説明

広範に同調可能な光パラメトリック発振器

多光子顕微鏡を含めたいくつかの用途で使用するための新規の広範に同調可能な光パラメトリック発振器を記載する。光パラメトリック発振器は、約650nm以下の波長を有するポンプ信号を出力するように構成された少なくとも1つのサブピコ秒レーザポンプ源と、ポンプ源と光学的に連絡し、単一の広く同調可能なパルス光信号を生成するように構成された少なくとも1つのタイプII光パラメトリック発振器とを含む。1つの用途では、光学システムが、光パラメトリック発振器と光学的に連絡し、光信号の少なくとも一部を標本に向けるように構成され、少なくとも1つの分析デバイスが、光信号に応答して、標本から信号を受信するように構成される。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2010年1月22日出願の米国仮特許出願第61/336,499号に対する優先権を主張するものであり、その特許出願の内容全体を参照により本明細書に援用する。
【背景技術】
【0002】
超高速パルスの同調可能な光源は、物理学、化学、および生物学においてますます使用が増えている。約20年間にわたり、最も普及している同調可能な超高速パルス光源は、チタンドープサファイアまたはTi:sapphireレーザである。このレーザ源は、高い平均パワーと、短いパルスと、妥当に広い同調可能性とを兼ね備える。典型的なTi:sapphireレーザは、100fs程度のパルス持続時間で約1W〜約4Wの平均パワーを生成することができる。ピコ秒パルス、さらにはより低いパワーでのはるかに短いパルスも実現されている。同調範囲は約680nm〜約1080nmに及ぶことがあるが、同調範囲の端部では約1Wよりもはるかに低い平均パワーしか利用可能でない。
【0003】
ここ10年には、Ti:sapphireレーザと、Ti:sapphireレーザをポンプする光源とが単一のボックスに組み合わされ、手動操作を必要としない(hands−off)、完全に自動の同調可能なレーザシステムを形成するように設計されている。これらのユーザフレンドリーな同調可能な超高速ワンボックスレーザーシステムの出現により、これらのレーザを使うことができる用途の数が大幅に増している。特に、生物学および生物化学での用途にこれらのレーザ源が役立っている。例えば、多光子顕微鏡(MPM)は、超高速レーザと顕微鏡の両方を使用して、標本または試料を検査する。
【0004】
多光子顕微鏡では、試料を励起するために、一光子システムで使用される可視光の連続波(cw)源ではなく、近赤外(IR)光の超高速パルス源が使用される。検査中の試料は、可視光の1つの光子によってではなく、超高速近IR源からの2つ(以上)の光子によって励起される。レーザビームの焦点にある試料の部分のみが、二光子励起を受けるのに十分な強度を有する光学放射を受ける。試料のこの部分に蛍光色素がドープされているとき、蛍光はすべて、励起された試料の小さな体積から放出される。例えば、参照により全体を本明細書に援用するDenk他に付与された米国特許第5,034,613号明細書に、二光子レーザ顕微鏡が記載されている。この技法の利点としては、改良された空間解像度、および試料の「光学切片(optiical sectioning)」が挙げられる。これは、試料において、励起される体積が深さ方向へはわずかにしか延びていないためである。また、可視光励起に対する生体試料の寿命を延ばすために、近IR波長を使用することも望ましい。
【0005】
同調可能な超高速光源がこの用途に関して普及しているのは、多くの生物学的試料が自家蛍光しないからである。そこで、試料のいくつかの部分に着色するために色素が使用される。現在、検査すべき試料に応じて利用可能な数十種類の色素が存在する。さらに、各色素は、最適な二光子吸収に関する独自の波長を有する。したがって、同調可能な光源は、どの色素を使用することができるかに関して、したがってどのタイプの試料を検査することができるかに関して、大きな自由度がある。
【0006】
典型的には、顕微鏡は、ガラスからなるいくつかのレンズを含み、またレーザビームを変調するための少なくとも1つの音響光学変調器を含むこともよくある。超高速レーザパルスがこれらの材料を通過するとき、分散により、パルス持続時間が長くなる。その結果、光信号は、時間的にしばしば2倍または3倍広げられることがある。材料によるこの分散は、適切な構成でレーザと顕微鏡の間に一対のプリズムを配置することによって事前補償することができる。さらに、この分散補償は、100fsのパルスが試料に直接入射できるようにする。近年、自動化されたプリズム対が、前述したワンボックス超高速レーザシステムに追加されている。使用中、ユーザが、コンピュータインターフェースを介してレーザを同調させる。応答時、レーザは、試料での最短パルスを維持するために、波長と、プリズム対の位置または向きとの両方を調節する。
【0007】
MPMの限界の1つは、試料への光の侵入深さが、しばしばわずか数十ミクロンに制限されることである。生物学的試料では、試料の励起部分によって放出される蛍光の散乱が制限要因となる。しかし、より長い波長ではこの散乱が減少し、したがって、より長い波長の超高速光源は、侵入深さをより深くすることができる。より長い波長の励起に関して、いくつかのさらなる限界がある。例えば、現在、ほとんどの顕微鏡は、顕微鏡の光学系上のコーティングにより、約1300nmよりも長い波長ではより一層大きな損失を有する。さらに、典型的にはほとんどの生物学的試料において、1400nm付近で水による強い吸収がある。
【0008】
したがって、Ti:sapphireレーザが行うようにちょうど約680nm〜約1080nmで同調するのではなく、約650nm〜約1400nmで同調する超高速光源を有することが望ましい。光源の組合せが、この範囲全体をカバーすることが実証されている。光パラメトリック発振器(OPO)をポンプするためにTi:sapphireレーザの出力が使用される場合、OPOが、不足している1080nm〜1400nmの波長範囲をカバーすることができる。KTP、RTP、またはCTAを使用するTi:sapphireポンプ式のOPOは、この波長範囲のほとんど、すなわち約1050nm〜1330nmをカバーすることが実証されている。これらのOPOは、典型的には、数百mWの平均パワーおよび200fsのパルス持続時間を生成する。別個のポートから出力されるTi:sapphireレーザと組み合わせて、同調範囲のほとんどをカバーすることができる。
【0009】
より近年には、周期分極反転ニオブ酸リチウム(PPLN)結晶を使用したOPOが実現されている。典型的には扇形の回折格子を含むPPLNの並進が、OPOの同調を可能にする。ポンプレーザの同調と組み合わせて、波長ギャップなしで1000nm〜1600nmをカバーする同調範囲が実現されている。OPOは、同調範囲の中央にミラーを手動で位置し直す必要性をなくするために、この同調範囲全体にわたって高反射率を有するミラーを必要とする。ここでも、別個のポートから出力されるTi:sapphireレーザと組み合わせて、650nm〜1400nmを超える同調範囲全てをカバーすることができる。Ti:sapphireとOPOの出力は異なる出力ポートから来るので、単一ビームを用い、かつ分散補償機能を備えるシステムの完全に自動化された同調は実現されていない。
【0010】
MPMに関して望ましい同調範囲全体をカバーするための別の代替形態は、より短い波長のポンプレーザを使用することである。ごく最近、1045nmでの超高速ポンプ源を周波数逓倍して、523nmの緑色での超高速パルスが生成された。周波数逓倍されたポンプ源を使用して、タイプI BBO結晶を有するOPOをポンプし、300fsのパルス持続時間を有する信号波長に関して690nm〜980nmの同調範囲が実現された。1120nm〜>2000nmの範囲をカバーするアイドラ波長が第2のポートから出力された。このシステムは、1045nmでのOPOの縮退により、同調範囲内にギャップを有する。
【0011】
したがって、MPMおよび他の用途に関して、高い平均パワーと100fsパルスの両方を有する非常に広範な同調範囲を有する超高速パルス源が現在必要とされている。さらに、680nm〜1380nmの範囲をカバーし、完全に自動化されたこの同調可能な超高速パルス源が現在必要とされている。さらに、この自動化された超高速パルス源がただ1つの出力ポートを有することがさらに必要とされている。最後に、この単一ポート超高速パルス源を、完全に自動化された分散補償デバイスと結合させることがさらに必要とされている。
【発明の概要】
【発明が解決しようとする課題】
【0012】
本出願は、新規の広範に同調可能な光パラメトリック発振器およびその製造方法を対象とする。より詳細には、本明細書で開示する新規の光パラメトリック発振器の様々な実施形態は、様々な用途で使用するために構成された広範に同調可能な超高速レーザシステムを提供する。
【課題を解決するための手段】
【0013】
一実施形態では、本出願は、約650nm以下の波長を有する少なくとも1つのポンプ信号を出力するように構成された少なくとも1つのサブピコ秒レーザポンプ源と、ポンプ源と光学的に連絡し、単一のパルス光信号を生成するように構成された少なくとも1つのタイプII光パラメトリック発振器と、光パラメトリック発振器と光学的に連絡し、光信号の少なくとも一部を標本に向けるように構成された少なくとも1つの光学システムと、光信号に応答して、標本から少なくとも1つの標本信号を受信するように構成された少なくとも1つの分析デバイスとを含むレーザシステムを開示する。
【0014】
別の実施形態では、本出願は、約650nm〜約1400nmで連続的に同調可能な光信号を生成するように構成され、出力が単一の出力ポートから放出されるサブピコ秒発振器と、サブピコ秒ポンプ源と光学的に連絡し、出力ポートを通して光信号を標本に向けるように構成された光学システムと、光信号に応答して、標本から少なくとも1つの標本信号を受信するように構成された少なくとも1つの分析デバイスとを含む超高速レーザ源を開示する。
【0015】
別の実施形態では、本出願は、約650nm以下の波長を有する少なくとも1つのポンプ信号を出力するように構成された少なくとも1つのピコ秒レーザポンプ源と、ポンプ源と光学的に連絡し、単一の光信号を生成するように構成されたタイプII光パラメトリック発振器と、光パラメトリック発振器と光学的に連絡し、光信号の少なくとも一部を標本に向けるように構成された光学システムと、光信号に応答して、標本から少なくとも1つの標本信号を受信するように構成された少なくとも1つの分析デバイスとを含むレーザシステムを対象とする。
【0016】
本明細書で開示する様々な新規の広範に同調可能な光パラメトリック発振器の実施形態の他の特徴および利点は、以下の詳細な説明の考察から明らかになろう。
【0017】
新規の広範に同調可能な光パラメトリック発振器の様々な実施形態を、添付図面によってより詳細に説明する。
【図面の簡単な説明】
【0018】
【図1】実験試料を検査するための光学システムに結合された広範に同調可能な超高速レーザシステムの一実施形態の概略図である。
【図2】図1に示される広範に同調可能な超高速レーザシステムにポンプ信号を提供するのに使用するためのポンプレーザの一実施形態の概略図である。
【図3】広範に同調可能な超高速レーザシステムで使用するための光パラメトリック発振器の一実施形態の概略図である。
【図4】広範に同調可能な超高速レーザシステムの一実施形態で使用されるときの、タイプI光学結晶を内部に有する光パラメトリック発振器の一実施形態の位相整合曲線を示すグラフである。
【図5】広範に同調可能な超高速レーザシステムの一実施形態で使用されるときの、タイプII光学結晶を内部に有する光パラメトリック発振器の一実施形態の位相整合曲線を示すグラフである。
【図6】実験試料を検査するための光学システムに結合された広範に同調可能な超高速レーザシステムの別の実施形態の概略図である。
【発明を実施するための形態】
【0019】
図1は、広範に同調可能な超高速レーザシステムの一実施形態のブロック図を示す。図示した実施形態では、広範に同調可能な超高速レーザシステム10は、ポンプ源として構成された少なくとも1つのポンプレーザ14と、少なくとも1つの調波発生器16と、少なくとも1つの光パラメトリック発振器18とを収容するハウジング12を含む。多光子顕微鏡システムで使用するための一実施形態では、広範に同調可能な超高速レーザシステム10は、1つまたは複数の実験試料22を検査するための1つまたは複数の顕微鏡または光学システム20に光学的に結合させることができる。図示した実施形態では、少なくとも1つの分散補償器24が、広範に同調可能な超高速レーザシステムハウジング10の内部に位置決めされる。任意選択で、分散補償器24は、広範に同調可能な超高速レーザシステムハウジング10と顕微鏡20の間に位置決めすることもできる。さらに、図1に示されるシステムは、分散補償器24なしで動作することもできる。さらに、1つまたは複数の制御または分析システム26が、顕微鏡20、試料22、分散補償器24、または広範に同調可能な超高速レーザシステム10の少なくとも1つと連絡することができる。広範に同調可能な超高速レーザシステムを形成する様々な構成要素を、以下により詳細に説明する。
【0020】
図1および図2を参照すると、ポンプレーザ14は、調波発生器16にポンプ信号34を提供するように構成される。一実施形態では、ポンプレーザは、調波発生器16にポンプ光のサブピコ秒パルスを提供するように構成された超高速レーザシステムを成す。別の実施形態では、ポンプレーザ14は、調波発生器16にポンプ光のフェムト秒パルスを提供するように構成することができる。一実施形態では、ポンプレーザ14は、約500nm〜約1800nmの波長を有する光信号を出力するように構成される。別の実施形態では、ポンプレーザ14は、約650nm未満の波長を有する光信号34を出力するように構成される。そこで、ポンプレーザ14は、内部に少なくとも1つの調波発生器16を含むことがある。したがって、調波発生器16は、ポンプレーザ14の内部に位置決めされても、またはポンプレーザ14と光学的に連絡する別個の要素であってもよい。
【0021】
ポンプレーザ14として、限定はせずに、ダイオードポンプ固体レーザ、バルクレーザ、ファイバレーザ、ファイバ増幅バルクレーザ、ファイバ増幅器、ディスクレーザ、および赤外レーザデバイスを含めた任意の多様なレーザデバイスを使用することができることを当業者は理解されよう。再び図1および図2を参照すると、一実施形態では、ポンプレーザ14は、モードロックダイオードポンプ源52と固体利得媒質54を備える。任意選択で、利得媒質54は、約100fs〜約300fsの持続時間のパルスを生成することができるように十分な帯域幅を有することがある。さらに、利得媒質54は、高い平均パワーを生成できるように十分に高い熱伝導率を有することがある。一実施形態では、平均パワーは、約10W〜約20Wである。別の実施形態では、平均パワーは、約20W〜約40Wである。技術が発達するにつれて平均パワーを拡張することができることを当業者は理解されよう。利得媒質54を作製するために、限定はせずに、Yb:YAG、Yb:KYW、Yb:KGW、Yb:glass、およびNd:glassを含めた任意の多様な材料を使用することができる。例えば、一実施形態では、利得媒質54を作製するためにYbドープ材料が使用される。そこで、これらの準3レベル利得媒質に関する透明度レベルを超えるように、高い輝度を有するダイオードを使用することができる。広範に同調可能な超高速レーザシステム10におけるポンプ源14として、任意の多様なポンプ源を使用することができることを当業者は理解されよう。一実施形態では、それぞれ約25W〜約100Wを生成する2つのファイバ結合型ポンプ源が、利得媒質の2つの側それぞれをポンプするために使用される。任意選択で、複数のファイバ結合型ポンプ源を、利得媒質の片側のみをポンプするように構成することができる。
【0022】
図2に示されるように、ポンプレーザ14は、1つまたは複数の分散補償デバイス56を内部に含むことができ、分散補償デバイス56は、ポンプレーザ14が短い光パルスを放出できるように構成される。一実施形態では、光パルスは、約100fs〜約300fsのパルス持続時間を有する。任意選択で、パルス持続時間は、約300fsよりも長いこともある。別の実施形態では、パルス持続時間は、約25fs〜約100fsである。例示的な分散補償デバイス56は、チャープミラーを備える。別の実施形態では、分散補償デバイス56は、共振器内プリズム対から構成される。任意選択で、ポンプレーザ14は、内部の分散補償デバイス56なしで製造することもできる。さらに、ポンプレーザ14は、モードロックレーザシステムを備えることがある。任意選択で、半導体可飽和吸収体を使用して、ポンプ源14のモードロックを開始して安定させることができる。変調度を増加させるために多重量子井戸および反射防止コーティングを含むことがある半導体可飽和吸収体が、発振器から最大パワーを得るのに有利である。あるいは、モードロック技法としてカーレンズモード同期(KLM)を使用することができる。一実施形態では、ポンプ源14の最大有効パワーは、共振器内分散に依存するスペクトルを測定することによって観察される発振器の多重パルスまたはcwブレークスルーによって制限されることがある。いくつかの実施形態では、いくつかの性能特性は、3次分散、共振器アライメント(特にKLMの場合)、モードロックデバイスの特性(SESAMの変調度など)、および/またはポンプレーザ14の出力カプラの透過率に応じて決まることがある。一実施形態では、ポンプレーザ14の出力カプラは、約5%〜約60%の透過率を有する。別の実施形態では、ポンプレーザ14の出力カプラは、約10%〜約40%の透過率を有する。任意選択で、ポンプレーザ14の出力カプラは、約15%〜約35%の透過率を有することがある。
【0023】
代替実施形態では、ポンプ源14は、モードロック赤外ポンプレーザを備え、このポンプレーザは、少なくとも1つのより低パワーのダイオードポンプ固体レーザ源52と、少なくとも1つのファイバ増幅器とを備える。そのようなポンプ源は、Y. DengらがOptics Letters, Vol.34, Iss.22, pp.3469−3471(2009)で述べており、その内容全体を参照により本明細書に援用する。Dengらが開示したレーザシステムは、約50fsの短いパルス持続時間で約18Wのパワーを生成した。別の実施形態では、モードロック赤外ポンプレーザ14として、少なくとも1つの高パワーのダイオードポンプファイバ発振器が使用されることがある。そのようなポンプ源は、K. KieuらがOptics Letters, Vol.34, Iss.5, pp.593−595で述べており、その内容全体を参照により本明細書に援用する。そこで、大モード面積ファイバ、フォトニック結晶ファイバ、カイラル結合コアファイバ等を使用して、Kieuが述べているデバイスと同様のポンプ源を、平均パワーがより高くなるように拡張することができる。任意選択で、ポンプレーザ14は、様々な光学デバイス、レンズ、回折格子、フィルタ、偏光子、Qスイッチ、音響光学デバイス、分散補償器などを内部に含むことができる。
【0024】
ポンプレーザ14は、少なくとも1つのポンプ信号34を出力するように構成されることがある。一実施形態では、ポンプ信号34は、約500nm〜約1800nmの波長を有することがある。例えば、一実施形態では、ポンプ信号34は、約1040nmの波長を有する。任意選択で、図1に示されるように、約475nm〜約600nmのポンプ信号34の波長を実現するために、調波発生器16によるポンプレーザ14の典型的な出力波長(約950nm〜約1200nm)の周波数逓倍が必要であることがある。そこで、調波発生器16において、LBO、BBO、および/またはBiBOを含めた周波数逓倍結晶を70%〜80%の高さの変換効率で使用することができるが、本発明によるシステムを、より低い変換効率で動作するように構成することもできることを当業者は理解されよう。さらに、変換効率、パルス持続時間、およびビーム品質、またはそれらの任意の組合せに関して、結晶の厚さおよび合焦を最適化することができる。別の実施形態では、調波発生器16の内部で、周期分極反転ニオブ酸リチウム(PPLN)、周期分極反転化学量論タンタル酸リチウム(PPSLT)、および周期分極反転リン酸チタニルカリウム(PPKTP)などの周期分極反転結晶を使用することもできる。例えば、一実施形態では、使用中、調波発生器16は、約10Wの平均パワーおよび200fsのパルスを有する赤外ポンプ信号34でポンプされるときに、大きなパルスの広がりを伴わずに、約500nm〜約750nmの波長を有する約7Wの少なくとも1つの光信号36を出力することができる。1つの特定の実施形態では、調波発生器16は、約10Wの平均パワーおよび200fsのパルスを有する赤外ポンプ信号34でポンプされるときに、大きなパルスの広がりを伴わずに、約520nmの波長を有する約7Wの少なくとも1つの光信号36を出力することができる。図示した実施形態では、調波発生器16は、ポンプレーザ14と光パラメトリック発振器18の間に位置されている。任意選択で、調波発生器16は、ポンプレーザ14または光パラメトリック発振器18の内部に位置決めすることもできる。別の実施形態では、調波発生器16は、入力信号の3次、4次、5次、または6次以上の調波を出力するように構成された調波発生器で置き換えることができる。さらに、広範に調節可能な超高速レーザシステムは、調波発生器16なしで動作することもできる。
【0025】
図1に示されるように、二次調波発生器16からの光信号36は、少なくとも1つの光パラメトリック発振器18(OPO)をポンプするために使用される。一実施形態では、OPO18は、サブピコ秒の発振器を備える。別の実施形態では、OPO18は、ピコ秒の発振器を備える。図3は、超高速レーザシステム10と共に使用することができるOPO18の一実施形態を示す。図示した実施形態では、OPO18は、少なくとも1つの構成要素位置決めシステム80に位置決めされた光学結晶70を含む。一実施形態では、構成要素位置決めシステム80は、OPO18内部で制御可能に移動、回転、または他の方法で位置決めし直すことができる。そこで、構成要素位置決めシステム80は、少なくとも1つの制御装置と通信することができる。例えば、構成要素位置決めシステム80は、制御システム26と通信することができる。
【0026】
再び図1および図3を参照すると、OPO18は、光学共振器を形成する複数の反射器またはミラーを含むことができる。図示した実施形態では、第1の反射器72と第2の反射器74は、空洞を画定するように構成されることがある。任意選択で、第1の反射器72と第2の反射器74の少なくとも一方が、広帯域反射器を備える。図示した実施形態では、第1の反射器72が、所望の波長で98%超の反射率を有する高反射ミラーとして働く。対照的に、第2の反射器74は、出力カプラとして働き、約40%〜約90%の反射率を有することがある。別の実施形態では、第2の反射器または出力カプラ74は、約60%〜約98%の反射率を有する。図示した実施形態では、第1の反射器72と第2の反射器74は曲面反射器を備えるが、任意の反射デバイスを使用することができることを当業者は理解されよう。さらに、OPO18は、様々な光学結晶、レンズ、チャープミラー、出力カプラ、プリズム、半導体可飽和吸収体、広帯域ミラー、回折格子、フィルタ、偏光子、Qスイッチ、音響光学デバイス、分散補償器、ガラスプレートなど、1つまたは複数の追加の光学構成要素76、78を含むことがある。例えば、図示した実施形態では、ポンプ信号反射器76およびガラスプレート78がOPO18の内部に位置決めされる。別の実施形態では、ポンプ信号は、第1の反射器72および第2の反射器74を介してOPO18内に注入することができる。任意選択で、OPO18の内部に位置決めされる任意の構成要素を、選択的に制御可能な構成要素位置決めシステム80に位置決めする、またはシステム80と連絡させることができる。OPO18を形成するために任意の多様なOPOシステムおよび/または結晶を使用することができることを当業者は理解されよう。例えば、OPO結晶70の選択肢として、LBO、BBO、BiBO、PPLN、PPSLT、PPKTP、およびZnGeP2を挙げることができる。
【0027】
一実施形態では、OPO18は、タイプI位相整合を採用する。例えば、BBOベースのOPO18は、約520nmでポンプすることができる。タイプI構成は、より高い非線形性と、同調範囲をカバーするのに必要とされるより小さい角度範囲との両方を提供する。520nmポンプを用いたタイプI BBOに関する位相整合曲線が図4に示される。信号パルスの波長を実線によって示し、対応するアイドラ波長を点線によって示す。したがって、約22度の角度で、信号パルスは730nmの波長を有し、それと同時に、1.8ミクロンの波長を有するアイドラパルスが同じ極性で生成される。図4に示されるように、結晶70が23度を超える角度に同調されるとき、信号とアイドラはどちらも1040nmの波長に近付き、これはポンプ波長の約2倍である。信号とアイドラが同じ波長を有する状態は、縮退と呼ばれる。典型的なOPO18では、縮退の近くでの動作は、いくつかの問題をもたらす。例えば、パルスの帯域幅は、位相整合曲線の傾きが無限に近付く領域の近位でかなり大きくなる。さらに、多くの異なる波長が、同じ位相整合角度で生成されることがある。この現象は、非変換限界パルスを生成させることがある。
【0028】
さらに、典型的には所望の信号パルスに関して高い反射率を有するように構成されたOPO18の第1の反射器72と第2の反射器74も、縮退の近くでアイドラを反射することがある。したがって、所望の信号とアイドラはどちらも、OPO18内の第1の反射器72と第2の反射器74によって共振されることがある。この現象は、双共振OPOと呼ばれる。双共振OPOでは、アイドラは、生成される2つの異なる経路を有する。第1の経路は、ポンプパルスが結晶70内で信号パルスを増幅し、アイドラパルスが生成されるたびに生じる。第2の経路は、前回の往復からのアイドラが、OPO18を形成する第1の反射器72と第2の反射器74によって捕捉されて結晶70に戻るように供給されるときに生じる。これらの2つの経路は、構成的に合わされることがあり、または2つのポンプ源からのアイドラの位相に応じて干渉することがある。典型的には、この干渉は、アイドラの強度を不安定にし、また、OPO18の空洞長のごくわずかな変化に伴って出力スペクトルの変調をもたらす。この問題に応じて、OPO18の空洞を形成する第1の反射器72と第2の反射器74は、アイドラを結晶70に反射して戻すのではなく、アイドラを全て透過するように構成されることもあり、したがって単共振OPO18を形成する。残念ながら、現在、約40nm未満では、高反射ミラーから高透過ミラーへの波長遷移を生じさせることはできない。したがって、すべての安定なタイプI OPOにおいて、縮退の付近に同調ギャップが存在する。
【0029】
そこで、タイプI OPOに加えて、広範に同調可能な超高速レーザシステム10は、1つまたは複数のタイプII OPO18を含むように構成されることがある。図5は、520nmでポンプされるタイプII BBO OPO18(図1参照)に関する位相整合曲線を角度の関数として示すが、任意の多様なタイプII材料を使用することができることを当業者は理解されよう。例示的なタイプII結晶としては、限定はせずに、BBO、KTiOPO4、LBO、LiB35、およびCsLiB610が挙げられる。ここでも、信号を実線で示し、アイドラを点線で示し、アイドラは、ここでは逆の極性を有する。図5に示されるように、位相整合曲線の傾きは、位相整合角度範囲内で無限になることは決してない。したがって、帯域幅は、タイプI構成で生成される信号の帯域幅とは対照的に、過剰に大きくなることは決してない。縮退時、信号とアイドラのパルスは、やはり上述したタイプI構成と同様の同じ波長を有する。しかし、信号とアイドラの極性が異なるので、偏光子、ブルースター窓、または同様の光学要素などの偏光セレクタを空洞内または出力カプラの後方に挿入することによってアイドラを除去することができる。さらに、アイドラは、空洞内要素の1つでの遅延を受け、したがってOPO18の空洞を進みながら遅延を受けるように構成されることがある。その結果、偏光子セレクタの挿入と、空洞内部でのアイドラの遅延との両方により、縮退の近くでの同調ギャップなしで単共振OPO18を生成することができる。したがって、同調範囲は、使用される結晶に応じて、使用されるミラーの総帯域幅、結晶の位相整合範囲、および/または非常に長い波長での結晶内へのアイドラパルスの吸収によって制限される。例えば、BBO結晶は、2.6ミクロンを超えるアイドラを吸収することがあり、一方、ニオブ酸リチウムなど他の結晶は、5ミクロンまでは低い損失を有することがある。
【0030】
OPO18の内部で、アイドラは、信号よりも低い出力パワーおよび大きい同調範囲を有する。パラメトリック過程において、エネルギーが保存され、信号光子のエネルギーとアイドラ光子のエネルギーの和は、ポンプ光子のエネルギーに実質的に等しくなる。図4に示されるように、信号が約650nmから約1400nmに同調するとき、アイドラは約2600nmから約830nmに同調する。したがって、アイドラは、OPO18の内部に位置決めされた偏光子または同様のデバイスによって空洞から除去されることがあるか、またはOPO18の出力カプラから出力されることがある。代替形態では、OPO18の他の共振器ミラーの1つが、最適化された反射率を有することがあり、それにより、アイドラは別の共振器ミラーによって除去される。OPO18内部の他のミラーは、反射率を変更されたコーティングを有し、信号の同調範囲を偏移し、したがってアイドラの同調範囲を偏移することがあることを当業者は理解されよう。典型的な一実施形態では、信号パルスは、約500mW〜約5Wの平均パワーを有することができ、一方、対応するアイドラパルスは、約50mW〜約3Wの平均パワーを有することができる。
【0031】
追加の同調範囲は、信号またはアイドラパルスの調波変換によって得ることができる。例として、信号が約650nmから約1400nmに同調するとき、信号の2次調波は、約325nmから約700nmに同調する。同様に、3次調波信号を生成することができ、これは約217nmから約467nmに同調する。同様に、4次調波信号を生成することができ、これは約162nmから約350nmに同調する。これらの調波信号は、非線形結晶で生成することができ、そのような非線形結晶として、LBO、BBO、BiBO、PPLN、PPSLT、PPKTP、CLBO、およびKBBFを挙げることができる。さらなる同調範囲は、信号、アイドラ、または1040nmでのポンプパルスを有する調波もしくは520nmでのポンプパルスの2次調波の和周波数混合によって生成することができる。この構成は、高パワービームとの和混合がより高出力のパワーを生み出すことができるので、有利であることがある。最後に、前述のポンプ源の任意のものを用いて、差周波数混合を採用して、より長い波長の変調可能な出力パルスを生成することもできる。AgGaSおよびAgGaSeで、10〜12ミクロンの長さの波長を生成することができる。
【0032】
代替形態では、信号とアイドラは、空間分離を使用してタイプI OPOで分離することができる。例えば、ポンプ源14とOPO18からの光のパルスを非共線幾何形状で位置決めすることができる。そこで、ポンプ信号34は、OPO18内部で生成される信号パルスに対して角度的に(すなわち10度未満)変位される。したがって、アイドラパルスの方向は、位相整合および/またはモーメントの保存によって決定される。ポンプパルスと信号パルスは共線に位置合わせされないので、アイドラパルスは、信号パルスに対してある角度で放出され、したがって空洞から空間的に除去することができる。
【0033】
一実施形態では、角度調整された結晶をOPO18の内部で使用することができる。図3に示されるように、OPO18の内部に形成される空洞は、結晶が回転されるときを含め、位置合わせして保つ必要がある。この結晶回転は、共振器内ビームを変位させることがある。任意選択で、等しい長さの第2の結晶、または適切な屈折率のガラスプレートを使用して、ビームのこの変位を補償することができる。一実施形態では、活性結晶がビームウエストに配置された状態で、OPO18内部で2つの曲面共振器ミラーの間に両方の結晶が配置される。同調は、活性結晶を一方向に回転させることによって達成される。次いで、補償器の結晶またはガラスプレートが逆方向に回転して、共振器内ビームの位置合わせを維持することができる。
【0034】
OPO18から放出される光信号38のパルス持続時間は、OPO18の総分散に応じて決まることもある。一実施形態では、チャープミラーを使用して、最短パルスを生成するのに必要とされる少量の負または正の分散を生成する。任意選択で、所望の正または負の分散を生成するために、限定はせずに、整合ミラー対、プリズム、レンズなどを含めた任意の多様なデバイスを使用することができる。したがって、OPO18は、少なくとも1つの分散補償デバイスを内部に含むことができる。最も広い高反射帯域幅を有するミラーを使用するOPO18の一実施形態では、分散は、波長の関数として周期的に変化する傾向がある。したがって、整合ミラー対を使用して、これらの分散リップルを打ち消すことができる。任意選択で、整合ミラー対は、対の一方のミラーの分散プロファイル最大値が、対の他方のミラーの分散プロファイル最小値に対応するように設計することができ、全体の分散プロファイルを平坦にする。一実施形態では、これらの一対のミラーは、400fs2未満のピークツーバレー分散リップルを示すことがあり、その一方で、一対当たりの平均分散を数百fs2以内で0fs2に保つ。あるいは、最適な分散は、共振器内プリズム対または列によって得ることができる。
【0035】
OPO18が同期してポンプされて動作するように、OPO18の繰り返し率は、ポンプレーザ14の繰り返し率と一致しなければならない。繰り返し率は空洞の長さに応じて決まることがあり、したがって、OPO18の内部に形成される空洞の長さが能動的に安定化されることがある。一実施形態では、1つまたは複数のサーボやセンサなどを使用して、OPO18から放出される中心波長を検出することができる。別の実施形態では、センサを使用して、OPO18から放出される平均パワーを検出することができる。その後、センサからの信号に応答してOPO18内部の空洞長を調節するようにサーボを構成することができる。
【0036】
図1に示されるように、分散補償器24は、広範に同調可能な超高速レーザシステム10と顕微鏡20の間に位置決めすることができる。一実施形態では、分散補償器24は、折畳みプリズム対を備えることがあるが、任意の多様な分散補償デバイスを使用することができることを当業者は理解されよう。例示的な代替の分散補償器としては、限定はせずに、整合ミラー対、プリズム、回折格子、グリズム、Gires−Tournois干渉計、Dazzler、電気光学パルス成形器、およびチャープミラーが挙げられる。OPO18が同調されるとき、分散補償器24は、試料22での最短パルスを維持するように調節されるように構成される。一実施形態では、制御システム26は、共振器内プリズム対および空洞長サーボの調節、結晶および補償器の調整、ならびに分散補償器24の調整のために使用することができる。任意選択で、分散補償器24を、顕微鏡20の内部に、顕微鏡20と同調可能な超高速レーザシステムハウジング10の間に、または広範に同調可能な超高速レーザシステムハウジング10の内部に位置決めすることができる。別の実施形態では、分散補償器24はOPO18の内部に位置決めされる。さらに、広範に同調可能な超高速レーザシステム10は、分散補償器24なしで動作することができる。図1に示されるように、分散補償器28は、補償された信号40を顕微鏡20に出力する。例えば、参照により内容全体を本明細書に援用する「Automatic Dispersion Compensation Over a Broad Wavelength Range for Coherent Optical Pulses」という名称の米国特許出願第11/983,583号明細書が、本発明のシステムと共に使用することができる分散補償方式を開示する。
【0037】
多光子顕微鏡を含めた多くの用途に関して、波長が同調されるときにレーザのビームポインティングを維持することが望ましい。少なくとも1つの能動ミラー50を、4象限検出器または他の検出器に関連付けて使用して、ビームポインティングを能動的に調節することができる。任意選択で、ビームポインティングサーボを使用して、時間にわたって、および波長の同調時に、出力ビームのポインティングを一定に保つことができる。別の実施形態では、ビームポインティングサーボを使用して、時間にわたって、ポンプレーザ14のポンティングを一定に保つ。
【0038】
任意選択で、図6に示されるように、いくつかの用途では、同期され、かつ個別に同調可能な複数の超高速パルスを生成することが望ましいことがある。そこで、少なくとも1つのビーム分割デバイス62を使用して、2次調波発生器16から出力された調波出力36を複数のビームに分割することができる。図示されるように、次いで、これら2つのビームはそれぞれ別々のOPO18A、18Bをポンプすることができる。次いで、各OPO18A、18Bからの出力38A、38Bを別々に同調することができ、出力パルス間のタイミングジッタは、実質的にポンプパルスの持続時間未満にすることができる。任意選択で、少なくとも1つの追加の光学構成要素64を使用して、個々のOPO18A、18Bの出力を同調することもできる。例えば、一実施形態では、光学構成要素64は、出力38A、38Bを組み合わせて単一の出力になるように構成された少なくとも1つのビーム結合器を備える。別の実施形態では、個々のOPO18A、18Bの出力を別々の顕微鏡システムで使用することができる。したがって、複数の分散補償器24を使用することができる。
【0039】
さらに、光信号38のパルス持続時間は、特定の用途に関して選択的に増減させることができる。例えば増幅器システムのシーディングなど、ある用途では、より短い持続時間の信号およびアイドラパルスが望ましい。光信号38の最適な持続時間は、約10fs〜約100fsの範囲内にすることができる。これらの信号38のより短いパルス持続時間は、より短いポンプパルス、より薄いOPO結晶およびそれに対応してより高い位相整合帯域幅、非共線位相整合、または改良された群速度分散整合を使用することによって達成することができる。さらに、これらのより短い持続時間のパルスが、安定化されたキャリアエンベロープ位相を有することが必要である。これは、内容を参照により本明細書に援用するGaleらのOptics Express 16, 1616 (2008)で述べているものなど、文献で知られている技法によって達成することができる。
【0040】
対照的に、他の用途は、OPO18がより長いパルスを生成することを必要とすることがある。例えば、CARS分光法では、変換限界ピコ秒パルスが望ましい。一実施形態では、より長いパルス持続時間は、より長い持続時間のポンプパルスを生成することによって達成することができる。例えば、ポンプレーザ14の修正または2次調波発生器16の長さの増加が、より長いパルス持続時間をもたらすことがある。修正されたポンプレーザ14の一例は、利得媒質Nd:Vanadateを使用する。さらに、OPO18内部で使用される結晶を長くすることができ、共振器内分散の値を最適化して、より狭い帯域幅を生成し、それにより変換限界パルスを生成することができる。最後に、OPO18の空洞内に少なくとも1つの追加の同調要素を挿入することによって、より狭い帯域幅を生成することができる。例示的な同調要素としては、限定はせずに、複屈折プレート、エタロン、体積ブラッグ回折格子(volume Bragg grating)、回折格子、プリズム、グリズムなどを挙げられる。
【0041】
実施形態の特定の形態を図示して説明してきたが、本発明の実施形態の精神および範囲から逸脱することなく様々な修正を行うことができることは明らかであろう。したがって、前述した詳細な説明によって本発明を限定することは意図されていない。

【特許請求の範囲】
【請求項1】
約650nm以下の波長を有する少なくとも1つのポンプ信号を出力するように構成された少なくとも1つのサブピコ秒レーザポンプ源と、
前記ポンプ源と光学的に連絡し、単一のパルス光信号を生成するように構成された少なくとも1つのタイプII光パラメトリック発振器と、
前記光パラメトリック発振器と光学的に連絡し、前記光信号の少なくとも一部を標本に向けるように構成された少なくとも1つの光学システムと、
前記光信号に応答して、前記標本から少なくとも1つの標本信号を受信するように構成された少なくとも1つの分析デバイスと
を備えるレーザシステム。
【請求項2】
前記ポンプ源が、ダイオードポンプ固体レーザシステムを備える請求項1に記載のデバイス。
【請求項3】
前記ポンプ源が、バルクレーザ、ファイバレーザ、ファイバ増幅バルクレーザ、ファイバ増幅器、またはディスクレーザからなる群から選択される少なくとも1つのデバイスを含む請求項1に記載のデバイス。
【請求項4】
前記ポンプ源が、650nm以下の波長を有する調波信号を出力するように構成された赤外レーザシステムを備える請求項1に記載のデバイス。
【請求項5】
さらに、前記ポンプ源および前記光パラメトリック発振器と光学的に連絡する少なくとも1つの調波発生器を備え、前記調波発生器が、前記ポンプ源から前記ポンプ信号を受信し、前記調波信号を出力するように構成される請求項4に記載のデバイス。
【請求項6】
前記光パラメトリック発振器が、少なくとも1つの非線形光学材料を含む請求項1に記載のデバイス。
【請求項7】
前記光パラメトリック発振器が、LBO、BBO、BiBO、PPLN、PPSLT、PPKTP、KTiOPO4、LiB35、およびCsLiB610からなる群から選択される少なくとも1つの光学結晶を含む請求項6に記載のデバイス。
【請求項8】
前記光パラメトリック発振器が、少なくとも1つの広帯域ミラーを含む請求項1に記載のデバイス。
【請求項9】
前記光パラメトリック発振器が、内部に位置された少なくとも1つの構成要素位置決めデバイスを含む請求項1に記載のデバイス。
【請求項10】
前記構成要素位置決めシステムが、コンピュータ制御式の位置決めデバイスを備える請求項9に記載のデバイス。
【請求項11】
前記構成要素位置決めシステムが、光学結晶、レンズ、チャープミラー、ミラー、出力結合ミラー、プリズム、半導体可飽和吸収体、広帯域ミラー、および回折格子からなる群から選択される少なくとも1つの構成要素を支持するように構成される請求項9に記載のデバイス。
【請求項12】
前記レーザシステムが、少なくとも1つの分散補償デバイスを含む請求項1に記載のデバイス。
【請求項13】
前記分散補償デバイスが、前記光パラメトリック発振器の内部に位置される請求項12に記載のデバイス。
【請求項14】
前記分散補償デバイスが、少なくとも1つの整合ミラー対を備える請求項13に記載のデバイス。
【請求項15】
前記分散補償デバイスが、前記光パラメトリック発振器の外部に位置される請求項12に記載のデバイス。
【請求項16】
前記分散補償デバイスが、前記光パラメトリック発振器から前記光信号を受信し、補償された光信号を前記光学システムに出力するように構成された請求項15に記載のデバイス。
【請求項17】
前記分散補償デバイスが、プリズム、回折格子、グリズム、Gires−Tournois干渉計、Dazzler、電子光学パルス成形器、およびチャープミラーからなる群から選択される少なくとも1つのデバイスを含む請求項16に記載のデバイス。
【請求項18】
さらに、前記レーザポンプ源と連絡した第1の光パラメトリック発振器および第2の光パラメトリック発振器を備える請求項1に記載のデバイス。
【請求項19】
約650nm〜約1400nmで連続的に同調可能な光信号を生成するように構成され、出力が単一の出力ポートから放出されるサブピコ秒発振器と、
前記サブピコ秒ポンプ源と光学的に連絡し、前記出力ポートを通して前記光信号を標本に向けるように構成された光学システムと、
前記光信号に応答して、前記標本から少なくとも1つの標本信号を受信するように構成された少なくとも1つの分析デバイスと
を備える超高速レーザ源。
【請求項20】
前記発振器が、タイプI光パラメトリック発振器を備える請求項19に記載のデバイス。
【請求項21】
前記光パラメトリック発振器が、LBO、BBO、BiBO、PPLN、PPSLT、PPKTP、およびZnGeP2からなる群から選択される少なくとも1つのタイプI光学結晶を含む請求項20に記載のデバイス。
【請求項22】
前記発振器が、タイプII光パラメトリック発振器を備える請求項19に記載のデバイス。
【請求項23】
前記光パラメトリック発振器が、LBO、BBO、BiBO、PPLN、PPSLT、PPKTP、KTiOPO4、LBO、LiB35、およびCsLiB610からなる群から選択される少なくとも1つのタイプII光学結晶を含む請求項22に記載のデバイス。
【請求項24】
前記発振器が、少なくとも1つの広帯域ミラーを含む請求項19に記載のデバイス。
【請求項25】
前記レーザシステムが、少なくとも1つの分散補償デバイスを含む請求項19に記載のデバイス。
【請求項26】
前記分散補償デバイスが、前記発振器の内部に位置される請求項25に記載のデバイス。
【請求項27】
前記分散補償デバイスが、少なくとも1つの整合ミラー対を備える請求項25に記載のデバイス。
【請求項28】
前記分散補償デバイスが、前記発振器の外部に位置される請求項25に記載のデバイス。
【請求項29】
前記分散補償デバイスが、前記発振器から前記光信号を受信し、補償された光信号を前記光学システムに出力するように構成された請求項28に記載のデバイス。
【請求項30】
前記分散補償デバイスが、プリズム、回折格子、グリズム、Gires−Tournois干渉計、Dazzler、電子光学パルス成形器、およびチャープミラーからなる群から選択される少なくとも1つのデバイスを含む請求項28に記載のデバイス。
【請求項31】
約650nm以下の波長を有する少なくとも1つのポンプ信号を出力するように構成された少なくとも1つのピコ秒レーザポンプ源と、
前記ポンプ源と光学的に連絡し、単一の光信号を生成するように構成されたタイプII光パラメトリック発振器と、
前記光パラメトリック発振器と光学的に連絡し、前記光信号の少なくとも一部を標本に向けるように構成された光学システムと、
前記光信号に応答して、前記標本から少なくとも1つの標本信号を受信するように構成された少なくとも1つの分析デバイスと
を備えるレーザシステム。
【請求項32】
前記ポンプ源が、ダイオードポンプ固体レーザシステムを備える請求項31に記載のデバイス。
【請求項33】
前記ポンプ源が、バルクレーザ、ファイバレーザ、ファイバ増幅バルクレーザ、ファイバ増幅器、またはディスクレーザからなる群から選択される少なくとも1つのデバイスを含む請求項31に記載のデバイス。
【請求項34】
前記ポンプ源が、650nm以下の波長を有する調波信号を出力するように構成された赤外レーザシステムを備える請求項31に記載のデバイス。
【請求項35】
さらに、前記ポンプ源および前記光パラメトリック発振器と光学的に連絡する少なくとも1つの調波発生器を備え、前記調波発生器が、前記ポンプ源から前記ポンプ信号を受信し、前記調波信号を出力するように構成される請求項34に記載のデバイス。
【請求項36】
前記光パラメトリック発振器が、少なくとも1つの非線形光学材料を含む請求項31に記載のデバイス。
【請求項37】
前記光パラメトリック発振器が、LBO、BBO、BiBO、PPLN、PPSLT、PPKTP、KTiOPO4、LiB35、およびCsLiB610からなる群から選択される少なくとも1つの光学結晶を含む請求項36に記載のデバイス。
【請求項38】
前記光パラメトリック発振器が、少なくとも1つの広帯域ミラーを含む請求項31に記載のデバイス。
【請求項39】
前記光パラメトリック発振器が、内部に位置された少なくとも1つの構成要素位置決めデバイスを含む請求項31に記載のデバイス。
【請求項40】
前記構成要素位置決めシステムが、コンピュータ制御式の位置決めデバイスを備える請求項39に記載のデバイス。
【請求項41】
前記構成要素位置決めシステムが、光学結晶、レンズ、チャープミラー、ミラー、出力結合ミラー、プリズム、半導体可飽和吸収体、広帯域ミラー、および回折格子からなる群から選択される少なくとも1つの構成要素を支持するように構成される請求項39に記載のデバイス。
【請求項42】
前記レーザシステムが、少なくとも1つの分散補償デバイスを含む請求項31に記載のデバイス。
【請求項43】
前記分散補償デバイスが、前記光パラメトリック発振器の内部に位置される請求項42に記載のデバイス。
【請求項44】
前記分散補償デバイスが、少なくとも1つの整合ミラー対を備える請求項42に記載のデバイス。
【請求項45】
前記分散補償デバイスが、前記光パラメトリック発振器の外部に位置される請求項42に記載のデバイス。
【請求項46】
前記分散補償デバイスが、前記光パラメトリック発振器から前記光信号を受信し、補償された光信号を前記光学システムに出力するように構成された請求項45に記載のデバイス。
【請求項47】
前記分散補償デバイスが、プリズム、回折格子、グリズム、Gires−Tournois干渉計、Dazzler、電子光学パルス成形器、およびチャープミラーからなる群から選択される少なくとも1つのデバイスを含む請求項45に記載のデバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2013−518302(P2013−518302A)
【公表日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2012−550175(P2012−550175)
【出願日】平成23年1月21日(2011.1.21)
【国際出願番号】PCT/US2011/022144
【国際公開番号】WO2011/091316
【国際公開日】平成23年7月28日(2011.7.28)
【出願人】(507159407)ニューポート コーポレーション (5)
【Fターム(参考)】