブ側流路壁5aとの間の隙間が大きい場合に、特にハブ側で圧力損失係数が増大している。
そして、本実施形態のジェットエンジンS1では、全閉姿勢において可変静翼3bとハブ側流路壁5との間の隙間が増大しないため、可変静翼3bが全閉姿勢の場合における圧力損失の増大を抑制し、空力性能の悪化を抑制することができる。
【0032】
なお、チップ側流路壁が回転軸Lを中心とする円形に湾曲している場合には、可変静翼3bのチップとチップ側流路壁との間の隙間が、全開姿勢の際に大きくなり、全閉姿勢の際に小さくなることとなる。
このため、チップ側流路壁6に対して可変静翼3bが回動する領域ごとに平坦化領域を設けるようにしても良い。
ただし、図3(b)に示すように、ハブ側の圧力損失係数が可変静翼3bの全開姿勢と全閉姿勢とで大きく変化するのに対して、チップ側の圧力損失係数はほとんど変化しない。
よって、ハブ側流路壁5のみに平坦化領域Rを設けることで、十分に圧力損失の増大を抑制し、空力性能の悪化を抑制することができる。
【0033】
また、図3(a)から分かるように、本実施形態のジェットエンジンS1のハブ側流路壁5は、従来のジェットエンジンのハブ側流路壁5aよりも、コア流路4a側に僅かながら飛び出すこととなる。この飛び出した領域によってコア流路4a内の流れが乱されないように、例えば、図2(a)に示す領域Ra(角度の異なる平坦化領域同士の接続領域)を円弧処理するようにしても良い。
これによって、平坦化領域同士が滑らかに接続されることとなり、コア流路4a内における空気の流れが乱れることを抑制することが可能となる。
【0034】
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
【0035】
例えば、上記実施形態においては、本発明の回転機械がジェットエンジンである構成について説明した。
しかしながら、本発明はこれに限定されるものではなく、単体の圧縮機や、単体のタービン、液体ポンプ等の回転機械に適用することも可能である。
【0036】
また、上記実施形態においては、可変静翼が高圧圧縮機3に設置される構成について説明した。
しかしながら、本発明はこれに限定されるものではなく、例えば、ファン静翼1bや低圧圧縮機3の静翼2bを可変静翼とする構成も採用することができる。このような場合には、これらの可変静翼に対して平坦化領域が設置されることとなる。
【0037】
また、上記実施形態においては、全ての可変静翼3bに対してハブ側流路壁5に平坦化領域Rが設けられる構成について説明した。
しかしながら、本発明はこれに限定されるものではなく、必ずしも全ての可変静翼3bに対して平坦化領域Rを設けなくても良い。
【符号の説明】
【0038】
S1……ジェットエンジン(回転機械)、3……高圧圧縮機、3b……可変静翼、5……ハブ側流路壁(流路壁)、6……チップ側流路壁(流路壁)、R……平坦化領域、Ra……領域(角度の異なる平坦化領域同士の接続領域)

【特許請求の範囲】
【請求項1】
チップとハブとが流路壁に対向配置されると共に前記チップと前記ハブとを繋ぐ方向から見て回動可能な可変静翼を備える回転機械であって、
前記流路壁の壁面において、前記可変静翼が回動する領域の少なくとも1つが平坦化された平坦化領域とされていることを特徴とする回転機械。
【請求項2】
前記平坦化領域は、前記可変静翼の前記ハブ側に設けられていることを特徴とする請求項1記載の回転機械。
【請求項3】
角度の異なる前記平坦化領域同士の接続領域が円弧処理されていることを特徴とする請求項1または2記載の回転機械。
【請求項4】
前記流れ方向から見て前記可変静翼が環状に複数配列され、前記流れ方向から見て前記流路壁が環状形状とされていることを特徴とする請求項1〜3いずれかに記載の回転機械。
【請求項5】
前記平坦化領域は、ジェットエンジンの高圧圧縮機に設けられていることを特徴とする請求項1〜4いずれかに記載の回転機械。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−21476(P2012−21476A)
【公開日】平成24年2月2日(2012.2.2)
【国際特許分類】
【出願番号】特願2010−160576(P2010−160576)
【出願日】平成22年7月15日(2010.7.15)
【出願人】(000000099)株式会社IHI (5,014)
【Fターム(参考)】