説明

導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器

【課題】キャリア輸送能の優れた導電層を形成しうる導電性材料組成物の提供。
【解決手段】式(1)の化合物と架橋性ビニル化合物を含む組成物およびその重合体。


式中、Xはスチレン性二重結合を有する特定の基を表す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器に関するものである。
【背景技術】
【0002】
有機材料を使用したエレクトロルミネッセンス素子(以下、単に「有機EL素子」という。)は、固体発光型の安価な大面積フルカラー表示素子(発光素子)としての用途が有望視され、多くの開発が行われている。
一般に、有機EL素子は、陰極と陽極との間に発光層を有する構成であり、陰極と陽極との間に電界を印加すると、発光層に陰極側から電子が注入され、陽極側から正孔が注入される。
【0003】
そして、注入された電子と正孔とが発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際の励起エネルギーを光エネルギーとして放出することにより、発光層が発光する。
このような有機EL素子において、有機EL素子の高効率化、すなわち、高い発光を得るためには、電子または正孔のキャリア輸送性の異なる有機材料で構成される有機層を、発光層と、陰極および/または陽極との間に積層する素子構造が有効であることが判っている。
【0004】
そこで、キャリア輸送特性の異なる発光層と有機層と(以下、これらを併せて「有機層」という。)を電極上に積層する必要があるが、従来の塗布法を用いる製造方法においては、有機層を積層する際に、隣接する有機層との間で相溶解が生じ、その結果として、有機EL素子としての発光効率、発色の色純度またはパターン精度が悪くなる等の特性が低下するという問題があった。
【0005】
そのため、有機層を積層する場合には、有機材料として溶解性の異なるものを組み合わせて用いることにより、積層するのに限られていた。
このような問題点を解決する方法として、下層となる有機層を構成する有機材料同士を重合化させることにより、下層の耐久性すなわち耐溶剤性を向上させる方法が開示されている(例えば、特許文献1参照。)。
【0006】
また、下層となる有機層を構成する有機材料に硬化性樹脂を添加し、この硬化性樹脂と一緒に硬化させることによって、下層の耐溶剤性を向上させる方法も開示されている(例えば、特許文献2参照。)。
しかしながら、これらのような方法を用いた場合においても、有機EL素子の特性の向上は、期待するほど得られていないのが実情である。
【0007】
【特許文献1】特開平9−255774号公報
【特許文献2】特開2000−208254号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明の目的は、キャリア輸送能の優れた導電層を形成することができる導電性材料用組成物、かかる導電性材料用組成物を用いて得られたキャリア輸送能の優れた導電性材料、かかる導電性材料を主材料とする導電層、信頼性の高い電子デバイスおよび電子機器を提供することにある。
【課題を解決するための手段】
【0009】
このような目的は、下記の本発明により達成される。
本発明の導電性材料用組成物は、下記一般式(1)で表される化合物と、該化合物同士を置換基Xにおいて架橋する架橋剤としてのビニル化合物とを含有することを特徴とする。
【化1】

[式中、2つのRは、それぞれ独立して、炭素数2〜8の直鎖アルキル基を表し、同一であっても、異なっていてもよく、4つのRは、それぞれ独立して、水素原子、メチル基またはエチル基を表し、同一であっても、異なっていてもよく、2つのXは、それぞれ独立して、下記一般式(2)で表される置換基を表し、同一であっても、異なっていてもよく、Yは、置換もしくは無置換の芳香族炭化水素環を少なくとも1つ含む基を表す。]
【化2】

[式中、nは、3〜8の整数を表し、mは、0〜3の整数を表し、Zは、水素原子、メチル基またはエチル基を表す。]
これにより、キャリア輸送能の優れた導電層を形成することができる導電性材料用組成物とすることができる。
【0010】
本発明の導電性材料用組成物では、前記ビニル化合物は、前記置換基Xと反応し得る反応基を少なくとも2つ有するものであることが好ましい。
これにより、ビニル化合物がより高い反応性を示すこととなる。その結果、前記一般式(1)で表される化合物同士の置換基Xを、直接、またはビニル化合物を介して重合反応させて得られた高分子(導電性材料)中において、未反応の置換基Xの残存量を好適に低減できるとともに、置換基X同士が直接連結した化学構造の割合に対して、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合を高くすることができる。
【0011】
本発明の導電性材料用組成物では、前記ビニル化合物は、2つの前記反応基の間に位置し、これらの反応基の間の距離を規制する規制部を有するものであることが好ましい。
これにより、規制部を有するビニル化合物により置換基X同士が架橋して形成された化学構造内において、主骨格同士の距離がより適切な大きさに保たれて、主骨格同士の間で相互作用が生じるのをより確実に防止することができる。その結果、このような化学構造を高い割合で有する導電性材料は、より優れたキャリア輸送能を発揮することとなる。
本発明の導電性材料用組成物では、前記規制部は、直鎖状をなしていることが好ましい。
これにより、得られる導電性材料中におけるキャリア輸送能が向上することとなる。
【0012】
本発明の導電性材料用組成物では、直鎖状の前記規制部を構成する原子のうち、直鎖状に連結するものの個数は、15〜50であることが好ましい。
これにより、得られる導電性材料において、主骨格同士の離間距離が、これらのもの同士が相互作用を及ぼしあわないように適切な大きさに保たれることから、導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0013】
本発明の導電性材料用組成物では、前記ビニル化合物は、下記一般式(3)で表されるポリエチレングリコールジ(メタ)アクリレートを主成分とするものであることが好ましい。
【化3】

[式中、nは、5〜15の整数を表し、2つのAは、それぞれ独立して、水素原子またはメチル基を表し、同一であっても、異なっていてもよい。]
これにより、得られる導電性材料において、主骨格同士の離間距離が、適切な大きさに保たれて、この導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0014】
本発明の導電性材料用組成物では、前記規制部は、環状をなす部分を有するものであることが好ましい。
これにより、得られる導電性材料の平面性を向上させることができる。そのため、形成される導電層において、導電性材料間におけるキャリアの受け渡しをより効率良く行うことができる。その結果、導電層のキャリア輸送能がより優れたものとなる。
【0015】
本発明の導電性材料用組成物では、前記環状をなす部分は、芳香族環であることが好ましい。
これにより、反応基と置換基Xとの反応性をより向上させることができ、得られる導電性材料において、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合をより高くすることができる。
【0016】
本発明の導電性材料用組成物では、前記環状をなす部分に、複数の前記反応基のうちの少なくとも1つが直接連結していることが好ましい。
これにより、反応基と置換基Xとの反応性をさらに向上させることができ、得られる導電性材料において、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合をさらに高くすることができる。
【0017】
本発明の導電性材料用組成物では、前記ビニル化合物は、ジビニルベンゼンを主成分とするものであることが好ましい。
これにより、得られる導電性材料中において、未反応の置換基Xの残存量を好適に低減しつつ、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合を高くすることができる。これにより、主骨格同士の離間距離がより適切な大きさに保つことができることから、この導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0018】
本発明の導電性材料用組成物では、2つの前記置換基Xは、同一であることが好ましい。
これにより、前記一般式(1)で表される化合物の置換基X以外の部分である主骨格同士による相互作用を好適に防止して、置換基Xを重合反応させて得られた高分子(導電性材料)のキャリア輸送能を向上させることができる。
本発明の導電性材料用組成物では、前記置換基Xは、ベンゼン環の3位、4位または5位のうちのいずれかに結合していることが好ましい。
これにより、主骨格同士をより確実に離間させることができる。
【0019】
本発明の導電性材料用組成物では、2つの前記置換基Rは、同一であることが好ましい。
これにより、形成される導電層において、隣接する高分子同士の距離をほぼ一定の間隔に保つことができる。その結果、異なる高分子が有する主骨格同士の間での相互作用を確実に低減することができ、導電性材料のキャリア輸送能を優れたものにすることができる。
本発明の導電性材料用組成物では、前記置換基Rは、ベンゼン環の4位に結合していることが好ましい。
これにより、隣接する高分子同士が接近しすぎるのをより確実に阻止することができる。
【0020】
本発明の導電性材料用組成物では、前記基Yは、炭素原子と水素原子とで構成されていることが好ましい。
これにより、高分子のキャリア輸送能が優れたものとなり、形成される導電層は、よりキャリア輸送能に優れたものとなる。
本発明の導電性材料用組成物では、前記基Yの総炭素数は、6〜30であることが好ましい。
これにより、高分子のキャリア輸送能がより優れたものとなり、形成される導電層は、特にキャリア輸送能に優れたものとなる。
【0021】
本発明の導電性材料用組成物では、前記基Yにおいて、前記芳香族炭化水素環の数は、1〜5であることが好ましい。
これにより、高分子のキャリア輸送能がより優れたものとなり、形成される導電層は、特にキャリア輸送能に優れたものとなる。
本発明の導電性材料用組成物では、前記基Yは、ビフェニレン基またはその誘導体であることが好ましい。
これにより、高分子のキャリア輸送能がより優れたものとなり、形成される導電層は、特にキャリア輸送能に優れたものとなる。
【0022】
本発明の導電性材料は、下記一般式(1)で表される化合物同士の置換基Xを、直接、または前記ビニル化合物を介して、重合反応させて得られることを特徴とする。
【化4】

[式中、2つのRは、それぞれ独立して、炭素数2〜8の直鎖アルキル基を表し、同一であっても、異なっていてもよく、4つのRは、それぞれ独立して、水素原子、メチル基またはエチル基を表し、同一であっても、異なっていてもよく、2つのXは、それぞれ独立して、下記一般式(2)で表される置換基を表し、同一であっても、異なっていてもよく、Yは、置換もしくは無置換の芳香族炭化水素環を少なくとも1つ含む基を表す。]
【化5】

[式中、nは、3〜8の整数を表し、mは、0〜3の整数を表し、Zは、水素原子、メチル基またはエチル基を表す。]
これにより、優れたキャリア輸送能を有する導電性材料とすることができる。
【0023】
本発明の導電性材料では、前記ビニル化合物は、前記置換基Xと反応し得る反応基を少なくとも2つ有するものであることが好ましい。
これにより、ビニル化合物がより高い反応性を示すこととなる。その結果、導電性材料中において、未反応の置換基Xの残存量を好適に低減できるとともに、置換基X同士が直接連結した化学構造の割合に対して、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合を高くすることができる。
【0024】
本発明の導電性材料では、前記ビニル化合物は、2つの前記反応基の間に位置し、これらの反応基の間の距離を規制する規制部を有するものであることが好ましい。
これにより、規制部を有するビニル化合物により置換基X同士が架橋して形成された化学構造内において、主骨格同士の距離がより適切な大きさに保たれて、主骨格同士の間で相互作用が生じるのをより確実に防止することができる。その結果、このような化学構造を高い割合で有する導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0025】
本発明の導電性材料では、前記規制部は、直鎖状をなしていることが好ましい。
これにより、導電性材料中におけるキャリア輸送能が向上することとなる。
本発明の導電性材料では、直鎖状の前記規制部を構成する原子のうち、直鎖状に連結するものの個数は、15〜50であることが好ましい。
これにより、導電性材料において、主骨格同士の離間距離が、これらのもの同士が相互作用を及ぼしあわないように適切な大きさに保たれることから、導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0026】
本発明の導電性材料では、前記ビニル化合物は、下記一般式(3)で表されるポリエチレングリコールジ(メタ)アクリレートを主成分とするものであることが好ましい。
【化6】

[式中、nは、5〜15の整数を表し、2つのAは、それぞれ独立して、水素原子またはメチル基を表し、同一であっても、異なっていてもよい。]
これにより、導電性材料中において、主骨格同士の離間距離が、適切な大きさに保たれて、この導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0027】
本発明の導電性材料では、前記規制部は、環状をなす部分を有するものであることが好ましい。
これにより、導電性材料の平面性を向上させることができる。そのため、形成される導電層において、導電性材料間におけるキャリアの受け渡しをより効率良く行うことができる。その結果、導電層のキャリア輸送能がより優れたものとなる。
本発明の導電性材料では、前記環状をなす部分は、芳香族環であることが好ましい。
これにより、反応基と置換基Xとの反応性をより向上させることができ、導電性材料中において、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合をより高くすることができる。
【0028】
本発明の導電性材料では、前記環状をなす部分に、複数の前記反応基のうちの少なくとも1つが直接連結していることが好ましい。
これにより、反応基と置換基Xとの反応性をさらに向上させることができ、導電性材料中において、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合をさらに高くすることができる。
【0029】
本発明の導電性材料では、前記ビニル化合物は、ジビニルベンゼンを主成分とするものであることが好ましい。
これにより、導電性材料中において、未反応の置換基Xの残存量を好適に低減しつつ、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合を高くすることができる。これにより、主骨格同士の離間距離がより適切な大きさに保つことができることから、この導電性材料は、より優れたキャリア輸送能を発揮することとなる。
【0030】
本発明の導電性材料では、2つの前記置換基Xは、同一であることが好ましい。
これにより、主骨格同士による相互作用を好適に防止して、高分子のキャリア輸送能を向上させることができる。
本発明の導電性材料では、前記置換基Xは、ベンゼン環の3位、4位または5位のうちのいずれかに結合していることが好ましい。
これにより、主骨格同士をより確実に離間させることができる。
【0031】
本発明の導電性材料では、2つの前記置換基Rは、同一であることが好ましい。
これにより、形成される導電層において、隣接する高分子同士の距離をほぼ一定の間隔に保つことができる。その結果、異なる高分子が有する主骨格同士の間での相互作用を確実に低減することができ、導電性材料のキャリア輸送能を優れたものにすることができる。
本発明の導電性材料では、前記置換基Rは、ベンゼン環の4位に結合していることが好ましい。
これにより、隣接する高分子同士が接近しすぎるのをより確実に阻止することができる。
【0032】
本発明の導電性材料では、前記基Yは、炭素原子と水素原子とで構成されていることが好ましい。
これにより、高分子のキャリア輸送能が優れたものとなり、形成される導電層は、よりキャリア輸送能に優れたものとなる。
本発明の導電性材料では、前記基Yの総炭素数は、6〜30であることが好ましい。
これにより、高分子のキャリア輸送能がより優れたものとなり、形成される導電層は、特にキャリア輸送能に優れたものとなる。
【0033】
本発明の導電性材料では、前記基Yにおいて、前記芳香族炭化水素環の数は、1〜5であることが好ましい。
これにより、高分子のキャリア輸送能がより優れたものとなり、形成される導電層は、特にキャリア輸送能に優れたものとなる。
本発明の導電性材料では、前記基Yは、ビフェニレン基またはその誘導体であることが好ましい。
これにより、高分子のキャリア輸送能がより優れたものとなり、形成される導電層は、特にキャリア輸送能に優れたものとなる。
本発明の導電性材料では、前記化合物および前記ビニル化合物は、光照射により重合反応することが好ましい。
光照射によれば、高分子化させる領域および程度を比較的容易に選択することができる。
【0034】
本発明の導電層は、本発明の導電性材料用組成物を用いて形成されたことを特徴とする。
これにより、キャリア輸送能に優れる導電層を形成することができる。
本発明の導電層は、本発明の導電性材料を主材料とすることを特徴とする。
これにより、キャリア輸送能に優れる導電層を形成することができる。
【0035】
本発明の導電層は、正孔輸送層であることが好ましい。
これにより、正孔輸送能に優れる正孔輸送層を形成することができる。
本発明の導電層では、前記正孔輸送層の平均厚さは、10〜150nmであることが好ましい。
これにより、発光効率の高い有機EL素子を得ることができる。
【0036】
本発明の電子デバイスは、本発明の導電層を有する積層体を備えることを特徴とする。
これにより、信頼性の高い電子デバイスが得られる。
本発明の電子デバイスは、発光素子または光電変換素子であることが好ましい。
これにより、信頼性の高い発光素子および光電変換素子が得られる。
本発明の電子デバイスでは、前記発光素子は、有機エレクトロルミネッセンス素子であることが好ましい。
これにより、信頼性の高い有機エレクトロルミネッセンス素子が得られる。
本発明の電子機器は、本発明の電子デバイスを備えることを特徴とする。
これにより、信頼性の高い電子機器が得られる。
【発明を実施するための最良の形態】
【0037】
以下、本発明の導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器を添付図面に示す好適実施形態に基づいて詳細に説明する。
<有機エレクトロルミネッセンス素子>
まず、本発明の電子デバイスを有機エレクトロルミネッセンス素子(以下、単に「有機EL素子」という。)に適用した場合の実施形態について説明する。
図1は、有機EL素子の一例を示した縦断面図である。
図1に示す有機EL素子1は、透明な基板2と、基板2上に設けられた陽極3と、陽極3上に設けられた有機EL層4と、有機EL層4上に設けられた陰極5と、各前記層3、4、5を覆うように設けられた保護層6とを備えている。
【0038】
基板2は、有機EL素子1の支持体となるものであり、この基板2上に各前記層が形成されている。
基板2の構成材料としては、透光性を有し、光学特性が良好な材料を用いることができる。
このような材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような各種樹脂材料や、各種ガラス材料等が挙げられ、これらのうちの少なくとも1種を用いることができる。
基板2の厚さ(平均)は、特に限定されないが、0.1〜30mm程度であるのが好ましく、0.1〜10mm程度であるのがより好ましい。
【0039】
陽極3は、有機EL層4(後述する正孔輸送層41)に正孔を注入する電極である。また、この陽極3は、有機EL層4(後述する発光層42)からの発光を視認し得るように、実質的に透明(無色透明、有色透明、半透明)とされている。
かかる観点から、陽極3の構成材料(陽極材料)としては、仕事関数が大きく、導電性に優れ、また、透光性を有する材料を用いるのが好ましい。
このような陽極材料としては、例えば、ITO(Indium Tin Oxide)、SnO2、Sb含有SnO2、Al含有ZnO等の酸化物、Au、Pt、Ag、Cuまたはこれらを含む合金等が挙げられ、これらのうちの少なくとも1種を用いることができる。
【0040】
陽極3の厚さ(平均)は、特に限定されないが、10〜200nm程度であるのが好ましく、50〜150nm程度であるのがより好ましい。陽極3の厚さが薄すぎると、陽極3としての機能が充分に発揮されなくなるおそれがあり、一方、陽極3が厚過ぎると、陽極材料の種類等によっては、光の透過率が著しく低下し、実用に適さなくなるおそれがある。
なお、陽極材料には、例えば、ポリチオフェン、ポリピロール等の導電性樹脂材料を用いることもできる。
【0041】
一方、陰極5は、有機EL層4(後述する電子輸送層43)に電子を注入する電極である。
陰極5の構成材料(陰極材料)としては、仕事関数の小さい材料を用いるのが好ましい。
このような陰極材料としては、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rbまたはこれらを含む合金等が挙げられ、これらのうちの少なくとも1種を用いることができる。
特に、陰極材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極材料として用いることにより、陰極5の電子注入効率および安定性の向上を図ることができる。
【0042】
陰極5の厚さ(平均)は、1nm〜1μm程度であるのが好ましく、100〜400nm程度であるのがより好ましい。陰極5の厚さが薄すぎると、陰極5としての機能が充分に発揮されなくなるおそれがあり、一方、陰極5が厚過ぎると、有機EL素子1の発光効率が低下するおそれがある。
陽極3と陰極5との間には、有機EL層4が設けられている。有機EL層4は、正孔輸送層41と、発光層42と、電子輸送層43とを備え、これらがこの順で陽極3上に形成されている。
【0043】
正孔輸送層(本発明の導電層)41は、陽極3から注入された正孔を発光層42まで輸送する機能を有するものである。
この正孔輸送層41が、本発明の導電性材料を主材料として構成されている。
本発明の導電性材料は、下記一般式(1)で表される化合物(ジフェニルアミン誘導体)同士を、直接、またはこの化合物同士を置換基Xにおいて架橋する架橋剤としてのビニル化合物を介して、重合反応させて得られた高分子(ポリマー)、すなわち、置換基X以外の主骨格(ジフェニルアミン骨格)同士を、置換基Xと置換基Xとが直接反応して生成した化学構造や、ビニル化合物により置換基Xと置換基Xとが架橋して形成された化学構造(以下、これらの化学構造を総称して「連結構造」という。)により連結してなる高分子を主成分とするものである。
【0044】
【化7】

[式中、2つのRは、それぞれ独立して、炭素数2〜8の直鎖アルキル基を表し、同一であっても、異なっていてもよく、4つのRは、それぞれ独立して、水素原子、メチル基またはエチル基を表し、同一であっても、異なっていてもよく、2つのXは、それぞれ独立して、下記一般式(2)で表される置換基を表し、同一であっても、異なっていてもよく、Yは、置換もしくは無置換の芳香族炭化水素環を少なくとも1つ含む基を表す。]
【0045】
【化8】

[式中、nは、3〜8の整数を表し、mは、0〜3の整数を表し、Zは、水素原子、メチル基またはエチル基を表す。]
【0046】
ここで、このような高分子では、連結構造を介して前記主骨格が繰り返して結合する構成、すなわち、主骨格が所定の距離を離間して繰り返し存在している構成となっていることから、隣接する主骨格同士の相互作用が低減する。
また、前記主骨格は、共役系の化学構造を有し、その特有な電子雲の広がりにより、高分子における円滑な正孔輸送に寄与する。
このようなことから、この高分子は、優れた正孔輸送能(キャリア輸送能)を発揮し、かかる高分子を主材料とする正孔輸送層41は、正孔輸送能に優れたものとなる。
【0047】
なお、このような高分子において、主骨格同士の離間距離が短くなり過ぎると、隣接する主骨格同士の相互作用が大きくなる傾向を示し、主骨格の離間距離が長くなり過ぎると、主骨格同士間における正孔の受け渡しが困難となり、高分子の正孔輸送能が低減する傾向を示す。
かかる観点から、連結構造の構成が選択(決定)される。すなわち、置換基Xおよびビニル化合物の構造(構成)がそれぞれ設定(決定)される。
【0048】
置換基Xは、前記一般式(2)中、nが3〜8、および、mが0〜3の直鎖状の炭素−炭素結合で構成され、特にnが4〜6、および、mが1または2の直鎖状の炭素−炭素結合で構成されているのが好ましい。また、nとmとの合計数は、3〜11であるのが好ましく、5〜8であるのがより好ましい。
nとmとがそれぞれ前記関係を満足するか、または、nとmとの合計が前記関係を満足すればよいが、nとmとは、これらの双方の関係を満足するのがより好ましい。これにより、主骨格同士を適切な距離に保つことが可能となり、高分子中において、隣接する主骨格同士の相互作用を確実に低減することができるとともに、主骨格同士間における正孔の受け渡しが確実に行われることから、高分子の正孔輸送能が優れたものとなる。
【0049】
また、2つの置換基Xにおいて、nとmとの合計数は、ほぼ同一であるのが好ましく、同一であるのがより好ましい。これにより、連結構造が、置換基X同士を直接結合させることにより形成された場合や、ビニル化合物を介して結合している場合に係わらず、高分子中における主骨格同士の離間距離を一定以上の大きさにすることができる。その結果、この高分子中において、主骨格同士による相互作用が生じるのを好適に防止することができる。これにより、高分子の正孔輸送能を向上させることができる。
【0050】
ところで、置換基Xが、前記一般式(2)に示すように、その末端に官能基として、スチレン基に置換基Zを導入したスチレン誘導体基を有していることから、連結構造中には、ベンゼン環が存在することとなる。
このベンゼン環も共役系の化学構造を有しているため、ベンゼン環と共役系の化学構造を有する主骨格とが接近しすぎる場合、例えば、ベンゼン環と主骨格とがエーテル結合により結合している場合や、nとmとの合計数が2の場合等では、このベンゼン環を介して隣接する主骨格同士が相互作用を及ぼすようになる。
【0051】
ところが、本発明の導電性材料では、主骨格とこのベンゼン環との結合がnとmとの合計数が3以上、すなわち3つ以上のメチレン基とエーテル結合とを介して形成されている。これにより、主骨格とベンゼン環との離間距離が好適な状態に保たれることとなる。その結果、隣接する主骨格同士が相互作用を及ぼしあうのを好適に抑制または防止にすることができる。
【0052】
また、置換基Zは、水素原子、メチル基またはエチル基であるが、置換基Zは、nとmとの合計数、すなわちメチレン基の合計数に応じて選択するようにすればよい。
例えば、前記合計数が小さい場合には、置換基Zとしては、メチル基もしくはエチル基を選択するようにすればよい。ここで、メチル基とエチル基が電子供与性の置換基であることから、置換基Zとして、メチル基およびエチル基を選択することにより、電子を主骨格側に偏らせることができる。その結果、ベンゼン環を介して隣接する主骨格同士が相互作用を及ぼすようになるのを好適に防止することができる。
【0053】
以上のようなことから、2つの置換基Xは、ほぼ同一であるのが好ましく、同一であるのがより好ましい。これにより、これら置換基Xの立体構造が互いにほぼ等しい構造となり、前述したような効果がより顕著に発揮されるようになる。その結果、主骨格同士が相互作用を及ぼしあうのをより好適に抑制または防止して、高分子の正孔輸送能をより向上させることができる。
なお、スチレン誘導体基は、高い反応性を有することから、比較的容易に置換基X同士、またはビニル化合物を介して重合反応させて、鎖長の長い高分子を形成することができる。
【0054】
さらに、スチレン誘導体基同士、またはスチレン誘導体基とビニル化合物とを介して重合反応(付加重合)する際に、これらのものが結合して得られる生成物以外のもの(副生成物)が生成しにくいので、得られる導電性材料中に不純物が混入するのを好適に防止することができる。
また、置換基Xは、ベンゼン環の2位から6位のいずれの位置に結合してもよいが、特に、3位、4位または5位のうちのいずれかに結合しているのが好ましい。これにより、隣接する主骨格同士の結合を連結構造を介して行うことの効果をより顕著に発揮させることができる。すなわち、隣接する主骨格同士をより確実に離間させることができる。
【0055】
次に、ビニル化合物は、置換基Xと反応し得る反応基(以下、単に「反応基」という。)を少なくとも1つ有するものである。
ここで、反応基は、前記一般式(1)で表される化合物同士を置換基Xにおいてビニル化合物により架橋する反応部位であり、例えば、ビニル基や(メタ)アクリロイル基等が挙げられる。これらの反応基は、高い反応性を示すものであることから、この反応基を有するビニル化合物も高い反応性を発揮するものとなる。
そのため、前記一般式(1)で表される化合物同士の置換基Xを、直接、またはビニル化合物を介して、重合反応させる際に、効率良く置換基Xと反応基との反応を進行させることができる。これにより、得られる高分子中における未反応の置換基Xの残存量を低減することができる。
【0056】
ここで、未反応の置換基Xの残存量をより低減させる観点からは、ビニル化合物として、反応基を2つ以上有するものを選択するのが好ましい。これにより、ビニル化合物は、置換基Xとの反応部位が増すことから、置換基Xに対してより高い反応性を示すこととなる。その結果、前述した効果がより顕著に発揮されるとともに、置換基X同士が直接連結する化学構造の割合に対して、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合を高くすることができる。
【0057】
例えば、前記一般式(1)で表される化合物が複数個結合して、結合体を形成したとしても、ビニル化合物は、この結合体のサイズによる立体障害や、結合体の電気的な障害等による影響を受けにくい。そのため、ビニル化合物は、その高い反応性により、置換基Xとビニル化合物との反応を確実に進行させることができる。その結果、高分子中における未反応の置換基Xの残存量を好適に低減しつつ、ビニル化合物を介した重合反応の割合を高くすることができる。
【0058】
さらに、主骨格同士の距離をより適切な大きさに保つという観点からは、ビニル化合物として、2つの反応基の間に位置し、これらの反応基の間の距離を規制する規制部を有するものを選択するのが好ましい。これにより、ビニル化合物により置換基X同士が架橋して形成された化学構造内において、主骨格同士の間で相互作用が生じるのをより確実に防止することができる。その結果、このような化学構造を高い割合で有する高分子は、より優れた正孔輸送能を発揮することとなる。
【0059】
なお、連結構造中において、置換基X同士が直接重合反応している場合でも、主骨格同士を置換基Xにより離間して、主骨格同士の相互作用を低減させることができるが、規制部を有するビニル化合物を介して置換基X同士が重合反応している場合には、主骨格同士の離間距離をより適切な大きさに保つことができ、主骨格同士の相互作用がより低減されることとなる。
【0060】
以下では、ビニル化合物として、2つの反応基を有し、かつ、2つの反応基の間に規制部を有するものを代表に説明する。
規制部としては、直鎖状をなすもの、分枝状をなすもの、環状をなすもの、および、これらを組み合わせたもの等が挙げられるが、これらの中でも、直鎖状をなすものや、環状をなす部分を有するものを用いるのが好ましい。
ここで、規制部が直鎖状をなす場合には、得られる高分子中における正孔輸送能が向上することとなる。なお、このような効果は、高分子が比較的低分子量の場合、すなわち、重合度が比較的低い場合に顕著となる。
【0061】
また、規制部として環状をなす部分を有するものを用いた場合には、得られる高分子の平面性を向上させることができる。そのため、形成される正孔輸送層41において、高分子間における正孔の受け渡しをより効率良く行うことができ、正孔輸送層41の正孔輸送能がより優れたものとなる。
なお、規制部が飽和炭素水素のような非共役系の分子構造により構成される場合には、得られる高分子において、主骨格とスチレン誘導体基(置換基X)が有するベンゼン環との距離が比較的小さくなったとしても、ベンゼン環同士の間に非共役系の分子構造が存在することから、このベンゼン環を介して主骨格同士が相互作用を及ぼしあうようになるのを、好適に防止することができる。
【0062】
規制部が直鎖状をなすビニル化合物の一例としては、例えば、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリエステル型ジ(メタ)アクリレート、ビス((メタ)アクリロキシエチル)フォスフェート、ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
【0063】
また、規制部が直鎖状をなすものは、規制部を構成する原子のうち、直鎖状に連結するものの個数が、15〜50程度であるのが好ましく、20〜30程度であるのがより好ましい。これにより、得られる高分子において、主骨格同士の離間距離が、これらのもの同士が相互作用を及ぼしあわないように適切な大きさに保たれることから、高分子は、より優れた正孔輸送能を発揮することとなる。
このようなことから、規制部が直鎖状をなすビニル化合物としては、下記一般式(3)で表されるポリエチレングリコールジ(メタ)アクリレートが特に好ましい。
【0064】
【化9】

[式中、nは、5〜15の整数を表し、2つのAは、それぞれ独立して、水素原子またはメチル基を表し、同一であっても、異なっていてもよい。]
【0065】
これにより、得られる高分子において、主骨格同士の離間距離が、適切な大きさに保たれて、この高分子は、より優れた正孔輸送能を発揮することとなる。
なお、前記一般式(3)中、nが6〜9程度であるのが特に好ましい。nを前記範囲内とすることにより、前記効果がより顕著に発揮されることとなる。
【0066】
次に、規制部に環状をなす部分を有するビニル化合物の一例としては、例えば、ジビニルベンゼン、2,2−ビス(4−(メタ)アクリロキシポリエトキシフェニル)プロパン等が挙げられる。
また、規制部に環状をなす部分を有するビニル化合物において、環状をなす部分は、炭化水素環や、ヘテロ環のいずれかで構成されるものであってもよいが、芳香族環で構成されるものであるのが好ましく、芳香族炭化水素環で構成されるものであるのが特に好ましい。これにより、反応基と置換基Xとの反応性をより向上させることができ、得られる高分子において、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合をより高くすることができる。
【0067】
さらに、かかるビニル化合物は、環状をなす部分に、他の構造を介して反応基が連結したものであってもよいが、この反応基が直接連結したものであるのが好ましい。また、2つの反応基のうち、いずれか一方が環状をなす部分に直接連結していればよいが、両方が直接連結しているのが特に好ましい。これにより、前述した効果をより顕著に発揮させることができる。
【0068】
これらのことから、規制部に環状をなす部分を有するビニル化合物としては、ベンゼン環に2つのビニル基が直接連結したもの、すなわち、ジビニルベンゼンが特に好ましい。
これにより、得られる高分子中において、未反応の置換基Xの残存量を好適に低減しつつ、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合を高くすることができる。これにより、主骨格同士の離間距離がより適切な大きさに保つことができることから、この高分子は、より優れた正孔輸送能を発揮することとなる。
【0069】
また、環状をなす部分において、2つの反応基は、これらのもの同士が最も離れるように、すなわち、反応基が環状をなす部分に連結した状態で、線対称となるように位置しているのが好ましい。具体的には、ジビニルベンゼンの場合では、2つのビニル基がベンゼン環の1位と6位とに連結しているのが好ましい。これにより、このものを介して連結する主骨格同士の相互作用をより好適に低減させることができる。その結果、得られる高分子は、より優れた正孔輸送能を発揮することとなる。
【0070】
以上のことから、ビニル化合物としては、特に、前記化学式(3)で表されるポリエチレングリコールジ(メタ)アクリレートまたはジビニルベンゼンを主成分とするものが好ましい。
なお、ビニル化合物として、前記化学式(3)で表されるポリエチレングリコールジ(メタ)アクリレートまたはジビニルベンゼンのように比較的低分子のものを用いることにより、置換基Xと反応基との反応性をより高めることができるという利点もある。
すなわち、低分子のビニル化合物が効率良く、未反応の置換基X同士の間に入り込んで、置換基Xと反応基との重合反応を高い割合で行うことができる。これにより、得られる高分子において、ビニル化合物により置換基X同士が架橋して形成された化学構造の割合をより高めることができる。
【0071】
ところで、前記一般式(1)で表される化合物同士の置換基Xを架橋するという観点からは、ビニル化合物として、前述したような化合物の他、反応基を1つ有するもの、または反応基を3つ以上有するものを用いることもできる。
このような1つの反応基を有するビニル化合物としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン、α―クロロスチレン、2−ビニルピリジン、メチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、メチルトリグリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、シアノエチル(メタ)アクリレート、(メタ)アクリロキシエチルホスフェート、N−メチロール(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、アリルグリシジルエーテル、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、(メタ)アクリル酸等が挙げられる。
【0072】
3つの反応基を有するビニル化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート等が挙げられる。
4つの反応基を有するビニル化合物としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート等が挙げられる。
【0073】
次に、高分子において、正孔輸送に寄与する主骨格について説明をする。
前記一般式(1)で表される化合物において、置換基Rは、炭素数2〜8の直鎖アルキル基であるが、特に、炭素数3〜6の直鎖アルキル基であるのが好ましい。その結果、この置換基Rによる立体障害により、隣接する高分子同士が接近しすぎるのを阻止して、これらの距離を適度に保つことができる。その結果、形成される正孔輸送層41において、異なる高分子が有する主骨格同士の間での相互作用を確実に低減することができ、正孔輸送層41の正孔輸送能を優れたものにすることができる。
【0074】
また、2つの置換基Rは、ほぼ同一の炭素数のものであるのが好ましく、同一の炭素数のものであるのがより好ましい。これにより、形成される正孔輸送層41において、隣接する高分子同士の距離をほぼ一定の間隔に保つことができる。その結果、正孔輸送層41中の高分子の密度が一定なものとなる。
また、置換基Rは、ベンゼン環の2位から6位のいずれの位置に結合してもよいが、特に、4位に結合しているのが好ましい。これにより、置換基Rを導入することの効果をより顕著に発揮させることができる。すなわち、隣接する高分子同士が接近しすぎるのをより確実に阻止することができる。
【0075】
置換基Rは、水素原子、メチル基またはエチル基であり、置換基Rは、置換基Rの炭素数に応じて選択するようにすればよい。例えば、置換基Rの炭素数が大きい場合には、置換基Rとしては、水素原子を選択し、置換基Rの炭素数が小さい場合には、置換基Rとしては、メチル基もしくはエチル基を選択するようにすればよい。
【0076】
基(結合基)Yは、置換もしくは無置換の芳香族炭化水素環を少なくとも1つ含むものであればよいが、特に、炭素原子と水素原子とで構成されているものが好ましい。これにより、高分子の正孔輸送能が優れたものとなり、形成される正孔輸送層41は、より正孔輸送能に優れたものとなる。
具体的には、芳香族炭化水素環を少なくとも1つ含む構造としては、例えば、下記化学式(4)〜(20)で表されるものが挙げられる。
【0077】
【化10】

【0078】
【化11】

【0079】
【化12】

【0080】
【化13】

【0081】
【化14】

【0082】
【化15】

【0083】
【化16】

【0084】
【化17】

【0085】
【化18】

【0086】
【化19】

【0087】
【化20】

【0088】
【化21】

【0089】
【化22】

【0090】
【化23】

【0091】
【化24】

【0092】
【化25】

【0093】
【化26】

【0094】
また、基Yの総炭素数は、6〜30であるのが好ましく、10〜25であるのがより好ましく、10〜20であるのがさらに好ましい。
さらに、基Yにおいて、芳香族炭化水素環の数は、1〜5であるのが好ましく、2〜5であるのがより好ましく、2または3であるのがさらに好ましい。
これらのことを考慮すると、前記一般式(1)で表される化合物において、基Yとしては、ビフェニレン基またはその誘導体が特に好ましい構造である。
これにより、高分子の正孔輸送能がより優れたものとなり、形成される正孔輸送層41は、特に正孔輸送能(キャリア輸送能)に優れたものとなる。
【0095】
また、基Yにおいて、芳香族炭化水素環に置換基を導入する場合、この置換基としては、基Yの平面性を維持し得るものであれば、特に限定されないが、炭素数1〜3の直鎖アルキル基であるのが好ましく、メチル基またはエチル基であるのがより好ましい。
また、正孔輸送層41を、本発明の導電性材料のように重合反応をさせて高分子化したものを主材料として構成することにより、この正孔輸送層41の耐久性すなわち耐溶剤性を向上させることができる。その結果、後述する工程[3]において、正孔輸送層41上に発光層42を形成する際に、発光層42を形成するための材料に含まれる溶媒または分散媒により、導電性材料が膨潤または溶解されることを抑制または防止することができる。
【0096】
さらに、本発明の導電性材料は、前記一般式(1)で表される化合物同士の置換基Xが有するスチレン誘導体基を反応(結合)させて高分子化したものを主材料とするものである。
ここで、スチレン誘導体基同士の結合は、優れた結合安定性を示すことから、本発明の導電性材料(高分子)は、優れた耐水性および耐薬品性を発揮するものとなる。
【0097】
これらのことにより、正孔輸送層41と発光層42との相溶解を確実に防止することができる。
また、このような導電性材料は、その体積抵抗率が10Ω・cm以上であるのが好ましく、10Ω・cm以上であるのがより好ましい。これにより、発光効率のより高い有機EL素子1を得ることができる。
【0098】
正孔輸送層41の厚さ(平均)は、特に限定されないが、10〜150nm程度であるのが好ましく、50〜100nm程度であるのがより好ましい。正孔輸送層41の厚さが薄すぎると、ピンホールが生じるおそれがあり、一方、正孔輸送層41が厚過ぎると、正孔輸送層41の透過率が悪くなる原因となり、有機EL素子1の発光色の色度(色相)が変化してしまうおそれがある。
また、本発明の導電性材料は、かかる比較的薄い正孔輸送層41を形成する場合に、特に有用である。
【0099】
電子輸送層43は、陰極5から注入された電子を発光層42まで輸送する機能を有するものである。
電子輸送層43の構成材料(電子輸送材料)としては、例えば、1,3,5−トリス[(3−フェニル−6−トリ−フルオロメチル)キノキサリン−2−イル]ベンゼン(TPQ1)、1,3,5−トリス[{3−(4−t−ブチルフェニル)−6−トリスフルオロメチル}キノキサリン−2−イル]ベンゼン(TPQ2)のようなベンゼン系化合物(スターバースト系化合物)、ナフタレンのようなナフタレン系化合物、フェナントレンのようなフェナントレン系化合物、クリセンのようなクリセン系化合物、ペリレンのようなペリレン系化合物、アントラセンのようなアントラセン系化合物、ピレンのようなピレン系化合物、アクリジンのようなアクリジン系化合物、スチルベンのようなスチルベン系化合物、BBOTのようなチオフェン系化合物、ブタジエンのようなブタジエン系化合物、クマリンのようなクマリン系化合物、キノリンのようなキノリン系化合物、ビスチリルのようなビスチリル系化合物、ピラジン、ジスチリルピラジンのようなピラジン系化合物、キノキサリンのようなキノキサリン系化合物、ベンゾキノン、2,5−ジフェニル−パラ−ベンゾキノンのようなベンゾキノン系化合物、ナフトキノンのようなナフトキノン系化合物、アントラキノンのようなアントラキノン系化合物、オキサジアゾール、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、BMD、BND、BDD、BAPDのようなオキサジアゾール系化合物、トリアゾール、3,4,5−トリフェニル−1,2,4−トリアゾールのようなトリアゾール系化合物、オキサゾール系化合物、アントロンのようなアントロン系化合物、フルオレノン、1,3,8−トリニトロ−フルオレノン(TNF)のようなフルオレノン系化合物、ジフェノキノン、MBDQのようなジフェノキノン系化合物、スチルベンキノン、MBSQのようなスチルベンキノン系化合物、アントラキノジメタン系化合物、チオピランジオキシド系化合物、フルオレニリデンメタン系化合物、ジフェニルジシアノエチレン系化合物、フローレンのようなフローレン系化合物、フタロシアニン、銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物、(8−ヒドロキシキノリン)アルミニウム(Alq)、ベンゾオキサゾールやベンゾチアゾールを配位子とする錯体のような各種金属錯体等が挙げられる。
また、電子輸送材料は、以上のような化合物のうちの少なくとも1種を用いることができる。
【0100】
電子輸送層43の厚さ(平均)は、特に限定されないが、1〜100nm程度であるのが好ましく、20〜50nm程度であるのがより好ましい。電子輸送層43の厚さが薄すぎると、ピンホールが生じショートするおそれがあり、一方、電子輸送層43が厚過ぎると、抵抗値が高くなるおそれがある。
陽極3と陰極5との間に通電(電圧を印加)すると、正孔輸送層41中を正孔が、また、電子輸送層43中を電子が移動し、発光層42において正孔と電子とが再結合する。そして、発光層42では、この再結合に際して放出されたエネルギーによりエキシトン(励起子)が生成し、このエキシトンが基底状態に戻る際にエネルギー(蛍光やりん光)を放出(発光)する。
この発光層42の構成材料(発光材料)としては、電圧印加時に陽極3側から正孔を、また、陰極5側から電子を注入することができ、正孔と電子が再結合する場を提供できるものであれば、いかなるものであってもよい。
【0101】
このような発光材料には、以下に示すような、各種低分子の発光材料、各種高分子の発光材料があり、これらのうちの少なくとも1種を用いることができる。
なお、低分子の発光材料を用いることにより、緻密な発光層42が得られるため、発光層42の発光効率が向上する。また、高分子の発光材料を用いることにより、比較的容易に溶剤へ溶解させることができるため、インクジェット印刷法等の各種塗布法による発光層42の形成を容易に行うことができる。さらに、低分子の発光材料と高分子の発光材料とを組み合わせて用いることにより、低分子の発光材料および高分子の発光材料を用いる効果を併有すること、すなわち、緻密かつ発光効率に優れる発光層42を、インクジェット印刷法等の各種塗布法により、容易に形成することができるという効果が得られる。
【0102】
低分子の発光材料としては、例えば、ジスチリルベンゼン(DSB)、ジアミノジスチリルベンゼン(DADSB)のようなベンゼン系化合物、ナフタレン、ナイルレッドのようなナフタレン系化合物、フェナントレンのようなフェナントレン系化合物、クリセン、6−ニトロクリセンのようなクリセン系化合物、ペリレン、N,N’−ビス(2,5−ジ−t−ブチルフェニル)−3,4,9,10−ペリレン−ジ−カルボキシイミド(BPPC)のようなペリレン系化合物、コロネンのようなコロネン系化合物、アントラセン、ビススチリルアントラセンのようなアントラセン系化合物、ピレンのようなピレン系化合物、4−(ジ−シアノメチレン)−2−メチル−6−(パラ−ジメチルアミノスチリル)−4H−ピラン(DCM)のようなピラン系化合物、アクリジンのようなアクリジン系化合物、スチルベンのようなスチルベン系化合物、2,5−ジベンゾオキサゾールチオフェンのようなチオフェン系化合物、ベンゾオキサゾールのようなベンゾオキサゾール系化合物、ベンゾイミダゾールのようなベンゾイミダゾール系化合物、2,2’−(パラ−フェニレンジビニレン)−ビスベンゾチアゾールのようなベンゾチアゾール系化合物、ビスチリル(1,4−ジフェニル−1,3−ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物、ナフタルイミドのようなナフタルイミド系化合物、クマリンのようなクマリン系化合物、ペリノンのようなペリノン系化合物、オキサジアゾールのようなオキサジアゾール系化合物、アルダジン系化合物、1,2,3,4,5−ペンタフェニル−1,3−シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物、キナクリドン、キナクリドンレッドのようなキナクリドン系化合物、ピロロピリジン、チアジアゾロピリジンのようなピリジン系化合物、2,2’,7,7’−テトラフェニル−9,9’−スピロビフルオレンのようなスピロ化合物、フタロシアニン(HPc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物、フローレンのようなフローレン系化合物、(8−ヒドロキシキノリン)アルミニウム(Alq)、トリス(4−メチル−8キノリノレート)アルミニウム(III)(Almq)、(8−ヒドロキシキノリン)亜鉛(Znq)、(1,10−フェナントロリン)−トリス−(4,4,4−トリフルオロ−1−(2−チエニル)−ブタン−1,3−ジオネート)ユーロピウム(III)(Eu(TTA)(phen))、ファクトリス(2−フェニルピリジン)イリジウム(Ir(ppy))、(2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィン)プラチナム(II)のような各種金属錯体等が挙げられる。
【0103】
高分子の発光材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレン、ポリ(ジ−フェニルアセチレン)(PDPA)、ポリ(アルキル,フェニルアセチレン)(PAPA)のようなポリアセチレン系化合物、ポリ(パラ−フェンビニレン)(PPV)、ポリ(2,5−ジアルコキシ−パラ−フェニレンビニレン)(RO−PPV)、シアノ−置換−ポリ(パラ−フェンビニレン)(CN−PPV)、ポリ(2−ジメチルオクチルシリル−パラ−フェニレンビニレン)(DMOS−PPV)、ポリ(2−メトキシ,5−(2’−エチルヘキソキシ)−パラ−フェニレンビニレン)(MEH−PPV)のようなポリパラフェニレンビニレン系化合物、ポリ(3−アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物、ポリ(9,9−ジアルキルフルオレン)(PDAF)、α,ω−ビス[N,N’−ジ(メチルフェニル)アミノフェニル]−ポリ[9,9−ビス(2−エチルヘキシル)フルオレン−2,7−ジル](PF2/6am4)、ポリ(9,9−ジオクチル−2,7−ジビニレンフルオレニル−オルト−コ(アントラセン−9,10−ジイル)のようなポリフルオレン系化合物、ポリ(パラ−フェニレン)(PPP)、ポリ(1,5−ジアルコキシ−パラ−フェニレン)(RO−PPP)のようなポリパラフェニレン系化合物、ポリ(N−ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物、ポリ(メチルフェニルシラン)(PMPS)、ポリ(ナフチルフェニルシラン)(PNPS)、ポリ(ビフェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物等が挙げられる。
【0104】
発光層42の厚さ(平均)は、特に限定されないが、10〜150nm程度であるのが好ましく、50〜100nm程度であるのがより好ましい。発光層の厚さを前記範囲とすることにより、正孔と電子との再結合が効率よくなされ、発光層42の発光効率をより向上させることができる。
なお、本実施形態では、発光層42は、正孔輸送層41および電子輸送層43と別個に設けられているが、正孔輸送層41と発光層42とを兼ねた正孔輸送性発光層や、電子輸送層43と発光層42とを兼ねた電子輸送性発光層とすることもできる。この場合、正孔輸送性発光層の電子輸送層43との界面付近が、また、電子輸送性発光層の正孔輸送層41との界面付近が、それぞれ、発光層42として機能する。
【0105】
また、正孔輸送性発光層を用いた場合には、陽極から正孔輸送性発光層に注入された正孔が電子輸送層によって閉じこめられ、また、電子輸送性発光層を用いた場合には、陰極から電子輸送性発光層に注入された電子が電子輸送性発光層に閉じこめられるため、いずれも、正孔と電子との再結合効率を向上させることができるという利点がある。
また、各層3、4、5同士の間には、任意の目的の層が設けられていてもよい。例えば、正孔輸送層41と陽極3との間には正孔注入層を、また、電子輸送層43と陰極5との間には電子注入層等を設けることができる。このように、有機EL素子1に正孔注入層を設ける場合には、この正孔注入層に、本発明の導電性材料を用いることもできる。また、有機EL素子1に電子注入層を設ける場合には、この電子注入層には、前述したような電子輸送材料の他、例えばLiFのようなアルカリハライド等を用いることができる。
【0106】
保護層6は、有機EL素子1を構成する各層3、4、5を覆うように設けられている。この保護層6は、有機EL素子1を構成する各層3、4、5を気密的に封止し、酸素や水分を遮断する機能を有する。保護層6を設けることにより、有機EL素子1の信頼性の向上や、変質・劣化の防止等の効果が得られる。
保護層6の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Tiまたはこれらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、保護層6の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、保護層6と各層3、4、5との間には、必要に応じて、絶縁膜を設けるのが好ましい。
【0107】
この有機EL素子1は、例えばディスプレイ用として用いることができるが、その他にも光源等としても使用可能であり、種々の光学的用途等に用いることが可能である。
また、有機EL素子1をディスプレイに適用する場合、その駆動方式としては、特に限定されず、アクティブマトリックス方式、パッシブマトリックス方式のいずれであってもよい。
【0108】
このような有機EL素子1は、例えば、次のようにして製造することができる。
[1]陽極形成工程
まず、基板2を用意し、この基板2上に陽極3を形成する。
陽極3は、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の乾式メッキ法、電解メッキ、浸漬メッキ、無電解メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等を用いて形成することができる。
【0109】
[2]正孔輸送層形成工程
[2−1] まず、前記一般式(1)で表される化合物と、ビニル化合物とを含有する導電性材料用組成物(正孔輸送材料)を陽極3上に塗布(供給)する。
導電性材料用組成物中における、前記一般式(1)で表される化合物とビニル化合物との配合比は、用いるビニル化合物の種類によっても若干異なるが、モル比で、9:1〜3:2であるのが好ましく、4:1〜7:3であるのがより好ましい。ビニル化合物の配合比が少な過ぎると、生成される高分子中において、主骨格同士をより適切な距離に保てなくなり、主骨格同士の相互作用が生じるおそれがあり、一方、ビニル化合物の配合比が多過ぎると、相対的に前記一般式(1)で表せる化合物の混合比が少なくなる。すなわち、生成される高分子中において、主骨格の存在比率が少なくなるため、正孔輸送能が低下するおそれがある。
【0110】
この塗布には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いることができる。かかる塗布法によれば、正孔輸送材料を比較的容易に陽極3上に供給することができる。
【0111】
前記一般式(1)で表される化合物を溶媒に溶解または分散媒に分散する場合、用いる溶媒または分散媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、二硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン(DME)、1,4−ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等のアミド系溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
【0112】
なお、導電性材料用組成物には、重合開始剤を添加するのが好ましい。これにより、次工程[2−2]において、加熱や光照射のような所定の処理を施す際に、置換基X同士、またはビニル化合物を介しての重合反応を促進させることができる。
重合開始剤としては、特に限定されないが、例えば、光ラジカル重合開始剤や光カチオン重合開始剤のような光重合開始剤、熱重合開始剤および嫌気重合開始剤等が挙げられ、これらの中でも、光ラジカル重合開始剤を用いるのが特に好ましい。これにより、次工程[2−2]において、置換基X同士、またはビニル化合物を介して比較的容易に重合反応させることができる。
【0113】
光ラジカル重合開始剤としては、各種の光ラジカル重合開始剤を用いることができるが、例えば、ベンゾフェノン系、ベンゾイン系、アセトフェノン系、ベンジケタール系、ミヒラーズケトン系、アシルフォスフィンオキサイド系、ケトクマリン系、キサンテン系およびチオキサントン系等の光ラジカル重合開始剤を用いることができる。
さらに、重合開始剤として光重合開始剤を用いる場合には、光重合開始剤に適した増感剤を導電性材料用組成物に添加してもよい。
【0114】
[2−2] 次に、陽極3上に供給された正孔輸送材料に光照射する。
これにより、正孔輸送材料に含まれる、前記一般式(1)で表される化合物同士の置換基Xを、直接、またはビニル化合物を介して重合反応させた高分子(本発明の導電性材料)を得ることができる。その結果、本発明の導電性材料を主材料とする正孔輸送層41が陽極3上に形成される。
【0115】
正孔輸送層41を本発明の導電性材料を主材料として構成することにより、次工程[3]において、発光層材料を供給した際に、この発光層材料に含まれる溶媒または分散媒による高分子の膨潤および溶解を抑制または防止することができる。その結果、正孔輸送層41と発光層42との相溶解を確実に防止することができる。
【0116】
この高分子の重量平均分子量は、特に限定されないが、1000〜1000000程度であるのが好ましく、10000〜300000程度であるのがより好ましい。これにより、高分子の膨潤および溶解をより確実に抑制または防止することができる。
なお、正孔輸送層41は、この正孔輸送層41と発光層42との相溶解が防止される範囲において、前記一般式(1)で表される化合物の低分子(モノマーやオリゴマー)や、ビニル化合物の低分子を含んでいてもよい。
【0117】
正孔輸送材料に光照射する光としては、例えば、赤外線、可視光線、紫外線およびX線等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、紫外線を用いるのが特に好ましい。これにより、置換基X同士、または、ビニル化合物を介しての重合反応を容易かつ確実に進行させることができる。
光照射する紫外線の波長は、100〜420nm程度であるのが好ましく、150〜400nm程度であるのがより好ましい。
また、紫外線の照射強度は、1〜600mW/cm程度であるのが好ましく、1〜300mW/cm程度であるのがより好ましい。
さらに、紫外線の照射時間は、60〜600秒程度であるのが好ましく、90〜500秒程度であるのがより好ましい。
紫外線の波長、照射強度および照射時間をかかる範囲にすることにより、陽極3上に供給された正孔輸送材料の重合反応の進行を比較的容易に制御することができる。
【0118】
なお、置換基X同士、またはビニル化合物を介して重合反応させるための所定の処理としては、前述したような光照射の他、例えば、加熱および嫌気処理等が挙げられるが、これらの中でも、光照射を用いるのが好ましい。光照射によれば、高分子化させる領域および程度を比較的容易に選択することができる。
また、得られた正孔輸送層41には、必要に応じて、例えば大気中、不活性雰囲気中、減圧(または真空)下等において熱処理を施すようにしてもよい。これにより、例えば、正孔輸送層41の乾燥(脱溶媒または脱分散媒)、固化等を行うことができる。なお、正孔輸送層41は、熱処理によらず乾燥してもよい。
【0119】
[3]発光層形成工程
次に、正孔輸送層41上に発光層42を形成する。
発光層42は、例えば、前述したような発光材料を溶媒に溶解または分散媒に分散してなる発光層材料(発光層形成用材料)を、正孔輸送層41上に塗布して形成することができる。
発光材料を溶解または分散させる溶媒または分散媒としては、正孔輸送層41を形成する際に用いた溶媒または分散媒と同様のものを用いることができる。
また、発光層材料を、正孔輸送層41上に塗布する方法としても、正孔輸送層41を形成する際に用いた塗布方法と同様の方法を用いることができる。
【0120】
[4]電子輸送層形成工程
次に、発光層42上に電子輸送層43を形成する。
電子輸送層43は、発光層42と同様にして形成することができる。すなわち、電子輸送層43は、前述したような電子輸送材料を用いて、発光層42で説明したような方法により形成することができる。
【0121】
[5]陰極形成工程
次に、電子輸送層43上に陰極5を形成する。
陰極5は、例えば、真空蒸着法、スパッタリング法、金属箔の接合等を用いて形成することができる。
【0122】
[6]保護層形成工程
次に、陽極3、有機EL層4および陰極5を覆うように、保護層6を形成する。
保護層6は、例えば、前述したような材料で構成される箱状の保護カバーを、各種硬化性樹脂(接着剤)で接合すること等により形成する(設ける)ことができる。
硬化性樹脂には、熱硬化性樹脂、光硬化性樹脂、反応性硬化樹脂、嫌気性硬化樹脂のいずれも使用可能である。
以上のような工程を経て、有機EL素子1が製造される。
【0123】
<電子機器>
また、本発明の有機EL素子(本発明の電子デバイス)1は、各種電子機器に用いることができる。
図2は、本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
【0124】
この図において、パーソナルコンピュータ1100は、キーボード1102を備えた本体部1104と、表示部を備える表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
このパーソナルコンピュータ1100においては、例えば、表示ユニット1106が前述の有機EL素子(電子デバイス)1を備えている。
【0125】
図3は、本発明の電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。
この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206とともに、表示部を備えている。
携帯電話機1200において、例えば、この表示部が前述の有機EL素子(電子デバイス)1を備えている。
【0126】
図4は、本発明の電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。
ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、ディジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号(画像信号)を生成する。
【0127】
ディジタルスチルカメラ1300におけるケース(ボディー)1302の背面には、表示部が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、被写体を電子画像として表示するファインダとして機能する。
ディジタルスチルカメラ1300において、例えば、この表示部が前述の有機EL素子(電子デバイス)1を備えている。
ケースの内部には、回路基板1308が設置されている。この回路基板1308は、撮像信号を格納(記憶)し得るメモリが設置されている。
また、ケース1302の正面側(図示の構成では裏面側)には、光学レンズ(撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。
【0128】
撮影者が表示部に表示された被写体像を確認し、シャッタボタン1306を押下すると、その時点におけるCCDの撮像信号が、回路基板1308のメモリに転送・格納される。
また、このディジタルスチルカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示のように、ビデオ信号出力端子1312にはテレビモニタ1430が、データ通信用の入出力端子1314にはパーソナルコンピュータ1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、回路基板1308のメモリに格納された撮像信号が、テレビモニタ1430や、パーソナルコンピュータ1440に出力される構成になっている。
【0129】
なお、本発明の電子機器は、図2のパーソナルコンピュータ(モバイル型パーソナルコンピュータ)、図3の携帯電話機、図4のディジタルスチルカメラの他にも、例えば、テレビや、ビデオカメラ、ビューファインダ型、モニタ直視型のビデオテープレコーダ、ラップトップ型パーソナルコンピュータ、カーナビゲーション装置、ページャ、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサ、ワークステーション、テレビ電話、防犯用テレビモニタ、電子双眼鏡、POS端末、タッチパネルを備えた機器(例えば金融機関のキャッシュディスペンサー、自動券売機)、医療機器(例えば電子体温計、血圧計、血糖計、心電表示装置、超音波診断装置、内視鏡用表示装置)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシュミレータ、その他各種モニタ類、プロジェクター等の投射型表示装置等に適用することができる。
【0130】
以上、本発明の導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものでない。
例えば、本発明の電子デバイスは、導電層を正孔輸送層として用いる場合、上述した表示素子(発光素子)の一例である有機EL素子に適用することができる他、例えば、受光素子(光電変換素子)の一例である太陽電池等に適用することができる。
さらに、本発明の導電層は、上述した正孔輸送層として用いる他、例えば、配線、電極および有機半導体層等に適用することができる。そして、この場合、本発明の電子デバイスは、例えば、スイッチング素子(薄膜トランジスタ)、配線基板、半導体素子等に適用することができる。
【実施例】
【0131】
次に、本発明の具体的実施例について説明する。
1.化合物の合成
まず、以下に示すような化合物(A)〜(J)を用意した。
<化合物(A)>
6−(p−アミノフェニル)ヘキサノールを無水ジメチルホルムアミド中で、ベンジルブロミドと水素化ナトリウムで処理し、ヒドロキシル基をベンジルエーテル基に変換し保護した。
次に、その得られた化合物1molを酢酸150mLに溶解し、室温で無水酢酸を滴下後、撹拌した。反応終了後、析出した固体をろ過し、水洗後、乾燥した。
次に、その得られた物質0.37mol、1−ブロモ−4−ヘキシルベンゼン0.66mol、炭酸カリウム1.1mol、銅粉、ヨウ素を混合し、200℃で加熱した。放冷後、イソアミルアルコール130mL、純水50mL、水酸化カリウム0.73molを加え撹拌後、乾燥した。
【0132】
さらに、そこで得られた化合物130mmol、4,4’−ジヨードビフェニル62mmol、酢酸パラジウム1.3mmol、t−ブチルホスフィン5.2mmol、t−ブトキシナトリム260mmol、キシレン700mLを混合して、120℃で撹拌した。
その後、放冷し、結晶化した。
その得られた化合物を、Pd−C触媒下水素ガスで還元し、ベンジルエーテル基からヒドロキシル基へ変換し脱保護した。
【0133】
次に、この化合物100mmolとp−(ブロモメチル)スチレン200mmolとをキシレン溶液中に加え、加熱しながら10時間攪拌した後、放冷し結晶化して化合物を得た。
そして、質量スペクトル(MS)法、1H−核磁気共鳴(1H−NMR)スペクトル法、13C−核磁気共鳴(13C−NMR)スペクトル法、およびフーリエ変換赤外吸収(FT−IR)スペクトル法により、得られた化合物が下記化合物(A)であることを確認した。
【0134】
【化27】

【0135】
<化合物(B)>
1−ブロモ−4−ヘキシルベンゼンに代えて1−ブロモ−3,5−ジメチル−4−ヘキシルベンゼンを用いた以外は、前記化合物(A)と同様にして、化合物(B)を得た。
【0136】
【化28】

【0137】
<化合物(C)>
p−(ブロモメチル)スチレンに代えて2’−ブロモ−4−エチルスチレンを用いた以外は、前記化合物(A)と同様にして、化合物(C)を得た。
【0138】
【化29】

【0139】
<化合物(D)>
6−(p−アミノフェニル)ヘキサノールに代えて2−(p−アミノフェニル)プロパノールを用い、1−ブロモ−4−ヘキシルベンゼンに代えて1−ブロモ−4−プロピルベンゼンを用いた以外は、前記化合物(A)と同様にして、化合物(D)を得た。
【0140】
【化30】

【0141】
<化合物(E)>
4,4’−ジヨードビフェニルに代えて4,4’−ジヨード−2,2’−ジメチルビフェニルを用いた以外は、前記化合物(D)と同様にして、化合物(E)を得た。
【0142】
【化31】

【0143】
<化合物(F)>
p−(ブロモメチル)スチレンに代えて3’−ブロモ−4−プロピルスチレンを用いた以外は、前記化合物(D)と同様にして、化合物(F)を得た。
【0144】
【化32】

【0145】
<化合物(G)>
6−(p−アミノフェニル)ヘキサノールに代えて8−(p−アミノフェニル)オクタノールを用い、1−ブロモ−4−ヘキシルベンゼンに代えて1−ブロモ−4−オクチルベンゼンを用いた以外は、前記化合物(A)と同様にして、化合物(G)を得た。
【0146】
【化33】

【0147】
<化合物(H)>
6−(p−アミノフェニル)ヘキサノールに代えて1−(p−アミノフェニル)メタノールを用い、1−ブロモ−4−ヘキシルベンゼンに代えて4−ブロモトルエンを用いた以外は、前記化合物(A)と同様にして、化合物(H)を得た。
【0148】
【化34】

【0149】
<化合物(I)>
下記化合物(I)として、N,N,N’,N’−テトラキス(4−メチルフェニル)−ベンジジン(トスコ社製、「OSA6140」)を用意した。
【0150】
【化35】

【0151】
<化合物(J)>
下記化合物(J)として、ポリ(3,4−エチレンジオキシチオフェン/スチレンスルホン酸)(バイエル社製、「バイトロンP」)を用意した。
【0152】
【化36】

【0153】
2.有機EL素子の製造
以下の各実施例、各参考例および各比較例において、有機EL素子を5個ずつ製造した。
(実施例1)
[正孔輸送材料の調製]
ジフェニルアミン誘導体として化合物(A)を、ビニル化合物として前記一般式(3)で表されるポリエチレングリコールジアクリレート(n=9、2つのAは、水素結合)を、光重合開始剤として光ラジカル重合開始剤(長瀬産業社製、「イルガキュア 651」)をそれぞれ用い、これらのものをジクロロエタンに溶解させて、正孔輸送材料(導電性材料用組成物)を調製した。
なお、化合物(A)とポリエチレングリコールジアクリレートとの混合比をモル比で3:1とし、化合物(A)とポリエチレングリコールジアクリレートとの合計重量と光ラジカル重合開始剤の重量との比(重量比)を19:1とした。
【0154】
[有機EL素子の作製]
−1− まず、平均厚さ0.5mmの透明なガラス基板上に、真空蒸着法により、平均厚さ100nmのITO電極(陽極)を形成した。
−2− 次に、ITO電極上に、前記正孔輸送材料を、スピンコート法により塗布し乾燥した。
その後、水銀ランプ(ウシオ電機社製、「UM−452型式」)にフィルターを用いて、大気中で波長185nm、照射強度2mW/cmの紫外線を300秒間照射することにより、化合物(A)を架橋させて、平均厚さ50nmの正孔輸送層を形成した。
【0155】
−3− 次に、正孔輸送層上に、ポリ(9,9−ジオクチル−2,7−ジビニレンフルオレニル−オルト−コ(アントラセン−9,10−ジイル)(重量平均分子量200000)の1.7wt%キシレン溶液を、スピンコート法により塗布した後、乾燥して、平均厚さ50nmの発光層を形成した。
−4− 次に、発光層上に、3,4,5−トリフェニル−1,2,4−トリアゾールを真空蒸着し、平均厚さ20nmの電子輸送層を形成した。
−5− 次に、電子輸送層上に、真空蒸着法により、平均厚さ300nmのAlLi電極(陰極)を形成した。
−6− 次に、形成した各層を覆うように、ポリカーボネート製の保護カバーを被せ、紫外線硬化性樹脂により固定、封止して、有機EL素子を完成した。
【0156】
(実施例2)
化合物(A)とポリエチレングリコールジアクリレートとの混合比をモル比で4:1とした以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例3)
化合物(A)とポリエチレングリコールジアクリレートとの混合比をモル比で7:3とした以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0157】
(実施例4)
化合物(A)とポリエチレングリコールジアクリレートとの混合比をモル比で17:3とした以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例5)
化合物(A)とポリエチレングリコールジアクリレートとの混合比をモル比で13:7とした以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0158】
(実施例6)
ジフェニルアミン誘導体として化合物(B)を用い、ビニル化合物としてジビニルベンゼンを用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例7)
化合物(A)とジビニルベンゼンとの混合比をモル比で4:1とした以外は、前記実施例6と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0159】
(実施例8)
化合物(A)とジビニルベンゼンとの混合比をモル比で7:3とした以外は、前記実施例6と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例9)
化合物(A)とジビニルベンゼンとの混合比をモル比で17:3とした以外は、前記実施例6と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0160】
(実施例10)
化合物(A)とジビニルベンゼンとの混合比をモル比で13:7とした以外は、前記実施例6と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例11)
ジフェニルアミン誘導体として化合物(B)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0161】
(実施例12)
ジフェニルアミン誘導体として化合物(C)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例13)
ジフェニルアミン誘導体として化合物(D)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0162】
(実施例14)
ジフェニルアミン誘導体として化合物(E)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例15)
ジフェニルアミン誘導体として化合物(F)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(実施例16)
ジフェニルアミン誘導体として化合物(G)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0163】
(参考例1)
ポリエチレングリコールジアクリレートの添加を省略した以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(参考例2)
ジフェニルアミン誘導体として化合物(B)を用いた以外は、前記参考例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子とを製造した。
【0164】
(参考例3)
ジフェニルアミン誘導体として化合物(C)を用いた以外は、前記参考例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(参考例4)
ジフェニルアミン誘導体として化合物(D)を用いた以外は、前記参考例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0165】
(参考例5)
ジフェニルアミン誘導体として化合物(E)を用いた以外は、前記参考例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(参考例6)
ジフェニルアミン誘導体として化合物(F)を用いた以外は、前記参考例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(参考例7)
ジフェニルアミン誘導体として化合物(G)を用いた以外は、前記参考例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0166】
(比較例1)
[正孔輸送材料の調製]
化合物(I)をジクロロエタンに溶解させて、正孔輸送材料を得た。
[有機EL素子の作製]
前記工程−2−において、水銀ランプによる紫外線の照射を省略した以外は、前記実施例1と同様にして、有機EL素子を製造した。
【0167】
(比較例2)
[正孔輸送材料の調製]
化合物(J)を水に分散させることにより、2.0wt%水分散液を調製して、正孔輸送材料を得た。
なお、化合物(J)としては、3,4−エチレンジオキシチオフェンとスチレンスルホン酸との比率が、重量比で1:20のものを用いた。
[有機EL素子の作製]
正孔輸送材料として、前記正孔輸送材料を用いた以外は、前記比較例1と同様にして、有機EL素子を製造した。
【0168】
(比較例3)
[正孔輸送材料の調製]
ジフェニルアミン誘導体として化合物(I)を用い、光架橋剤としてポリエステルアクリレート化合物(東亞合成社製、「アロニックス M−8030」)を用いて、化合物(G)とポリエステルアクリレート化合物、光ラジカル重合開始剤(長瀬産業社製、「イルガキュア 651」)を重量比で30:65:5の比率でジクロロエタンに溶解させて、正孔輸送材料を得た。
[有機EL素子の作製]
正孔輸送材料として、前記正孔輸送材料を用いた以外は、前記実施例1と同様にして、有機EL素子を製造した。
【0169】
(比較例4)
ジフェニルアミン誘導体として化合物(H)を用いた以外は、前記実施例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
(比較例5)
ジフェニルアミン誘導体として化合物(A)を用いた以外は、前記比較例1と同様にして、正孔輸送材料の調製を行った後、有機EL素子を製造した。
【0170】
2.評価
各実施例、各参考例および各比較例の有機EL素子について、それぞれ、発光輝度(cd/m)、最大発光効率(lm/W)を測定すると共に、発光輝度が初期値の半分になる時間(半減期)を測定した。
また、各測定値は、いずれも、5個の有機EL素子の平均値を求めた。
なお、発光輝度の測定は、ITO電極とAlLi電極との間に6Vの電圧を印加することで行った。
そして、比較例1で測定された各測定値(発光輝度、最大発光効率、半減期)を基準値として、各実施例、各参考例および各比較例で測定された各測定値を、それぞれ、以下の4段階の基準に従って評価した。
【0171】
◎:比較例1の測定値に対し、1.50倍以上である
○:比較例1の測定値に対し、1.25倍以上、1.50倍未満である
△:比較例1の測定値に対し、1.00倍以上、1.25倍未満である
×:比較例1の測定値に対し、0.75倍以上、1.00倍未満である
これらの評価結果を、それぞれ、以下の表1に示す。
【0172】
【表1】

【0173】
表1に示すように、各実施例の有機EL素子(本発明の導電性材料を主材料とする正孔輸送層を備える有機EL素子)は、いずれも、各比較例の有機EL素子と比較して、発光輝度、最大発光効率および半減期ともに、優れた結果が得られた。
これにより、本発明の有機EL素子は、主骨格同士の相互作用が好適に低減され、かつ、正孔輸送層と発光層との相溶解が好適に防止されていることが明らかとなった。
また、各実施例の有機EL素子は、いずれも、各参考例の有機EL素子と比較して、最大発光効率が改善されている傾向を示した。これは、ビニル化合物を添加することにより主骨格の離間距離がより適切な距離に保たれていることを示唆する結果であった。
【0174】
さらに、前記一般式(1)で表される化合物とビニル化合物との混合比が特に適切な正孔輸送材料により形成された、実施例1、2、3、6、7および8の有機EL素子は、実施例4、5、9および10の有機EL素子に対して半減期の延長を示す傾向が得られた。
また、置換基Xを適宜選択することにより、各実施例において、主骨格の離間距離が適切な長さに保たれているものほど、優れた発光輝度の向上、最大発光効率の向上および半減期の延長を示す結果が得られた。
【図面の簡単な説明】
【0175】
【図1】有機EL素子の一例を示した縦断面図である。
【図2】本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
【図3】本発明の電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。
【図4】本発明の電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。
【符号の説明】
【0176】
1……有機EL素子 2……基板 3……陽極 4……有機EL層 41……正孔輸送層 42……発光層 43……電子輸送層 5……陰極 6……保護層 1100……パーソナルコンピュータ 1102……キーボード 1104……本体部 1106……表示ユニット 1200……携帯電話機 1202……操作ボタン 1204……受話口 1206……送話口 1300‥‥ディジタルスチルカメラ 1302‥‥ケース(ボディー) 1304‥‥受光ユニット 1306‥‥シャッタボタン 1308‥‥回路基板 1312‥‥ビデオ信号出力端子 1314‥‥データ通信用の入出力端子 1430‥‥テレビモニタ 1440‥‥パーソナルコンピュータ

【特許請求の範囲】
【請求項1】
下記一般式(1)で表される化合物と、該化合物同士を置換基Xにおいて架橋する架橋剤としてのビニル化合物とを含有することを特徴とする導電性材料用組成物。
【化1】

[式中、2つのRは、それぞれ独立して、炭素数2〜8の直鎖アルキル基を表し、同一であっても、異なっていてもよく、4つのRは、それぞれ独立して、水素原子、メチル基またはエチル基を表し、同一であっても、異なっていてもよく、2つのXは、それぞれ独立して、下記一般式(2)で表される置換基を表し、同一であっても、異なっていてもよく、Yは、置換もしくは無置換の芳香族炭化水素環を少なくとも1つ含む基を表す。]
【化2】

[式中、nは、3〜8の整数を表し、mは、0〜3の整数を表し、Zは、水素原子、メチル基またはエチル基を表す。]
【請求項2】
前記ビニル化合物は、前記置換基Xと反応し得る反応基を少なくとも2つ有するものである請求項1に記載の導電性材料用組成物。
【請求項3】
前記ビニル化合物は、2つの前記反応基の間に位置し、これらの反応基の間の距離を規制する規制部を有するものである請求項2に記載の導電性材料用組成物。
【請求項4】
前記規制部は、直鎖状をなしている請求項3に記載の導電性材料用組成物。
【請求項5】
直鎖状の前記規制部を構成する原子のうち、直鎖状に連結するものの個数は、15〜50である請求項4に記載の導電性材料用組成物。
【請求項6】
前記ビニル化合物は、下記一般式(3)で表されるポリエチレングリコールジ(メタ)アクリレートを主成分とするものである請求項5に記載の導電性材料用組成物。
【化3】

[式中、nは、5〜15の整数を表し、2つのAは、それぞれ独立して、水素原子またはメチル基を表し、同一であっても、異なっていてもよい。]
【請求項7】
前記規制部は、環状をなす部分を有するものである請求項3に記載の導電性材料用組成物。
【請求項8】
前記環状をなす部分は、芳香族環である請求項7に記載の導電性材料用組成物。
【請求項9】
前記環状をなす部分に、複数の前記反応基のうちの少なくとも1つが直接連結している請求項7または8に記載の導電性材料用組成物。
【請求項10】
前記ビニル化合物は、ジビニルベンゼンを主成分とするものである請求項9に記載の導電性材料用組成物。
【請求項11】
2つの前記置換基Xは、同一である請求項1ないし10のいずれかに記載の導電性材料用組成物。
【請求項12】
前記置換基Xは、ベンゼン環の3位、4位または5位のうちのいずれかに結合している請求項1ないし11のいずれかに記載の導電性材料用組成物。
【請求項13】
2つの前記置換基Rは、同一である請求項1ないし12のいずれかに記載の導電性材料用組成物。
【請求項14】
前記置換基Rは、ベンゼン環の4位に結合している請求項1ないし13のいずれかに記載の導電性材料用組成物。
【請求項15】
前記基Yは、炭素原子と水素原子とで構成されている請求項1ないし14のいずれかに記載の導電性材料用組成物。
【請求項16】
前記基Yの総炭素数は、6〜30である請求項1ないし15のいずれかに記載の導電性材料用組成物。
【請求項17】
前記基Yにおいて、前記芳香族炭化水素環の数は、1〜5である請求項1ないし16のいずれかに記載の導電性材料用組成物。
【請求項18】
前記基Yは、ビフェニレン基またはその誘導体である請求項1ないし17のいずれかに記載の導電性材料用組成物。
【請求項19】
下記一般式(1)で表される化合物同士の置換基Xを、直接、または前記ビニル化合物を介して、重合反応させて得られることを特徴とする導電性材料。
【化4】

[式中、2つのRは、それぞれ独立して、炭素数2〜8の直鎖アルキル基を表し、同一であっても、異なっていてもよく、4つのRは、それぞれ独立して、水素原子、メチル基またはエチル基を表し、同一であっても、異なっていてもよく、2つのXは、それぞれ独立して、下記一般式(2)で表される置換基を表し、同一であっても、異なっていてもよく、Yは、置換もしくは無置換の芳香族炭化水素環を少なくとも1つ含む基を表す。]
【化5】

[式中、nは、3〜8の整数を表し、mは、0〜3の整数を表し、Zは、水素原子、メチル基またはエチル基を表す。]
【請求項20】
前記化合物および前記ビニル化合物は、光照射により重合反応する請求項19に記載の導電性材料。
【請求項21】
請求項1ないし18のいずれかに記載の導電性材料用組成物を用いて形成されたことを特徴とする導電層。
【請求項22】
請求項19または20に記載の導電性材料を主材料とすることを特徴とする導電層。
【請求項23】
前記導電層は、正孔輸送層である請求項21または22に記載の導電層。
【請求項24】
前記正孔輸送層の平均厚さは、10〜150nmである請求項23に記載の導電層。
【請求項25】
請求項21ないし24のいずれかに記載の導電層を有する積層体を備えることを特徴とする電子デバイス。
【請求項26】
前記電子デバイスは、発光素子または光電変換素子である請求項25に記載の電子デバイス。
【請求項27】
前記発光素子は、有機エレクトロルミネッセンス素子である請求項26に記載の電子デバイス。
【請求項28】
請求項25ないし27のいずれかに記載の電子デバイスを備えることを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−213833(P2006−213833A)
【公開日】平成18年8月17日(2006.8.17)
【国際特許分類】
【出願番号】特願2005−28576(P2005−28576)
【出願日】平成17年2月4日(2005.2.4)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】