説明

太陽電池および太陽電池モジュール

【課題】照射される光を有効に利用することができる太陽電池を提供すること。
【解決手段】本発明の太陽電池は、第一基材を少なくとも備えた第一電極基板と、透明な第二基材を少なくとも備えた第二電極基板と、前記第一基材と前記第二基材との間の少なくとも一部に配された発電層と、から構成され、前記第二基材は、その側面部の一部が受光部として機能するとともに、受光した光を前記発電層へと導く光路誘導機構を少なくとも一部に備えていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池および太陽電池モジュールに関し、特に、照射される光を有効に利用することができる太陽電池および太陽電池モジュールに関する。
【背景技術】
【0002】
従来、特にエネルギー問題に対処する発電を目的とする太陽電池は、更なる変換効率の向上と低価格化が要求されている。シリコン系太陽電池においては、シリコンの高騰、原料そのものの枯渇といった問題があり、薄膜化によるシリコン使用量の削減や、他の化合物半導体を発電層に用いた代替太陽電池の開発も盛んである。また、色素増感型と呼ばれる新しい発電機構を適用した太陽電池の開発も行われている(非特許文献1を参照)。
【0003】
特に色素増感型の太陽電池は、従来型の太陽電池に比べて大幅な低価格化が可能と言われているだけでなく、変換効率の光入射角度に対する依存性が低く、温度変化に対する依存性も小さいことから、同じ変換効率を示す他のタイプの太陽電池に比べて、一日、あるいは年間積算発電力が大きくなるという特徴を有している。
【0004】
このような太陽電池では、窓極として機能する作用極側から入射した太陽光などの入射光によって、多孔質半導体層が増感されて、作用極と対極との間に起電力を生じさせることにより、光エネルギーが電力に変換される。
【0005】
色素増感型の太陽電池では、可視光に対して高い透過性をもつ導電性ガラス基板を用いている。しかしながら導電性ガラス基板の伝導度と透明性とは相反する関係にあり、光透過性を保ちつつ伝導度を向上するには限界がある。そのために大型モジュール化の際には、Bubarと呼ばれるグリッド状の金属配線を施して、面方向の伝導度の不足を補う。
【0006】
しかしながら、この配線は光を遮ってしまうため、開口率、すなわち実効的な太陽電池の面積は小さくなってしまう(Shadow loss) 。例えば色素増感型の太陽電池の場合、理論的な計算によると開口率が95〜85%程度のときに最も高い出力が得られるとの報告もある。
【0007】
このような問題に対し、多孔質半導体層を厚くすれば、色素吸着量が高まり、光吸収量も大きくなるが、多孔質膜厚の増加は、多孔質膜の電気抵抗が増加する。また、必要な電解質溶液が増え、電解液中を拡散しなければならないイオン種の拡散距離が長くなることによる直列抵抗の増加を招いてしまう。
【0008】
この特徴に鑑み、特許文献1では、多孔質膜の厚みを増すことなく有効な光電変換面積を増すためとして、素子端面から光を入射することを提案している。この文献では、素子端面から多孔質半導体電極にのみ直接光を入射するため、電極が透明である必要はなく、従来用いられている導電性ガラス電極を使用する代わりに、より安価な金属電極などを用いることができることが特徴であると述べられている。
【0009】
しかしながら、この方法では、単位セルの変換効率では向上が可能であっても、大面積モジュール化して実用を考える上では、これらの不透明電極は前述の通り開口率低下を招くため、本質的に太陽電池の特性向上をもたらさない。
上記説明では、色素増感型の太陽電池を例示して問題点を詳述したが、この問題点は、色素増感型の太陽電池に限定されるものではなく、シリコン系太陽電池など他の太陽電池においても共通する技術課題の一つである。
【特許文献1】特開2005−93406号公報
【非特許文献1】O'' Regan B., Graetzel M., A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991;353:737-739
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、このような従来の実情に鑑みて考案されたものであり、照射される光を有効に利用することができる太陽電池を提供することを第一の目的とする。
また、本発明は、照射される光を有効に利用して、モジュールあたりの発電容量の大きな太陽電池モジュールを提供することを第二の目的とする。
【課題を解決するための手段】
【0011】
本発明の請求項1に記載の太陽電池は、第一基材を少なくとも備えた第一電極基板と、透明な第二基材を少なくとも備えた第二電極基板と、前記第一基材と前記第二基材との間の少なくとも一部に配された発電層と、から構成され、前記第二基材は、その側面部の一部が受光部として機能するとともに、受光した光を前記発電層へと導く光路誘導機構を少なくとも一部に備えていることを特徴とする。
本発明の請求項2に記載の太陽電池は、請求項1において、前記光路誘導機構は、前記第二基材を構成する前記受光部に設けられた、集光手段であることを特徴とする。
本発明の請求項3に記載の太陽電池は、請求項1において、前記光路誘導機構は、前記第二基材またはその近傍に設けられた、散乱手段であることを特徴とする。
本発明の請求項4に記載の太陽電池は、請求項1において、前記光路誘導機構は、前記第二基材を構成し前記受光部と対向する位置の近傍、前記第二基材を構成し前記発電層と対向する位置の近傍、または前記第二基材の内部に設けられた、反射手段であることを特徴とする。
本発明の請求項5に記載の太陽電池は、請求項1において、前記光路誘導機構は、前記第二基材を構成する前記受光部に設けられた、反射防止手段であることを特徴とする。
本発明の請求項6に記載の太陽電池モジュールは、第一基材を少なくとも備えた第一電極基板と、透明な第二基材を少なくとも備えた第二電極基板と、前記第一基材と前記第二基材との間の少なくとも一部に配された発電層と、から構成され、前記第二基材は、その側面部の一部が受光部として機能するとともに、受光した光を前記発電層へと導く光路誘導機構を備えている太陽電池を複数連結して配することを特徴とする。
【発明の効果】
【0012】
本発明では、第二基材の側面部の一部が受光部として機能するとともに、受光した光を前記発電層へと導く光路誘導機構を少なくとも一部に備えているため、照射される光を有効に利用できる太陽電池を提供することができる。
また、本発明では、照射される光を有効に利用可能な太陽電池を複数連結して配することにより、従来モジュール化の際に要したグリッド状の金属配線が不要となる。ゆえに、従来は、金属配線の影になる部分が発電に寄与していなかったが、本発明の太陽電池モジュールでは、この部分が無くなるので、モジュールあたりの発電容量の増大を図ることができる。
【発明を実施するための最良の形態】
【0013】
以下、本発明に係る半導体装置の一実施形態を図面に基づいて説明する。
【0014】
<第一実施形態>
本発明の太陽電池は、第一基材を少なくとも備えた第一電極基板と、透明な第二基材を少なくとも備えた第二電極基板と、前記第一基材と前記第二基材との間の少なくとも一部に配された発電層と、から構成される。
【0015】
例えば図1に示す太陽電池10は、色素増感型の太陽電池であり、導電性の第一基材11と、該第一基材11の主面上に形成された導電膜12とからなる対極基板(第一電極基板)13と、絶縁性の透明な第二基材14と、該第二基材14の主面上に透明導電膜15を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層(発電層)16とを備え、該多孔質酸化物半導体層16が前記第一基材11の一面と対向して配される作用極基板(第二電極基板)17と、前記対極基板12と前記作用極基板17との間の少なくとも一部に配された電解質層18と、から構成される。
【0016】
そして本発明の太陽電池10は、前記第二基材14は、その側面部の一部が受光部14aとして機能するとともに、受光した光を前記多孔質酸化物半導体層(発電層)16へと導く光路誘導機構20を少なくとも一部に備えていることを特徴とする。
【0017】
透明な第二基材14の上端面から入射した光は、光路誘導機構20により誘導され、多孔質酸化物半導体層(発電層)16で吸収されることになる。これにより、第二基材14の厚さが第一基材11と封止部材19の厚さの合計より充分に厚ければ、通常の太陽電池において、窓極(作用極)の透明導電層に対向する側から光が入射する場合に比べて、受光部14aの開口率を向上することができ、その結果、太陽電池10の光吸収効率を向上することができる。
【0018】
本発明のように第二基材14の側面部から光を入射させた光を光路誘導機構20により多孔質酸化物半導体層(発電層)16へと誘導することで、入射した光をより効率よく多孔質酸化物半導体層(発電層)16へと導くことができるので、発電量の変化の幅を小さく抑えることができ、安定して発電することができる。
【0019】
また、この太陽電池10では、高い光吸収効率を有するので、光電変換率向上のため多孔質酸化物半導体層16の厚みを増す必要がなくなる。すなわち、多孔質酸化物半導体層を薄膜化することで、直列抵抗を低下させることができ、これにより光電変換効率を大幅に向上することができる。
【0020】
さらに、本発明では、上記第二基材14の側面部から光を入射させることで、従来、太陽電池の作製には不可欠だったグリッド状のBusbarの敷設が不要となり、下端面のみから配線することになる。これにより、製造工程を簡略化することができるとともに、配線による光の遮蔽を回避して光入射面の有効効率(以下、「光の利用効率」とも呼ぶ。)がさらに向上し、より高い光電変換効率を有するものとなる。
【0021】
太陽電池10は、対極基板(第一電極基板)13と、該作用極基板17の主面上に電解質層18を介して配された作用極基板(第二電極基板)17と、これらの間に封入された電解質からなる電解質層18と、から概略構成されている。
太陽電池10において、電解質層18を作用極基板17と対極基板13で挟んでなる積層体が、その外周部が封止部材19によって接着、一体化されて太陽電池として機能する。
【0022】
作用極基板17は、透明な第二基材14、および、その主面上に形成された透明導電膜15と、増感色素を担持させた多孔質酸化物半導体層16とから概略構成されている。また、作用極基板17の一方の端部には、外部と電気的に接続するための電極端子17’が取り付けられている。
【0023】
第二基材14としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、太陽電池の透明基材として用いられるものであればいかなるものでも用いることができる。第二基材14は、これらの中から電解液への耐性などを考慮して適宜選択される。また、第二基材14としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。
【0024】
透明導電膜15は、第二基材14に導電性を付与するために、その一方の面に形成された薄膜である。透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜15は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜15を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが用いられる。これらの中でも、成膜が容易かつ製造コストが安価であるという観点から、FTO、ITOが好ましい。また、透明導電膜15は、FTOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。
【0025】
透明導電膜15を、FTOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜とすることにより、可視域および近赤外域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。
【0026】
多孔質酸化物半導体層16は、透明導電膜15の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層16を形成する半導体としては特に限定されず、通常、太陽電池用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化タングステン(WO)などを用いることができる。
【0027】
多孔質酸化物半導体層16を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、この添加剤を加熱処理や化学処理により除去して空隙を形成させ多孔質化する方法などを適用することができる。
【0028】
増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。
【0029】
電解質層18は、多孔質酸化物半導体層16内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層16内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層16と一体に形成されてなるもの、あるいは、イオン液体、酸化物半導体粒子あるいは導電性粒子を含むゲル状の電解質が用いられる。
【0030】
上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ−ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
【0031】
上記イオン液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF、PF、F(HF)、ビストリフルオロメチルスルホニルイミド[N(CFSO]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
【0032】
対極基板(第一電極基板)13は、導電性の第一基材11と、この導電性の面上に形成された導電性の膜12とから構成されている。
【0033】
第一基材11としては、第二基材14と同様のガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど光透過性の素材からなる基板に、金属、金属酸化物、炭素、導電性高分子などからなる薄膜を塗布して導電性を付与したものや、特に光透過性をもつ必要がないことから金属板、あるいは非透明性の合成樹脂板に上記と同様に導電性を付与したものなどが用いられる。
【0034】
導電性の被膜12は、第一基材11に電解質溶液との電荷のやり取りを触媒する機能を付与するために、その一方の面に形成された金属、炭素などからなる薄膜である。導電性の被膜12としては、例えば炭素や白金などの層を、蒸着、スパッタ、塩化白金酸塗布後に熱処理を行ったもの、あるいは導電性高分子を塗布したものが好適に用いられるが、電極として機能するものであれば特に限定されるものではない。
なお、炭素、白金、導電性高分子等の導電性材料から構成される基材を対極基板13として用いてもよい。この場合、導電性の被膜12は不要となる。
【0035】
また、対極基板13を構成する導電性の第一基材11の一方の端部11’には、導電性の被膜12が形成されておらず、この一方の端部11’が、外部と電気的に接続するための電極端子として用いられる。具体的には、一方の端部11’は図1や図5に示すように、第一基材11の表面が露出した状態で封止部材19を突き抜けて外部に露出した形態をなす。
【0036】
つぎに、本発明の特徴である、光路誘導機構20について、図1〜図4を参照しながら説明する。図1(b)および図2〜図4では、太陽電池10において、光路誘導機構20が設けられた第二基材14の部分のみを抜き出して示している。
【0037】
前記光路誘導機構20は、例えば、前記第二基材14を構成する前記受光部14aに設けられた、集光手段21である。集光手段21としては、例えば図1(a)に示すように、受光部14aである第二基材14の上端面が凸曲面とされ、レンズを構成したものや、図1(b)に示すように、第二基材14において屈折率が徐々に変化していくもの等が挙げられる。受光部14aに入射した光を集光手段によって屈折させることで、より効率よく多孔質酸化物半導体層(発電層)16へと導くことができ、より高い光吸収効率を実現することができる。
【0038】
また、図2(a)〜(d)に示すように、光路誘導機構20は、例えば、前記第二基材14またはその近傍に設けられた、散乱手段22である。散乱手段22としては、例えば、第二基材14の表面を粗くしたもの、第二基材14上に形成される透明導電膜等の被膜の表面を粗くしたもの、などが挙げられる。
【0039】
散乱手段の配設場所としては特に限定されないが、図2(a)では、散乱手段22を受光部14aに設けた場合を示しており、図2(b)では、散乱手段22を第二基材14の多孔質酸化物半導体層(発電層)16と対向する面に設けた場合を示している。
【0040】
受光部14aに入射した光を、散乱手段22によって散乱させることで、より効率よく多孔質酸化物半導体層(発電層)16へと導くことができ、より高い光吸収効率を実現することができる。
【0041】
また、図3(a)〜(e)に示すように、前記光路誘導機構20は、例えば、前記第二基材14を構成し前記受光部14aと対向する位置の近傍、前記第二基材14を構成し前記多孔質酸化物半導体層(発電層)16と対向する位置の近傍、または前記第二基材14の内部に設けられた、反射手段23である。
反射手段23としては、例えば、ミラーやフォトニッククリスタル等が挙げられる。
【0042】
反射手段23の配設場所としては特に限定されないが、図3(a)では、反射手段23を第二基材14を構成し多孔質酸化物半導体層(発電層)16と対向する位置の近傍に設けた場合を示しており、図3(b)では、反射手段23を前記第二基材14を構成し前記受光部14aと対向する位置の近傍に設けた場合を示しており、図3(c)では、反射手段23を前記第二基材14の内部に設けた場合を示している。
【0043】
受光部14aに入射した光を、反射手段23によって反射させることで、より効率よく多孔質酸化物半導体層(発電層)16へと導くことができ、より高い光吸収効率を実現することができる。
【0044】
また、図3(d)および(e)に示すように、反射手段23の表面に凹凸を形成して、散乱手段としての機能をも併せ持たせてもよい。これにより、受光部14aに入射した光を、反射手段23によって反射させるとともに散乱させることで、さらに効率よく多孔質酸化物半導体層(発電層)16へと導くことができ、さらに高い光吸収効率を実現することができる。
【0045】
また、図4に示すように、前記光路誘導機構20は、例えば、前記第二基材14を構成する前記受光部14aに設けられた、反射防止手段24である。
反射防止手段24によって、受光部14aに入射する光の、受光部表面での反射を防止することで、より多くの光を第二基材14へと入射させるとともに、より多くの光を多孔質酸化物半導体層(発電層)16へと導くことができ、より高い光吸収効率を実現することができる。
【0046】
なお、図5に示す太陽電池10B(10)のように、対極基板13において、導電性の第一基材11の表裏両面に導電性の被膜12を形成し、対極基板13の両側に、多孔質酸化物半導体層16を対向させて作用極基板17を配した構造としてもよい。
【0047】
この場合、対極基板13は、その厚み方向に延びる連通孔(図示せず)を有することが好ましい。対極基板が連通孔を有することにより、その内部まで電解質を充填することが可能となり、両面の対極を電気化学的に連結することが可能となる。これにより太陽電池が単一のセルとして機能する。ゆえに、対極の両面に個別に配線を設ける必要がない。
【0048】
また、上述したような光路誘導機構20は、1種類のみを単独で用いてもよいし、複数の種類を組み合わせて用いてもよい。複数の種類を組み合わせて用いることで、より多くの光を効果的に多孔質酸化物半導体層16(発電層)へと導くことができ、さらに高い光吸収効率を実現することができる。
【0049】
例えば図5に示す太陽電池10Bでは、受光部14aである第二基材14の上端面にレンズ(集光手段21)が形成されるとともに、その表面に反射防止手段24が形成されており、さらに、第二基材14の下端面および第二基材14の多孔質酸化物半導体層16(発電層)と対向する面に、反射手段23を設けている。
【0050】
図6は、上述したような太陽電池10を複数備えた太陽電池モジュールである。
この太陽電池モジュール30は、導電性の第一基材11と、該第一基材11の主面上に形成された導電性の被膜12とからなる対極基板(第一電極基板)13と、絶縁性の透明な第二基材14と、該第二基材14の一面に透明導電膜15を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層16とを備え、該多孔質酸化物半導体層16が前記第一基材11の一面と対向して配される作用極基板(第二電極基板)17と、前記対極基板13と前記作用極基板17との間の少なくとも一部に配された電解質層18と、から構成され、前記第二基材14は、その側面部の一部が受光部14aとして機能するとともに、受光した光を前記多孔質酸化物半導体層16(発電層)へと導く光路誘導機構を少なくとも一部に備えている太陽電池10を複数備えることを特徴とする。
【0051】
本発明の太陽電池モジュール30は、上述したような、第二基材14は、その側面部の一部が受光部14aとして機能するとともに、受光した光を前記多孔質酸化物半導体層(発電層)16へと導く光路誘導機構20を少なくとも一部に備えている太陽電池10を複数備えているので、第二基材14の側面部から入射した光を光路誘導機構20により多孔質酸化物半導体層(発電層)16へと誘導できる。これにより、第二基材14の厚さが第一基材11と封止部材19の厚さの合計より充分に厚ければ、通常の太陽電池において、窓極(作用極)の透明導電層に対向する側から光が入射する場合に比べて、受光部14aの開口率を向上することができ、その結果、太陽電池モジュール30は高い光電変換効率を有するとともに、モジュールあたりの発電容量の増大を図ることができる。
【0052】
また、本発明では、上述したように、側面部から光を入射させる太陽電池を複数連結して配することにより、従来モジュール化の際に要したグリッド状の金属配線が不要となる。ゆえに、従来は、金属配線の影になる部分が発電に寄与していなかったが、本発明の太陽電池モジュール30では、この部分が無くなるので、光の有効効率がさらに向上し、モジュールあたりの発電容量の増大を図ることができる。
【0053】
<第二実施形態>
つぎに、本発明の第二実施形態について説明する。なお、以下の説明においては、上述した第一実施形態と異なる部分について主に説明し、同様の部分については、その説明を省略する。
【0054】
図7は、本発明に係る太陽電池の一実施形態を示す概略断面図である。
この太陽電池40は、導電性の第一基材41と、該第一基材の主面上に配され、少なくとも一部に色素を担持した多孔質酸化物半導体層42とからなる作用極基板(第一電極基板)43と、絶縁性の透明な第二基材44と、該第二基材44の主面上に順に配された透明導電膜45と導電性の被膜46とを備え、該被膜46が前記多孔質酸化物半導体層42と対向して配される対極基板(第二電極基板)47と、前記第一電極基板43と前記第二電極基板47との間の少なくとも一部に配された電解質層48と、から構成される。
【0055】
そして本発明の太陽電池40は、前記第二基材44は、その側面部の一部が受光部44aとして機能するとともに、受光した光を多孔質酸化物半導体層(発電層)42へと導く光路誘導機構20を少なくとも一部に備えていることを特徴とする。
【0056】
例えば図7に示す太陽電池40では、光路誘導機構20として、受光部44aである第二基材44の上端面にレンズ(集光手段21)が形成されるとともに、その表面に反射防止手段24が形成されており、さらに、第二基材44の下端面および第二基材44の多孔質酸化物半導体層(発電層)42と対向する面に、反射手段23を設けている。
【0057】
透明な第二基材44の上端面から入射した光は、光路誘導機構20により誘導され、多孔質酸化物半導体層(発電層)42で吸収されることになる。これにより、受光部44aの開口率を向上することができ、その結果、太陽電池40の光吸収効率を向上することができる。
【0058】
本発明のように第二基材44の側面部から光を入射させた光を光路誘導機構20により発電層へと誘導することで、入射した光をより効率よく多孔質酸化物半導体層(発電層)42へと導くことができるので、発電量の変化の幅を小さく抑えることができ、安定して発電することができる。
【0059】
また、この太陽電池40では、高い光吸収効率を有するので、光電変換率向上のため多孔質酸化物半導体層42の厚みを増す必要がなくなる。すなわち、多孔質酸化物半導体層42を薄膜化することで、直列抵抗を低下させることができ、これにより光電変換効率を大幅に向上することができる。
【0060】
また、作用極基板43の基材41の他方の端部には、多孔質酸化物半導体層42が形成されておらず、基材41の他方の端部41’は、外部と電気的に接続するために、第一基材41の表面が露出した状態で封止部材49を介して外部に露出している。
【0061】
被膜46としては、白金膜や炭素膜の他に導電性高分子膜などを用いることができる。例えば、金属電極層が白金膜である場合、被膜46の膜厚は、1nm〜500nmの範囲とされる。白金膜の膜厚が上記範囲を越えると、十分な光透過性が得られず、太陽電池の特性低下につながる可能性がある。また、白金膜の膜厚が上記範囲未満であると、十分な導電性が得られず、太陽電池の特性低下につながる可能性がある。被膜46の形成方法としては、例えば白金膜である場合、塩化白金酸を塗布して熱処理する等の方法が例示でき、蒸着法やスパッタ法により形成してもよい。
【0062】
対極基板(第二電極基板)47は、透明な第二基材44と、該第二基材44の作用極と対向させる側の面に、透明導電膜45と導電性の被膜46とからなる電極層を形成したものである。また、対極基板47の一方の端部には、外部と電気的に接続するための電極端子47’が取り付けられている。
【0063】
なお、図8に示す太陽電池40B(40)のように、作用極基板43において、導電性を有する第一基材41の表裏両面に多孔質酸化物半導体層42を形成し、作用極基板43の両側に、導電性の被膜46を対向させて対極基板47を配した構造としてもよい。また、第一基材41の受光側の端部が多孔質酸化物半導体層42で完全に覆われていてもよい。
この場合、また、第一基材41が導電性を有する材料によって形成されていることにより、作用極基板43の両面が電気的に接続され、太陽電池が単一のセルとして機能する。したがって、両面に個別に配線を設ける必要がない。
【0064】
図9は、上述したような太陽電池40を複数備えた太陽電池モジュールである。
この太陽電池モジュール50は、導電性の第一基材41と、該第一基材の主面上に配され、少なくとも一部に色素を担持した多孔質酸化物半導体層42とからなる作用極基板(第一電極基板)43と、絶縁性の透明な第二基材44と、該第二基材44の主面上に順に配された透明導電膜45と導電性の被膜46とを備え、該被膜46が前記多孔質酸化物半導体層42と対向して配される対極基板(第二電極基板)47と、前記第一電極基板43と前記第二電極基板47との間の少なくとも一部に配された電解質層48と、から構成され、前記第二基材44は、その側面部の一部が受光部44aとして機能するとともに、受光した光を前記多孔質酸化物半導体層42(発電層)へと導く光路誘導機構20を少なくとも一部に備えている太陽電池40を複数備えることを特徴とする。
【0065】
本発明の太陽電池モジュール50は、上述したような、第二基材44は、その側面部の一部が受光部44aとして機能するとともに、受光した光を前記多孔質酸化物半導体層42(発電層)へと導く光路誘導機構20を少なくとも一部に備えている太陽電池40を複数備えているので、第二基材44の側面部から入射した光を光路誘導機構20により発電層へと誘導することで受光部44aの開口率を向上することができ、その光を有効に利用することができる。その結果、太陽電池モジュール50は、高い光電変換効率を有するとともに、モジュールあたりの発電容量の増大を図ることができる。
【0066】
また、本発明では、上述したように、側面部から光を入射させる太陽電池を複数連結して配することにより、従来モジュール化の際に要したグリッド状の金属配線が不要となる。ゆえに、従来は、金属配線の影になる部分が発電に寄与していなかったが、本発明の太陽電池モジュール50では、この部分が無くなるので、光の有効効率がさらに向上し、モジュールあたりの発電容量の増大を図ることができる。
【0067】
なお、本発明は、色素増感型の太陽電池に限定されず、その他のタイプの太陽電池および太陽電池モジュールについても、適用可能である。
<第三実施形態>
つぎに、本発明の第三実施形態について説明する。なお、以下の説明においては、上述した第一実施形態と異なる部分について主に説明し、同様の部分については、その説明を省略する。
【0068】
図10は、本発明に係る太陽電池の一実施形態を示す概略断面図である。この太陽電池60は、結晶系シリコン太陽電池である。
この太陽電池60は、シリコン半導体層(発電層)61と、シリコン半導体層61の一方の面に形成された第一電極膜(裏面電極)62と、シリコン半導体層61の他方の面に形成された第二電極膜(表面電極)63と、から構成される。
【0069】
シリコン半導体層61は、p型シリコン半導体基板(第一基材)61aと、p型シリコン半導体基板61aの一方の面上に、リンの熱拡散などで形成されたn+型シリコン半導体膜61bと、p型シリコン半導体基板61aの他方の面上に、Alの拡散などで形成されたp+型シリコン半導体膜61cと、から構成される。
【0070】
そしてこのようなシリコン半導体層61と、第一電極膜62と、第二電極膜63とは、一対の第一基材64の間に挟持されるとともに、その間を満たすエチレン・酢酸ビニル共重合樹脂(EVA:ethylene-vinylacetate copolymer) 等の樹脂65によって封止されている。
【0071】
そして本発明の太陽電池60は、前記第二基材64は、その側面部の一部が受光部64aとして機能するとともに、受光した光を前記シリコン半導体層(発電層)61へと導く光路誘導機構20を少なくとも一部に備えていることを特徴とする。
【0072】
例えば図10に示す太陽電池60では、光路誘導機構20として、受光部64aである第二基材64の上端面にレンズ(集光手段21)が形成されるとともに、その表面に反射防止手段24が形成されており、さらに、第二基材64の下端面および第二基材64のシリコン半導体層(発電層)61と対向する面に、反射手段23を設けている。
【0073】
透明な第二基材64の上端面から入射した光は、光路誘導機構20により誘導され、シリコン半導体層(発電層)61で吸収されることになる。これにより、受光部64aの開口率を向上することができ、その結果、太陽電池60の光吸収効率を向上することができる。
【0074】
本発明のように第二基材64の側面部から光を入射させた光を光路誘導機構20によりシリコン半導体層(発電層)61へと誘導することで、入射した光をより効率よくシリコン半導体層(発電層)61へと導くことができるので、発電量の変化の幅を小さく抑えることができ、安定して発電することができる。
【0075】
そして、上述したような太陽電池60を複数備えた本発明の太陽電池モジュールは、シリコン半導体層(発電層)61と、シリコン半導体層61の一方の面に形成された第一電極膜(裏面電極)62と、シリコン半導体基板61の他方の面に形成された第二電極膜(表面電極)63とが、一対の透明な第二基材64との間に挟持されてなり、前記第二基材64は、その側面部の一部が受光部64aとして機能するとともに、受光した光を前記シリコン半導体層(発電層)61へと導く光路誘導機構20を少なくとも一部に備えている太陽電池60を複数備えることを特徴とする。
【0076】
本発明の太陽電池モジュールは、上述したような、第二基材65が、その側面部の一部が受光部64aとして機能するとともに、受光した光を前記シリコン半導体層(発電層)61へと導く光路誘導機構20を少なくとも一部に備えている太陽電池60を複数備えているので、第二基材64の側面部から入射した光を光路誘導機構20によりシリコン半導体層(発電層)61へと誘導することで受光部64aの開口率を向上することができ、その光を有効に利用することができる。その結果、この太陽電池モジュールは、高い光電変換効率を有するとともに、モジュールあたりの発電容量の増大を図ることができる。
【0077】
また、本発明では、上述したように、側面部から光を入射させる太陽電池を複数連結して配することにより、従来モジュール化の際に要したグリッド状の金属配線が不要となる。ゆえに、従来は、金属配線の影になる部分が発電に寄与していなかったが、本発明の太陽電池モジュールでは、この部分が無くなるので、光の有効効率がさらに向上し、モジュールあたりの発電容量の増大を図ることができる。
【0078】
<第四実施形態>
つぎに、本発明の第四実施形態について説明する。なお、以下の説明においては、上述した第一実施形態と異なる部分について主に説明し、同様の部分については、その説明を省略する。
図11は、本発明に係る太陽電池の一実施形態を示す概略断面図である。この太陽電池70は、アモルファスシリコン太陽電池である。
【0079】
この太陽電池70は、透明な第二基材71と、第二基材71の主面上に順に配された透明導電膜72と、アモルファスシリコン層(発電層)73と、金属電極膜74と、第一基材75と、から構成される。
アモルファスシリコン層(発電層)73は、p型アモルファスシリコン層73a、i型アモルファスシリコン層73b、n型アモルファスシリコン層73cが順に配されてなる。
【0080】
そして本発明の太陽電池70は、前記第二基材71(および第一基材75)は、その側面部の一部が受光部71a(75a)として機能するとともに、受光した光をアモルファスシリコン層(発電層)73へと導く光路誘導機構20を少なくとも一部に備えていることを特徴とする。
【0081】
例えば図11に示す太陽電池70では、光路誘導機構20として、受光部71a(75a)である第二基材71および第一基材75の上端面にレンズ(集光手段21)が形成されるとともに、その表面に反射防止手段24が形成されており、さらに、第二基材71および第二基材71の下端面、およびアモルファスシリコン層(発電層)73と対向する面に、反射手段23を設けている。
【0082】
透明な第二基材71および第一基材75の上端面から入射した光は、光路誘導機構20により誘導され、アモルファスシリコン層(発電層)73で吸収されることになる。これにより、受光部71a(75a)の開口率を向上することができ、その結果、太陽電池70の光吸収効率を向上することができる。
【0083】
本発明のように第二基材71(および第一基材75)の側面部から光を入射させた光を光路誘導機構20によりアモルファスシリコン層(発電層)73へと誘導することで、入射した光をより効率よくアモルファスシリコン層(発電層)73へと導くことができるので、発電量の変化の幅を小さく抑えることができ、安定して発電することができる。
【0084】
そして、本発明の太陽電池モジュールは、透明な第二基材71と、第二基材71の主面上に順に配された透明導電膜72と、アモルファスシリコン層(発電層)73と、金属電極膜74と、第一基材75と、から構成され、前記第二基材71(および第一基材75)は、その側面部の一部が受光部71a(75a)として機能するとともに、受光した光を前記アモルファスシリコン層(発電層)73へと導く光路誘導機構20を少なくとも一部に備えている太陽電池70を複数備えることを特徴とする。
【0085】
本発明の太陽電池モジュールは、上述したような、第二基材71(および第一基材75)が、その側面部の一部が受光部71a(75a)として機能するとともに、受光した光を前記アモルファスシリコン層(発電層)73へと導く光路誘導機構20を少なくとも一部に備えている太陽電池70を複数備えているので、第二基材71の側面部から入射した光を光路誘導機構20によりアモルファスシリコン層(発電層)73へと誘導することで受光部71a(75a)の開口率を向上することができ、その光を有効に利用することができる。その結果、この太陽電池モジュールは、高い光電変換効率を有するとともに、モジュールあたりの発電容量の増大を図ることができる。
【0086】
また、本発明では、上述したように、側面部から光を入射させる太陽電池を複数連結して配することにより、従来モジュール化の際に要したグリッド状の金属配線が不要となる。ゆえに、従来は、金属配線の影になる部分が発電に寄与していなかったが、本発明の太陽電池モジュールでは、この部分が無くなるので、光の有効効率がさらに向上し、モジュールあたりの発電容量の増大を図ることができる。
【0087】
以上、本発明の太陽電池および太陽電池モジュールについて説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。
例えば、上述した説明では、太陽電池として、色素増感、結晶シリコン、アモルファスシリコンの太陽電池を例に挙げて説明したが、本発明は、これ以外にも、化合物半導体、有機薄膜などのあらゆる種類の太陽電池に対して適用可能である。
【実施例】
【0088】
(実施例1)
本例では、色素増感型の太陽電池において、受光側に市販の導電性ガラス基板を用い、図1(a)に示すような構成、すなわち光路誘導機構として集光手段を配した構成を適用した場合について検討した。
市販のフッ素ドープした酸化スズ(FTO)を一方の面に設けた導電性ガラス基板(日本板硝子製、厚さ4mm)を用い、これを100mm×20mmの大きさに切断、長辺の一方の端側面を半円筒状に鏡面研磨、整形した後洗浄した。該導電性ガラス基板のFTO面上にメンディングテープ(住友3M製,スコッチテープ)をスペーサーにして酸化チタンペースト(Solaronix製、Ti-Nanoxide T)を塗布し、500℃、30分間焼成して、厚さ約2.5μm、投影面積90mm×5mmの多孔質酸化チタン層を構築した。そして該多孔質酸化チタン層にN719色素[bis(tetrabuthylammonium) cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylatee)ruthenium(II)、Solaronix製、Ruthenium535-bisTBA] を坦持させることで作用極を得た。
【0089】
金属チタン箔(厚さ40μm)を90mm×25mmの大きさに切断、洗浄した。該チタン箔の両面の、一方の長辺側端に沿って、上記多孔質酸化チタン層の投影面積と同じ90mm×5mmの範囲に白金をスパッタリング法により成膜することで対極を得た。
【0090】
上記作用極2枚を、多孔質酸化チタン層を構築した面を対向させ、それらの間に上記対極の両面の白金坦持部分が、該作用極の多孔質酸化チタン層部分とそれぞれ対面するようにして挟むように配置して、熱可塑性フィルム接着剤(三井デュポンポリケミカル製、ハイミラン)により外周を封止した。このとき、該作用極に接し、かつ該対極には接しないように、銅箔(厚さ10μm)をそれぞれ挟み、マイナス極の端子とした。
【0091】
次いで、あらかじめ上記作用極に開けておいた細孔から、メトキシアセトニトリルを溶媒とした揮発性電解質溶液(0.1Mヨウ化リチウム、0.6Mヨウ化1,2−ジメチル−3−プロピルイミダゾリウム、0.05Mヨウ素、0.5M4−tert−ブチルピリジン)を注入し、その後該細孔を、上記熱可塑性フィルム接着剤とガラス薄板で封止して太陽電池(セル)を作製した。
【0092】
以上のようにして得られた太陽電池(セル)の、上記導電性ガラス基板の半円筒状に整形した長辺の側面を受光面とすれば、集光手段(レンズ)として機能する。該導電性ガラス基板の半円筒状に整形した該長辺方向のみから光が入射するように、上記多孔質酸化チタン層が塗布している部分に対応する大きさに合わせて、該多孔質酸化チタン層の長辺方向の幅と、該ガラス基板2枚分の厚さ考慮して、90mm×8mmの穴を穿った、無反射塗料を塗布したマスクを通して光を照射した。このとき受光面積はマスクの開口部面積の7.2cmであった。
上述した太陽電池(セル)の2つのマイナス極の端子を、並列接続になるよう外部配線して、光電変換特性を測定した。
【0093】
(実施例2)
本例では、実施例1の光路誘導機構に代えて、図2(a)に示すような構成、すなわち光路誘導機構として散乱手段を配した構成を適用した場合について検討した。他の点は実施例1と同様とした。
市販のFTOをコートした導電性ガラス基板を100mm×20mmの大きさに切断、長辺の一方の端側面を、希薄なフッ酸水溶液によるエッチング法により、すりガラス様にすること、および該すりガラス面を光受光面とすることを除いては、実施例1と同様に太陽電池を作製した。以上のようにして得られた太陽電池は、光誘導機構として、該導電性ガラス基板のすりガラス様にした長辺側の側面が光散乱手段として機能する。また、実施例1と同様に、該導電性ガラス基板の、すりガラス様にした長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0094】
(実施例3)
本例では、実施例1の光路誘導機構に代えて、図3(a)と図3(b)に示すような構成、すなわち光路誘導機構として反射手段を配した構成を適用した場合について検討した。他の点は実施例1と同様とした。
市販のFTOをコートした導電性ガラス基板を100mm×20mmの大きさに切断、該導電性ガラス基板の、FTOがコートされていない裏面側、および一方の長辺の端側面に、それぞれ銀を蒸着して鏡とすること、および銀鏡を形成していない、他方の長辺の端側面を光受光面とすることを除いては、実施例1と同様に太陽電池を作製した。以上のようにして得られた太陽電池は、光誘導機構として、該導電性ガラス基板の銀鏡面が反射手段として機能する。また、実施例1と同様に、該導電性ガラス基板の、銀鏡を形成していない、他方の長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0095】
(実施例4)
本例では、実施例1の光路誘導機構に代えて、図4に示すような構成、すなわち光路誘導機構として反射防止手段を配した構成を適用した場合について検討した。他の点は実施例1と同様とした。
市販のFTOをコートした導電性ガラス基板を100mm×20mmの大きさに切断、長辺の一方の端側面に、反射防止フィルムを貼り付けること、および該フィルム貼りつけ面を光受光面とすることを除いては、実施例1と同様に太陽電池を作製した。以上のようにして得られた太陽電池は、光誘導機構として、該導電性ガラス基板の反射防止フィルムを貼り付けた面が反射防止手段として機能する。また、実施例1と同様に、該導電性ガラス基板の、反射防止フィルムを貼り付けた長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0096】
(実施例5)
本例では、実施例1の光路誘導機構に代えて、図3(c)に示すような構成、すなわち光路誘導機構として他の反射手段を配した構成を適用した場合について検討した。他の点は実施例1と同様とした。
市販のFTOをコートした導電性ガラス基板を100mm×20mmの大きさに切断、短辺方向への投影形状が直角三角形であり、かつ直角を挟む面のうち一方がFTOをコートした面であるような直角三角柱状に鏡面研磨、整形すること、および直角を挟む他方の長辺側の側面を光受光面とすることを除いては、実施例1と同様に太陽電池を作製した。以上のようにして得られた太陽電池は、光誘導機構として、該導電性ガラス基板の直角三角柱の斜面が反射手段として機能する。また、実施例1と同様に、該導電性ガラス基板の、直角を挟む面のうちFTOをコートしていない、長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0097】
(実施例6)
本例では、実施例1の光路誘導機構に代えて、光路誘導機構として集光手段、反射手段および反射防止手段を併せ持つ構成を適用した場合について検討した。他の点は実施例1と同様とした。
市販のFTOをコートした導電性ガラス基板を100mm×20mmの大きさに切断、長辺の一方の端側面を半円筒状に鏡面研磨、整形し、かつ、該導電性ガラス基板の、FTOがコートされていない裏面側、および半円筒状に整形していない他方の長辺の端側面に、それぞれ銀を蒸着して鏡を形成し、かつ、半円筒状に整形した側面に、反射防止フィルムを貼り付けることを除いては、実施例1と同様に太陽電池を作製した。以上のようにして得られた太陽電池は、光誘導機構として、集光手段、反射手段、反射防止手段を併せ持つ。また、実施例1と同様に、該導電性ガラス基板の、半円筒状に整形した長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0098】
(実施例7)
本例では、市販の多結晶シリコン太陽電池を用い、その受光側に、光路誘導機構として集光手段、反射手段および反射防止手段を併せ持つ構成を設けた場合について検討した。
市販の多結晶シリコン太陽電池(タミヤ社製、ITEM76002)の外部配線用の端子を残し、受光部が100mm×5mmの大きさになるよう切断した。厚さ3.8mmのホウケイ酸ガラス板(Schott社製、TEMPAX8330)を、実施例1と同様に、100mm×5mmの大きさになるよう切断、長辺の一方の端側面を半円筒状に鏡面研磨、整形した後洗浄した。さらに、該ガラス基板の主面の一方、および半円筒状に整形していない他方の長辺の端側面に、それぞれ銀を蒸着して鏡を形成し、かつ、半円筒状に整形した側面に、反射防止フィルムを貼り付けた。該シリコン太陽電池のグリッド配線を施してある表面と、該ガラス基板の銀鏡を形成していない主面との間に、厚さ0.1mmのエチレン−酢酸ビニル共重合体[EVA:poly(ethylene-co-vinylacetate)] シートを挟み、圧縮加熱により張り合わせ、積層体セルとした。以上のようにして得られた太陽電池は、光誘導機構として、集光手段、反射手段、反射防止手段を併せ持つ。
【0099】
上記積層体セルを、長辺側の側面方向のみから光が入射するように、上記シリコン太陽電池の長辺方向の長さと、上記ガラス板の厚みから考えて、100mm×3.8mmの穴を穿った、無反射塗料を塗布したマスクを通して光を照射し、光電変換特性を測定した。このとき、受光面積はマスクの開口部面積の3.8cmであった。
【0100】
(実施例8)
本例では、色素増感型の太陽電池において、受光側にSPD法で作製したFTO膜を配してなる導電性ガラス基板を用い、図1(a)に示すような構成、すなわち光路誘導機構として集光手段を配した構成を適用した太陽電池セルを複数用意し、これらの太陽電池セルを並列接続した太陽電池モジュールについて検討した。
厚さ3.8mmのホウケイ酸ガラス板の両面に、スプレー熱分解(SPD)法によりFTOを製膜した。該FTO両面コートガラス基板を、100mm×20mmの大きさに切断、長辺の一方の端側面を半円筒状に鏡面研磨、整形した後洗浄した。実施例1と同様に、該FTO膜付ガラス基板の両面に、それぞれ多孔質酸化チタン層を構築し、銅を成膜した。つぎに、半円筒状に整形していない他方の長辺の端側面に、銀を蒸着して鏡を形成し、かつ、半円筒状に整形した側面に、反射防止フィルムを貼り付けることを除いては、実施例1と同様にして、両面型作用極を作成した。
【0101】
上記両面型作用極8枚、実施例3と同様に作製した作用極2枚、および実施例1と同様に作製した対極9枚を用い、両端に該作用極を配置し、その間に該両面作用極と該対極を交互に配置して、実施例1と同様に積層し、熱可塑性フィルム接着剤で各電極間の外周を封止した。ついで、メトキシアセトニトリルを溶媒とした揮発性電解質溶液を注入したのち封止し、太陽電池モジュールとした。
実施例1と同様に、上記多孔質酸化チタン層の長辺方向の幅90mmと、厚さ4mmのガラス基板2枚分、厚さ3.8mmのガラス基板8枚分、および厚さ0.1mm接着剤層9枚分の厚みの合計から考えて、90mm×39mmの穴を穿った、無反射塗料を塗布したマスクを通して光を照射した。このとき、受光面積はマスクの開口部面積の34.5cmである。
上述した各太陽電池(セル)のプラス極、マイナス極の端子を、それぞれ並列接続になるよう、モジュールの光入射方向に対して裏面で外部配線した。このように配置した太陽電池モジュールに対して、光電変換特性を測定した。
【0102】
(比較例1)
本例では、色素増感型の太陽電池において、受光側に市販の導電性ガラス基板を用い、受光部には図1〜4に例示するような光路誘導機構は一切設けずに、ガラス基板の側面部から光を入射させる構成を適用した場合について検討した。他の点は実施例1と同様とした。
市販のFTOをコートした導電性ガラス基板に、なんら加工を施すことなく用いることを除いては、実施例1と同様に太陽電池を作製した。以上のようにして得られた太陽電池は、光誘導機構をもたない。また、実施例1と同様に、該導電性ガラス基板の、マイナス端子を形成していない他方の長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0103】
(比較例2)
本例では、ガラス基板の主面のみから光を入射するようにした以外は、比較例1と同様の構成を適用した場合について検討した。
比較例1と同様に作製した太陽電池セルの、一方の導電性ガラス基板の裏面のみから光が入射するように、上記多孔質酸化チタン層の投影面積と同じ90mm×5mmの穴を穿った、無反射塗料を塗布したマスクを通して光を照射した。このとき、受光面積はマスクの開口部面積の4.5cmである。
上述した各太陽電池(セル)の2つのマイナス極のうち、光が照射される側の作用極に取り付けた端子のみに配線して、光電変換特性を測定した。
【0104】
(比較例3)
本例では、受光部には図1〜4に例示するような光路誘導機構は一切設けなかった以外は、実施例7と同様の構成を適用した場合について検討した。
市販のホウケイ酸ガラス基板に、なんら加工を施すことなく用いることを除いては、実施例7と同様に太陽電池を作製した。以上のようにして得られた積層体太陽電池セルは、光誘導機構をもたない。また、実施例7と同様に、上記積層体セルを、長辺側の側面方向のみから光が入射するようにマスクをし、光電変換特性を測定した。
【0105】
(比較例4)
本例では、ガラス基板の主面のみから光を入射するようにした以外は、比較例3と同様の構成を適用した場合について検討した。
比較例3と同様に作製した積層体太陽電池セルの、上記ホウケイ酸ガラス基板の主面部のみから光が入射するように、該積層体太陽電池の投影面積と同じ100mm×5mmの穴を穿った、無反射塗料を塗布したマスクを通して光を照射し、光電変換特性を測定した。このとき、受光面積はマスクの開口部面積の5.0cmであった。
【0106】
<光電変換特性の評価>
実施例1〜7、比較例1〜4の各太陽電池(セル)、および実施例8の太陽電池モジュールについて、光電変換特性の評価を行った。評価試験はソーラーシミュレーター(山下電装製、YSS−150A)を光源にしてAM1.5G、100mW/cmの光を、それぞれのセルおよびモジュールの受光面に鉛直な方向から光照射を行ったときの照射角度を0°とし、その傾きを変化させながら光照射したときの光電変換特性を測定した。
表1〜6は光電変換特性の測定結果であり、特に短絡光電流密度については図12〜14にグラフ化して図示した。
【0107】
【表1】

【0108】
【表2】

【0109】
【表3】

【0110】
【表4】

【0111】
【表5】

【0112】
【表6】

【0113】
表1〜6および図12〜14から、以下の点が明らかとなった。
(1)色素増感型の太陽電池からなる太陽電池(セル)においては、主面部から光を入射させた(以下、「主面光入射型」とも呼ぶ。)比較例2では、鉛直方向から光入射するときに変換効率が高いが、入射角度が大きくなるにしたがって短絡光電流密度(Jsc)が低下し、結果として光電変換効率(η)が低下した。
これに対し、側面部から光を入射させた(以下、「側面光入射型」とも呼ぶ。)比較例1では、鉛直方向から光入射するときにはほとんどの入射光がガラス基板を透過してしまうため、ほとんど発電しないが、僅か光の入射角度が大きくなると短絡光電流密度が急激に増加する。光の入射角度が20〜45[°]の範囲では、それぞれ対応する比較例の場合に比べて短絡電流密度が高くなり、特に30[°]付近では、変換効率においても主面部への鉛直光入射での値を超えた。しかも、上記の範囲で入射角度依存性が小さく、屋外に設置したときの時間積算発電量が、比較例2の場合に比べて大きくなることが期待される。
単純に、光入射方向を変えるだけではなく、様々な光誘導機構を第二基材に設けた実施例1−5では、それぞれの方法に特有の光入射角度依存性を示した。
【0114】
(2)光誘導機構として、光受光部に集光手段を設けた実施例1では、変換効率の光入射角度依存性の顕著な低下が認められた。特に、比較例1で性能の低くなる光入射角度が0°のとき、および光入射角度が65°以上のときである。これは、本発明で設けた集光部手段があらゆる方向からセルに入射する光を、レンズの屈折作用により内部に導くためである。
【0115】
(3)光誘導機構として、光受光部に光散乱手段を設けた実施例2では、実施例1と同様に、変換効率の光入射角度依存性の顕著な低下が認められた。しかし、光入射角度が65°以上のときは散乱光がセル内部に導かれず、逆に外部に拡散する寄与が大きくなるため、光の利用効率が低下したものと考えられる。
【0116】
(4)光誘導機構として、光受光部近傍に反射手段を設けた実施例3では、セル内部に光を閉じ込める機能が高いため、光入射角度が65°以上のときに変換効率が低下する度合いが低下し、光散乱手段を用いた場合よりも良くなったが、光収集手段を用いた場合ほどは改善されなかった。しかしながら入射角度が0°の時には、受光面に相対する底面で正反射されてしまうため、変換効率の改善効果はほとんどなかった。
【0117】
(5)光誘導機構として、光受光部に反射防止手段を設けた実施例4では、受光面での光の反射が低下して、セル内部に導かれるため、短絡光電流密度が10%程度向上した。しかし、光入射角度依存性にはほとんど影響を与えなかった。
【0118】
(6)光誘導機構として、光受光部近傍に全反射手段を設けた実施例5では、光入射角度が小さな場合には、反射手段を用いた場合よりもさらに、セル内部に光を閉じ込める機能が高いため、光入射角度が0°のとき最も性能が高く、30°までほとんど低下しない。しかし、さらに入射角度が大きくなると、全反射条件が満たせなくなり、光がセルを透過する割合が増えるため、急激に性能が低下したと考えられる。
【0119】
(7)光誘導機構として、光受光部あるいはその近傍に集光手段、反射手段、反射防止手段を併せて設けた実施例6では、これら光誘導機構の効果が相乗して現れ、光入射角度0−75°の全ての範囲で性能が高く、しかも光入射角度依存性が小さくなった。最も性能の高くなる光入射角度30°のときの性能に比べて、75°のときでも25%以下しか低下しない。これは、一般的なセルの光入射方法である比較例2において、光入射角度が0から75°になったときに、75%も性能低下したことに比べて、非常に顕著な性能の向上である。
【0120】
(8)一方、多結晶シリコン太陽電池を用い、光誘導機構として、光収集手段を設けた実施例7では、光誘導機構をもたない比較例3に比べて顕著に性能向上し、しかも光の入射角度依存性も大きく低下した。しかし、一般的なセルの光入射方法である比較例4における最高性能を、超えることはできなかった。これは、多結晶シリコン太陽電池が、色素増感型の太陽電池に比べて変換効率は高いが、光入射角度依存性が大きく、入射角度が大きくなるにつれて急激に変換効率が低下し、その度合いは色素増感型の太陽電池の場合よりも大きいため、光収集手段でセル内部に導かれた光のうち、シリコンの面に対して大きな入射角度で入射した光が反射され、一部が外部に放射されているためだと思われる。にも関わらず、光入射角度依存性が大幅に改善されるため、屋外に設置した場合のように、光入射角度が変わるような条件で、一日の積算発電量で比べれば、光誘導機能を用いることにより改善されることが期待される。
【0121】
(9)側面光入射型の色素増感型の太陽電池モジュールで、かつ光誘導機構として、光受光部あるいはその近傍に集光手段、反射手段、反射防止手段を併せて設けた実施例8では、対応する光誘導機構を設けたセルの実施例6の場合よりも、光入射角度0−75°の全ての範囲でさらに性能が高く、光入射角度依存性が小さくなった。モジュールでは、各セルに入射した光が、散乱、反射などにより、外部へ放射されるのではなく、隣接するセルの内部に再度導くことができるため、見かけ上光路長が長くなった効果によると考えられる。このようなモジュール構造によれば大幅な発電量の向上が期待される。しかも、このモジュール構造によれば、セル間を繋ぐ配線を全てモジュールの背面に設けることができるため、配線により受光面積が低下することがないため、大型モジュールを作製した場合にモジュール効率低下が全く起こらない。
【0122】
(10)また、実施例1−6,および8の構造によれば、多孔質酸化チタン層を薄くして、増感色素の使用量を大幅に減少させても、効率良く光を収集できるため、色素増感型の太陽電池をより安価に作製できる可能性がある。さらには、電解質溶液の使用量も減少するため、素子の直列抵抗成分が小さくなるため、比較例2の構造で膜厚を大きくして短絡光電流密度を増加させる場合に比べて、光電変換特性における開放電圧(Voc)、および形状因子(FF)が向上するため、変換効率が改善されるという効果もある。
【0123】
上述した評価結果(1)〜(10)より、本発明で開示するところの、基材である透明基板に光誘導機構を設け、その側面部から光を入射させるセル構造、およびセルを複数積層してなるモジュール構造は、あらゆる太陽電池セル、および該太陽電池を複数備えた太陽電池モジュールに適用可能で、本来、変換効率の光入射角度に対する依存性の小さな、色素増感型の太陽電池において特に有効である。
【産業上の利用可能性】
【0124】
本発明は、あらゆる種類の太陽電池および該太陽電池を複数備えた太陽電池モジュールに関して適用可能である。
【図面の簡単な説明】
【0125】
【図1】本発明に係る太陽電池の一例を示す概略断面図である。
【図2】本発明に係る太陽電池を構成する光路誘導機構が設けられた第二基材の一例を抜き出して示す概略断面図である。
【図3】本発明に係る太陽電池を構成する光路誘導機構が設けられた第二基材の他の一例を抜き出して示す概略断面図である。
【図4】本発明に係る太陽電池を構成する光路誘導機構が設けられた第二基材の他の一例を抜き出して示す概略断面図である。
【図5】本発明に係る太陽電池の他の一例を示す概略断面図である。
【図6】本発明に係る太陽電池モジュールの一例を示す概略断面図である。
【図7】本発明に係る太陽電池の他の一例を示す概略断面図である。
【図8】本発明に係る太陽電池の他の一例を示す概略断面図である。
【図9】本発明に係る太陽電池モジュールの他の一例を示す概略断面図である。
【図10】本発明に係る太陽電池の他の一例を示す概略断面図である。
【図11】本発明に係る太陽電池の他の一例を示す概略断面図である。
【図12】光照射角度と短絡光電流密度との関係を示す第一のグラフである。
【図13】光照射角度と短絡光電流密度との関係を示す第二のグラフである。
【図14】光照射角度と短絡光電流密度との関係を示す第三のグラフである。
【符号の説明】
【0126】
10 太陽電池 、11 第一基材、12 導電膜、13 対極基板(第一電極基板)、14 第二基材、14a 受光部、15 透明導電膜、16 多孔質酸化物半導体層、17 作用極基板(第二電極基板)、18 電解質層、19 封止部材、20 光路誘導機構、30 太陽電池モジュール。

【特許請求の範囲】
【請求項1】
第一基材を少なくとも備えた第一電極基板と、
透明な第二基材を少なくとも備えた第二電極基板と、
前記第一基材と前記第二基材との間の少なくとも一部に配された発電層と、から構成され、
前記第二基材は、その側面部の一部が受光部として機能するとともに、受光した光を前記発電層へと導く光路誘導機構を少なくとも一部に備えていることを特徴とする太陽電池。
【請求項2】
前記光路誘導機構は、前記第二基材を構成する前記受光部に設けられた、集光手段であることを特徴とする請求項1に記載の太陽電池。
【請求項3】
前記光路誘導機構は、前記第二基材またはその近傍に設けられた、散乱手段であることを特徴とする請求項1に記載の太陽電池。
【請求項4】
前記光路誘導機構は、前記第二基材を構成し前記受光部と対向する位置の近傍、前記第二基材を構成し前記発電層と対向する位置の近傍、または前記第二基材の内部に設けられた、反射手段であることを特徴とする請求項1に記載の太陽電池。
【請求項5】
前記光路誘導機構は、前記第二基材を構成する前記受光部に設けられた、反射防止手段であることを特徴とする請求項1に記載の太陽電池。
【請求項6】
第一基材を少なくとも備えた第一電極基板と、
透明な第二基材を少なくとも備えた第二電極基板と、
前記第一基材と前記第二基材との間の少なくとも一部に配された発電層と、から構成され、
前記第二基材は、その側面部の一部が受光部として機能するとともに、受光した光を前記発電層へと導く光路誘導機構を備えている太陽電池を複数連結して配することを特徴とする太陽電池モジュール。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2008−16388(P2008−16388A)
【公開日】平成20年1月24日(2008.1.24)
【国際特許分類】
【出願番号】特願2006−188371(P2006−188371)
【出願日】平成18年7月7日(2006.7.7)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】